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Glossary

Some context-relevant terms:

a. Neuron: The unit of a nueral network y = σ(XW )

b. Logit: Pre-activation scores for the final layer.

c. Dot / Inner Product: ⟨a, b⟩ =
∑N

i=1 aibi

d. Matrix Multiplication: For X ∈ Ra×b, Y ∈ Rb×c ,
Z = XY ∈ Ra×c s.t. zij =

∑b
k=1 aikbkj

e. Activation: Non-linear function over the output of matrix
multiplication.

f. Gradient: ∇wL(w), derivative of L : Ra → R
g. Latent Vector: h(ℓ), intermediary output from within a neural

network.

h. Embedding: A look-up table that translates categorical values
(words) to vectors.
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Some Intuitive Insights

Q: Differentiate between the meanings of each underlined word below:

a. I had a picnic by the river bank yesterday.

b. I am NOT going to rob a bank tomorrow at 8:30am ET.

Insight: Context is important.

n-gram models use the following (Markov) assumption:

p
(
xt |{xi}t−1

i=1 ; θ
)
≈ p (xt |xt−1; θ) (1)

This is incorrect. Context is important!
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How Expensive is Context?

Q: So, why do n-gram models use the Markov assumption?

A: Efficiency.

Q: Can we do better?
A: Yes. Enter, Recurrent Neural Networks (RNNs):

Here, a hidden representation a⟨ℓ⟩ is
propogated, encoding relevant
context.

Caveat: a⟨ℓ⟩ ∈ Rd , with fixed d .
This mitigates capability for
long-term memory & recollection.
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Now, Let’s Pay Attention

One way to improve this is by incorporating attention into RNNs.1

Q: Well, what does it mean to “incorporate attention”?
A: For latent vectors {ℓi}Ni=1, r =

∑N
i=1 ℓi →

∑N
i=1 wiℓi ,

where
∑N

i=1 wi = 1, wi ≥ ∀i

1
https://distill.pub/2016/augmented-rnns/#attentional-interfaces
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Self-Attention (1/2)

Self-Attention makes attention self-referential, by effectively creating a
trainable database.

We query this database to extract important information from our input
sequence. For {xi}ti=1,

WQ ,WK ,WV ∈ Rdin×dout (2)

K = XWK ,Q = XWQ ,V = XWV (3)

αi = σsoftmax

(
qik

T
i√
dk

)

(4)

h(x) =
t∑

i=1

αivi

(5)

Where qi , ki , vi are each independently computed latent matrices.

Self-Attention(Q,K ,V ) =

(
QKT

√
dout

)
V (6)
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Positional Encoding

A consequence of this setup, howeveer is that we are not considering the
order of the tokens anymore. It is permutation invariant.

To resolve this, we add positional encodings to each word embedding:

PE(pos,2i) = sin(pos/1E4
2i/dmodel ) (7)

PE(pos,2i+1) = sin(pos/1E4
2i/dmodel ) (8)
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Multi-Headed Setting

Each block of self-attention constitutes it’s own head.

Intuitively, a different set of information may be desired from the same
input.
e.g: NER, Sentence-Structure Decomposition, POS tagging – any valuable
information that can inform the output.

Therefore, we instantiate multiple heads within each layer, and
concatenate to construct a final output represetnation.

MHA = Concat({hi}Hi=1)WO (9)
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Self-Attention (2/2)
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Feedforward MLP

Thanks to attention, we now have an updated representation of our input.
We now need to perform operations on this contextualized input to make
inferences about our actual objective.

For this, a two-layer MLP is instantiated that expands and consequently
contracts the input dimension.

FFN(x) = σrelu(xW1 + b1)W2 + b2 (10)

The original paper uses a factor of 4.
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Scaling to Deeper Networks – A Better Interpretation

Deep neural architectures struggle
with vanishing gradients, when
trained at scale.

The approach used universally is to
add “skip connections” to maintain a
short gradient path, and mitigate
this concern.

A result of this setup is that we can
interpret each attention head and
MLP as “reading from” and “writing
to” a residual stream.

In addition, we also perform layer normalization over the latent vectors
before MLP & self-attention.
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Inference & Training

The output of the model during a single forward pass is a token.

This
token is then added to the context window, and the forward pass is run
once again. This creates the final output, as a sentence.

For training, we exploit GPU parallelism, since each token sequence
{xi}Tt=1 contains T − 1 targets.

p
(
xt |{xi}t−1

i=1

)
= xt ∀t ∈ {2, . . . ,T} (11)

However, a consequence of this is that attention can look into the future.
We prevent this by applying a causal mask:
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We prevent this by applying a causal mask:
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Reviewing NanoGPT

If you can view this screen, I am making a mistake.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/transformer.pdf
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