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Primer – Support Vector Machines (SVMs)

We start with a linear SVM:

An approach to obtain a non-linear
decision boundary is to learn a
hyperplane in higher-dimensions:

“Lazy” approaches to kernel choices
include polynomial / RBF kernels.

The “laziest” kernel of all is a deep
neural network.
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Neural Networks are Incredibly Overparameterized

Our study today is constrained to classifiers.

WLOG, we can constrain our
study to image classifiers.

Traditional Learning: n ≥ d ; W ∈ Rd , D = {(xi , yi )}ni=1

Overparameterized Learning: d ≥ n

Q: Why does overparameterized learning generalize?
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What is Deep Neural Collapse (DNC)?

Deep Neural Collapse is a phenomenon describing rigidity in the feature
representation(s) of the final layer(s) of overtrained Deep Neural Networks.

Q1: What does overtrained mean?
A1: When a sufficiently expressive network h trained to minimize L(Sn)
satisfies h(xi ) = yi ∀i , it reaches the Terminal Point of Training. When
trained beyond this point, the model is overtrained.

Q2: What does rigidity mean?
A2: We quantify rigidity by 4 key metrics, which iff satisifed, implies DNC.

Q2a : What are the 4 key metrics?
A2a : We’ll talk about this next.
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NC1 – Collapse of Variability (1/2)

At a high level, the structure of the penultimate layer collapses towards:

Evolution of penultimate layer outputs on VGG13 trained on CIFAR10.

For all classes k ∈ [K ], datapoints i ∈ [n] within a class, & penultimate
feature vector f (k, i), we have class-specific & global means:

µk =
1

n

n∑
i=1

f (k, i) (1)

µG =
1

K

K∑
i=1

µk (2)
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NC1 – Collapse of Variability (2/2)

We can use them to calculate intra and inter -class differences:

CovW =
1

Kn

K∑
k=1

n∑
i=1

((f (k , i)− µk)(f (k , i)− µk)
T ) ∈ Rm×m (3)

CovB =
1

K

K∑
k=1

((µk − µG )(µk − µG )
T ) ∈ Rm×m (4)

Which we combine to measure overall variability collapse:

NC1 :=
1

K
Tr
(
CovW Cov†B

)
(5)
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Aside: Psuedoinverses

The inverse of a matrix A is defined s.t. it satisfies the following condition:

A,B, I ∈ Rd×d s.t. AB = BA = Id ; B := A−1, A := B−1 (6)

What about when X ∈ Rn×m? A psuedoinverse is a generalized inverse,
which instead satisfies the following four conditions:

XX−1X = X (7)

X−1XX−1 = X−1 (8)

(XX−1)∗ = XX−1 (9)

X−1X ∗ = X−1X (10)

Where X ∗ is the conjugate transpose of X .

Implication: We can compute correlation b/w general matrix dimensions.
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NC2 – The Simplex ETF (1/2)

This time, we can on focus the structure of the class means:

A useful analogy is VSEPR3 from Chemistry. Each class (atom) repels the
other creating a simplex equiangular tight frame (simplex ETF).

- Simplex is the simplest polytope (object with flat sides).

- Equiangular Tight Frame is a matrix M ∈ RK×m s.t.

|⟨mj ,mk⟩| = α ∃α ≥ 0 ∀j , k s.t. j ̸= k (11)

MMT =

√
C

C − 1

(
IC − 1

C
1C×C

)
(12)

Satisfying equiangular and tight respectively.
3I sincerely apologize for making this reference.
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NC2 – The Simplex ETF (2/2)

We can use this to define NC2. Given re-centered class means
{µk − µG}k∈[K ], they are equidistant if:

∥µk − µG∥2 = ∥µk ′ − µG∥2 ∀k , k ′ ∈ [K ] (13)

We then normalize each feature vector to create our simplex ETF:

M = Concat

({
µk − µG

∥µk − µG∥2
∈ Rm

}[K ]
)

∈ RK×m (14)

M is now compared to it’s distance from the simplex ETF:

NC2 :=

∥∥∥∥∥∥∥∥∥
MMT

∥MMT∥F︸ ︷︷ ︸
feature vector as a simplex

− 1√
K − 1

(
IK − 1K×K

K

)
︸ ︷︷ ︸

canonical simplex

∥∥∥∥∥∥∥∥∥
F

(15)

Setting up our second metric.
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NC3 – Self-Dual Alignment

The final layer’s weights W ∈ RK×m align with simplex ETF of M:

A

∥A∥F
∝ M

∥M∥F
(16)

We can use this to setup the third metric:

NC3 :=

∥∥∥∥∥∥∥∥∥
AMT

∥AMT∥F︸ ︷︷ ︸
≡ cosine similiarity

− 1√
K − 1

(
IK − 1K×K

K

)
︸ ︷︷ ︸

canonical simplex

∥∥∥∥∥∥∥∥∥
F

(17)
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NC4 – Secretly k-NN

Finally, we observe that for xn+1, the classification result ≡ k-NN rule:

argmax ŷn+1 = argmin
k∈[K ]

∥f (xn+1)− µk∥2 (18)

Which we can use to setup our final metric:

NC4 :
1

Kn

K∑
k=1

n∑
i=1

1

[
argmax ŷi ̸= argmin

k∈[K ]
∥f (xi )− µk∥2

]
(19)

If each of the 4 previous metrics → 0, the network is considered collapsed.
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Modelling Neural Collapse

Unconstrained Features Model: To maintain the expressivity of H,
properties NC is studied by treating fi , i ∈ {1, . . . , L− 1} as free
optimization parameters:

hL(x) = A f1:L−1(x)︸ ︷︷ ︸
NC

+b (20)

We can further discuss the ideal values of A, f , b and training dynamics
(regularization, loss functions, normalization) that encourage it.
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Do We Even Want This? – Data Independence

Here’s what the metric convergence plots look like, with random labels.

Q: Do we even want this?
A: Yes. Here’s some reasons why:

1. OOD: {NC1, NC2, NC3} ≫ 0 imply unconfident predictions.

2. Forced ETF: The final layer can be a fixed as a simplex.

3. Data dependenent explanation: AGOP induces NC.
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Optimality of NC (Softmax-CE Loss)

Softmax CE is defined element-wise as follows:

Φ(z)j = − log
exp(zj)∑k
i=1 exp(zi )

= log
k∑

i=1

exp(zi ) + log exp(zj) (21)

is convex ∀j ∈ {1, . . . , k}.

zk :=
1

n

∫
Ck

h(x)P(dx) (22)∫
Ck

Φk(h(x))P(dx) ≥
∫
Ck

Φk(zk)P(dx) (23)

Consequently, we have that:

R(h̄) ≤ min
h∈H

R(h) (24)

Establishing NC describing the optimal geometry within the final layer for
population risk minimization.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/dnc.pdf
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