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Primer — Support Vector Machines (SVMs)

We start with a linear SVM:
T2/
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We start with a linear SVM:
T2/

“Lazy" approaches to kernel choices
include polynomial / RBF kernels.
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Primer — Support Vector Machines (SVMs)

An approach to obtain a non-linear
decision boundary is to learn a
hyperplane in higher-dimensions:

We start with a linear SVM:
T2/

“Lazy" approaches to kernel choices
include polynomial / RBF kernels.

A // >
) L1 . .
/2(> 7 The “laziest” kernel of all is a deep
4

neural network.
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Neural Networks are Incredibly Overparameterized

Our study today is constrained to classifiers.
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Neural Networks are Incredibly Overparameterized

Our study today is constrained to classifiers. WLOG, we can constrain our
study to image classifiers.
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Neural Networks are Incredibly Overparameterized

Our study today is constrained to classifiers. WLOG, we can constrain our
study to image classifiers.

- CAR
- TRUCK
- VAN

O 1 -sicycLE

INPUT CONVOLUTION + POOLING CONVOLUTION + POOLING FLATTEN FULLY SOFTMAX
RELU RELU CONNECTED
FEATURE LEARNING CLASSIFICATION

Traditional Learning: n>d; W € R, D = {(x;,y:)}",
Overparameterized Learning: d > n

Q: Why does overparameterized learning generalize?
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What is Deep Neural Collapse (DNC)?

Deep Neural Collapse is a phenomenon describing rigidity in the feature
representation(s) of the final layer(s) of overtrained Deep Neural Networks.
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What is Deep Neural Collapse (DNC)?

Deep Neural Collapse is a phenomenon describing rigidity in the feature

representation(s) of the final layer(s) of overtrained Deep Neural Networks.

Qi1: What does overtrained mean?

A;: When a sufficiently expressive network h trained to minimize £(S,)
satisfies h(x;) = y; Vi, it reaches the Terminal Point of Training. When
trained beyond this point, the model is overtrained.
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What is Deep Neural Collapse (DNC)?

Deep Neural Collapse is a phenomenon describing rigidity in the feature
representation(s) of the final layer(s) of overtrained Deep Neural Networks.

Qi1: What does overtrained mean?

A;: When a sufficiently expressive network h trained to minimize £(S,)
satisfies h(x;) = y; Vi, it reaches the Terminal Point of Training. When
trained beyond this point, the model is overtrained.

Q2: What does rigidity mean?
A,: We quantify rigidity by 4 key metrics, which iff satisifed, implies DNC.

Q2,: What are the 4 key metrics?
Aj,: We'll talk about this next.
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NC1 — Collapse of Variability (1/2)

At a high level, the structure of the penultimate layer collapses towards:

Evolution of penultimate layer outputs on VGG13 trained on CIFAR10.
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NC1 — Collapse of Variability (1/2)

At a high level, the structure of the penultimate layer collapses towards:

N \

Evolution of penultimate layer outputs on VGG13 trained on CIFAR10.

For all classes k € [K], datapoints i € [n] within a class, & penultimate
feature vector f(k, i),
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NC1 — Collapse of Variability (1/2)

At a high level, the structure of the penultimate layer collapses towards:

N2 N

Evolution of penultimate layer outputs on VGG13 trained on CIFAR10.

For all classes k € [K], datapoints i € [n] within a class, & penultimate
feature vector f(k, i), we have class-specific & global means:

pe = — Z f(k,i) (1)
HG = 12 Zﬂk (2)
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NC1 — Collapse of Variability (2/2)

We can use them to calculate intra and inter-class differences:

K n
Cony = - 3 S ((Fk i) — m)(F(k. 1) — i) ) € BT (3)

k=1 i=1
1 K

Covg = 22 > (1 — p6) (e — pc)’) e R™XM (4)
k=1
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NC1 — Collapse of Variability (2/2)

We can use them to calculate intra and inter-class differences:

K n
Cony = - 3 S ((Fk i) — m)(F(k. 1) — i) ) € BT (3)

k=1 i=1
1 K

Covg = 22 > (1 — p6) (e — pc)’) e R™XM (4)
k=1

Which we combine to measure overall variability collapse:

