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Primer – Support Vector Machines (SVMs)

We start with a linear SVM:

An approach to obtain a non-linear
decision boundary is to learn a
hyperplane in higher-dimensions:

“Lazy” approaches to kernel choices
include polynomial / RBF kernels.

The “laziest” kernel of all is a deep
neural network.
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Neural Networks are Incredibly Overparameterized

Our study today is constrained to classifiers.

WLOG, we can constrain our
study to image classifiers.

Traditional Learning: n ≥ d ; W ∈ Rd , D = {(xi , yi )}ni=1

Overparameterized Learning: d ≥ n

Q: Why does overparameterized learning generalize?
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What is Deep Neural Collapse (DNC)?

Deep Neural Collapse is a phenomenon describing rigidity in the feature
representation(s) of the final layer(s) of overtrained Deep Neural Networks.

Q1: What does overtrained mean?
A1: When a sufficiently expressive network h trained to minimize L(Sn)
satisfies h(xi ) = yi ∀i , it reaches the Terminal Point of Training. When
trained beyond this point, the model is overtrained.

Q2: What does rigidity mean?
A2: We quantify rigidity by 4 key metrics, which iff satisifed, implies DNC.

Q2a : What are the 4 key metrics?
A2a : Exactly what we’ll discuss next!
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NC1 – Collapse of Variability (1/2)

At a high level, the structure of the penultimate layer collapses towards:

Evolution of penultimate layer outputs on VGG13 trained on CIFAR10.

For all classes k ∈ [K ], datapoints i ∈ [n] within a class, & penultimate
feature vector f (k, i), we have class-specific & global means:

µk =
1

n

n∑
i=1

f (k, i) (1)

µG =
1

K

K∑
i=1

µk (2)
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NC1 – Collapse of Variability (2/2)

We can use them to calculate intra and inter -class differences:

CovW =
1

Kn

K∑
k=1

n∑
i=1

((f (k , i)− µk)(f (k , i)− µk)
T ) ∈ Rm×m (3)

CovB =
1

K

K∑
k=1

((µk − µG )(µk − µG )
T ) ∈ Rm×m (4)

Which we combine to measure overall variability collapse:

NC1 :=
1

K
Tr
(
CovW Cov†B

)
(5)
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Aside: Psuedoinverses

The inverse of a matrix A is defined s.t. it satisfies the following condition:

A,B, I ∈ Rd×d s.t. AB = BA = Id ; B := A−1, A := B−1 (6)

What about when X ∈ Rn×m? A psuedoinverse is a generalized inverse,
which instead satisfies the following four conditions:

XX−1X = X (7)

X−1XX−1 = X−1 (8)

(XX−1)∗ = XX−1 (9)

X−1X ∗ = X−1X (10)

Where X ∗ is the conjugate transpose of X .

Implication: We can compute correlation b/w general matrix dimensions.
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NC2 – The Simplex ETF (1/2)

This time, we can on focus the structure of the class means:

A useful analogy is VSEPR2 from Chemistry. Each class (atom) repels the
other creating a simplex equiangular tight frame (simplex ETF).

- Simplex is the simplest polytope (object with flat sides).

- Equiangular Tight Frame is a matrix M ∈ RK×m s.t.

|⟨mj ,mk⟩| = α ∃α ≥ 0 ∀j , k s.t. j ̸= k (11)

MMT =

√
C

C − 1

(
IC − 1

C
1C×C

)
(12)

Satisfying equiangular and tight respectively.
2I sincerely apologize for making this reference.
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NC2 – The Simplex ETF (2/2)

We can use this to define NC2. Given re-centered class means
{µk − µG}k∈[K ], they are equidistant if:

∥µk − µG∥2 = ∥µk ′ − µG∥2 ∀k , k ′ ∈ [K ] (13)

We then normalize each feature vector to create our simplex ETF:

M = Concat

({
µk − µG

∥µk − µG∥2
∈ Rm

}[K ]
)

∈ RK×m (14)

M is now compared to it’s distance from the simplex ETF:

NC2 :=

∥∥∥∥∥∥∥∥∥
MMT

∥MMT∥F︸ ︷︷ ︸
feature vector as a simplex

− 1√
K − 1

(
IK − 1K×K

K

)
︸ ︷︷ ︸

canonical simplex

∥∥∥∥∥∥∥∥∥
F

(15)

Setting up our second metric.
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NC3 – Self-Dual Alignment

The final layer’s weights W ∈ RK×m align with simplex ETF of M:

A

∥A∥F
∝ M

∥M∥F
(16)

We can use this to setup the third metric:

NC3 :=

∥∥∥∥∥∥∥∥∥
AMT

∥AMT∥F︸ ︷︷ ︸
≡ cosine similiarity

− 1√
K − 1

(
IK − 1K×K

K

)
︸ ︷︷ ︸

canonical simplex

∥∥∥∥∥∥∥∥∥
F

(17)
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NC4 – Secretly k-NN

Finally, we observe that for xn+1, the classification result ≡ k-NN rule:

argmax ŷn+1 = argmin
k∈[K ]

∥f (xn+1)− µk∥2 (18)

Which we can use to setup our final metric:

NC4 :
1

Kn

K∑
k=1

n∑
i=1

1

[
argmax ŷi ̸= argmin

k∈[K ]
∥f (xi )− µk∥2

]
(19)

If each of the 4 previous metrics → 0, the network is considered collapsed.
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argmax ŷn+1 = argmin
k∈[K ]

∥f (xn+1)− µk∥2 (18)

Which we can use to setup our final metric:

NC4 :
1

Kn

K∑
k=1

n∑
i=1

1

[
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Do We Even Want This? – Data Independence

Here’s what the metric convergence plots look like, with random labels.

Q: Do we even want this?
A: Yes. Here’s some reasons why:

1. OOD Inference: If we have a point outside the simplex ETF, it is
likely outside the training distribution.

2. Forced ETF: The final layer can be a fixed as a simplex!
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What is AGOP?

Average Gradient Outer Product (AGOP) is a data-dependent,
backpropagation-free mechanism that characterizes feature learning in
neural networks.

Given dataset X ∈ Rd0×N ∼ Dn, f : Rd0×1 → RK×1, we define AGOP:

AGOP(f ,X ) :=
1

N

K∑
c=1

N∑
i=1︸ ︷︷ ︸

average

∂f (xci )

∂xci︸ ︷︷ ︸
gradient

∂f (xci )

∂xci

T

︸ ︷︷ ︸
outer product

(20)

Why is this useful? AGOP(f̂ ,X ) ≈ EGOP(f ∗,D):

EGOP(f ∗,D) := ED

[
∂f ∗(xci )

∂xci

∂f ∗(xci )

∂xci

T
]

(21)

EGOP contains useful information like low-rank structure, that can
improves predictions.
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Neural Feature Matrices (NFMs) & Ansatz (NFA)

Neural Feature Matrices (NFMs) are right singular {vectors, values} of

{W (l)
i }ki=1 – these rotate, sale, reflect the input.

Singular {vectors, values} may be recovered from eigen {vectors, values}
of W TW . The vectors capture task relevant directions used for
identifying features:

NFM(Wl) = W T
l Wl = SLΣ

2ST
R ∀l ∈ [L] (22)

These are defined for each intermediate layer. Each NFM is connected to
the AGOP of it’s layer:

ρ

(
W T

l Wl ,
1

N

K∑
c=1

N∑
i=1

∂f (xci )

∂f (xci )l

∂f (xci )

∂f (xci )l

)
≈ 1 (23)

This is called the Neural Feature Ansatz (NFA).
Bonus: This makes AGOP backpropogation-free.
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Features Identified by AGOP

So, what exactly does AGOP find?

A lot.
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AGOP As a Mechanism for DNC (1/2)

Observation: within-class variability collapse occurs predominantly
through multiplication by right singular-structure of weights (NFMs).

We first decompose Wl using SVD:

Wl = UlSlV
T
l (24)

Then we view SlV
T
l as the affine input transformation, & σ ◦ Ul as

applying elementwise non-linearity.

We see that computing NC1(SlV
T
l ) ≡ NC1(Wl):

1

K
Tr
(
CovW (Wl) Cov

†
B(Wl)

)
≡ 1

K
Tr
(
CovW (UlSlV

T
l UT

l ) Cov†B(UlSlV
T
l UT

l )
)

≡ 1

K
Tr
(
CovW (SlV

T
l ) Cov†B(SlV

T
l )
) (25)
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AGOP As a Mechanism for DNC (2/2)

We can identify the collapse occurs by the right-singular structure:

A

B

Layer	5Layer	1 Layer	2 Layer	3 Layer	4

EpochsEpochs Epochs Epochs Epochs

tr(ΣW )
tr(ΣB)

tr(ΣW )
tr(ΣB)

Additionally, NC2 (Simplex ETF) was observed, but only in the last layer.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/dnc_by_agop.pdf
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