1
NC1 := P Tr (CovW Cov}}) (5)
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Aside: Psuedoinverses

The inverse of a matrix A is defined s.t. it satisfies the following condition:

A B, 1R st AB=BA=1I4y; B:=A1 A:=B"! (6)
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Aside: Psuedoinverses

The inverse of a matrix A is defined s.t. it satisfies the following condition:
A B, 1R st AB=BA=1I4y; B:=A1 A:=B"! (6)

What about when X € R"™™? A psuedoinverse is a generalized inverse,
which instead satisfies the following four conditions:

XXX =X (7)
XXXt =x"1 (8)
(XX7hy* = xxt (9)
X7Ix*=Xx"1x (10)

Where X* is the conjugate transpose of X.
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Aside: Psuedoinverses

The inverse of a matrix A is defined s.t. it satisfies the following condition:
A B, 1R st AB=BA=1I4y; B:=A1 A:=B"! (6)

What about when X € R"™™? A psuedoinverse is a generalized inverse,
which instead satisfies the following four conditions:

XXX =X (7)
XXXt =x"1 (8)
(XX7hy* = xxt (9)
X7Ix*=Xx"1x (10)

Where X* is the conjugate transpose of X.

Implication: We can compute correlation b/w general matrix dimensions.
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NC2 — The Simplex ETF (1/2)

This time, we can on focus the structure of the class means:
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This time, we can on focus the structure of the class means:
“ ﬁJI ©
N N ‘

A useful analogy is VSEPR? from Chemistry.

3| sincerely apologize for making this reference.
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NC2 — The Simplex ETF (1/2)

This time, we can on focus the structure of the class means:

3. e

A useful analogy is VSEPR? from Chemistry. Each class (atom) repels the
other creating a simplex equiangular tight frame (simplex ETF).
- Simplex is the simplest polytope (object with flat sides).
- Equiangular Tight Frame is a matrix M € RK*™ s t.
[(mj,my)| = a 3a >0V, kst j#k (11)

C 1
MMT = 1 </C — C]lCXC> (12)

Satisfying equiangular and tight respectively.

3| sincerely apologize for making this reference.
ECE ML Reading Group Deep Neural Collapse November 13, 2024 11/19



NC2 — The Simplex ETF (2/2)

We can use this to define NC2. Given re-centered class means
{1k — G }ielk], they are equidistant if:

|k — pellz = e — pell2 Yk, K € [K] (13)
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NC2 — The Simplex ETF (2/2)

We can use this to define NC2. Given re-centered class means
{1k — G }ielk], they are equidistant if:

|k — pcll2 = |pw — pell2 Yk, k' € [K]

We then normalize each feature vector to create our simplex ETF:

_ [K]
M = Concat {MER’”} c RKxm
ek — pcll2
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NC2 — The Simplex ETF (2/2)

We can use this to define NC2. Given re-centered class means
{1k — G }ielk], they are equidistant if:

|k — pellz = e — pell2 Yk, K € [K] (13)

We then normalize each feature vector to create our simplex ETF:

_ (K]
M = Concat ({M ER’”} ) € RKxm (14)

ek — pll2

M is now compared to it's distance from the simplex ETF:

MM T 1 Tkx K)
NC2 = _ —— Ik — 15
(MM = (% (19)
—_———
feature vector as a simplex canonical simplex F

Setting up our second metric.
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NC3 — Self-Dual Alignment

The final layer's weights W € RX*™ align with simplex ETF of M:

A M
A "
1AllF— [IMlF
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NC3 — Self-Dual Alignment

The final layer's weights W € RX*™ align with simplex ETF of M:
A M

x (16)
Al IM]lF
We can use this to setup the third metric:
NC3 = AMT 1 (/ - M) (17)
Tl IAMTE K—1\" K
N——
= cosine similiarity canonical simplex F
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NC4 — Secretly k-NN

Finally, we observe that for x,11, the classification result = k-NN rule:

argmax 91 = arg min || (xns1) — okl (18)
kelK]
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NC4 — Secretly k-NN

Finally, we observe that for x,11, the classification result = k-NN rule:

argmax 91 = arg min || (xns1) — okl (18)
kelK]

Which we can use to setup our final metric:

K
NC4 : Kﬂ;zl]l argmaxy,;éarg[mme(x,) will2 (19)
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NC4 — Secretly k-NN

Finally, we observe that for x,11, the classification result = k-NN rule:

argmax 91 = arg min || (xns1) — okl (18)
kelK]

Which we can use to setup our final metric:

NC4 : ZZH argmaxy,#argmm”f(x,) will2 (19)
k 1i=1

If each of the 4 previous metrics — 0, the network is considered collapsed.
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© Optimality of Neural Collapse
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Modelling Neural Collapse

Unconstrained Features Model: To maintain the expressivity of H,
properties NC is studied by treating f;,i € {1,...,L — 1} as free
optimization parameters:

Peeled layers

Peeled layers Fmmm——— - — -
| o
1 1
1 I
! A S
I I VeR
| ; 0>\J o
| o L
1 1
¥ . 1 ©

L-1
(@) CNN — UFM (b) MLP — UFM
hL(X) =A fl:L—l(X) +b (20)
NC
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Modelling Neural Collapse

Unconstrained Features Model: To maintain the expressivity of H,
properties NC is studied by treating f;,i € {1,...,L — 1} as free
optimization parameters:

Peeled layers
Peeled layers Fmmm——— - — -

<
i
(o}

O VR P
to L

. o

""""""" L1

(@ CNN — UFM (b) MLP — UFM
hL(X) =A fl:L—l(X) +b (20)
——
NC

We can further discuss the ideal values of A, f, b and training dynamics
(regularization, loss functions, normalization) that encourage it.
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Do We Even Want This? — Data Independence

Here's what the metric convergence plots look like, with random labels.
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Do We Even Want This? — Data Independence

Here's what the metric convergence plots look like, with random labels.
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Q: Do we even want this?
A: Yes. Here's some reasons why:

1. OOD: {NC1, NC2, NC3} > 0 imply unconfident predictions.
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Q: Do we even want this?
A: Yes. Here's some reasons why:

1. OOD: {NC1, NC2, NC3} > 0 imply unconfident predictions.
2. Forced ETF: The final layer can be a fixed as a simplex.
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Do We Even Want This? — Data Independence

Here's what the metric convergence plots look like, with random labels.

12,
10]

08

Sog

MLP

ey (log scale)
\

21 \ oaf!
“ width = 1024 s 02
width = 2048 —
0100 200 300 400 500 % 100 200 300 400 500
oc poch

Ny (log scale)

ResNet18

200

(d) Training error

Q: Do we even want this?
A: Yes. Here's some reasons why:

1. OOD: {NC1, NC2, NC3} > 0 imply unconfident predictions.
2. Forced ETF: The final layer can be a fixed as a simplex.
3. Data dependenent explanation: AGOP induces NC.
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Optimality of NC (Softmax-CE Loss)

Softmax CE is defined element-wise as follows:

L(zj)zlo : exp(z; log exp(z; 21
foZI exp(zl-) g; P( I)+ g P( J) ( )

is convex Vj € {1,..., k}.

P(z)j = —log
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Optimality of NC (Softmax-CE Loss)

Softmax CE is defined element-wise as follows:

L(zj)zlo : exp(z; log exp(z; 21
foZI exp(zl-) g; P( I)+ g P( J) ( )

is convex Vj € {1,..., k}.

P(z)j = —log

2 ;:% /C h(x)P(dx) (22)
/ & (h(x))P(dx) > / (2 )P(dk) (23)
Cy Cy
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Optimality of NC (Softmax-CE Loss)

Softmax CE is defined element-wise as follows:

k
d(z); = —lo L(Zj)zlo exp(z; log exp(z; 21
(2) B () g; p(zi) +logexp(z) (1)

is convex Vj € {1,..., k}.

2= % /C h(x)P(dx) (22)
/ & (h(x))P(dx) > / & (2 )P(dx) (23)
Cy Cy
Consequently, we have that:
R(h) < minR(h) (24)

heH

Establishing NC describing the optimal geometry within the final layer for
population risk minimization.
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Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/dnc.pdf
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