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Abstract

Numerical simulation of multiphase flow in porous media is essential for
many geoscience applications. Data-driven machine learning methods pro-
vide faster alternatives to traditional simulators by training neural network
models with numerical simulation data mappings. Here we present U-FNO, a
novel neural network architecture for solving multiphase flow problems with
superior speed, accuracy, and data efficiency. U-FNO is designed based on
the newly proposed Fourier neural operator (FNO) that learns an infinite di-
mensional integral kernel in the Fourier space, which has shown excellent per-
formance for single-phase flows. Here we extend the FNO-based architecture
to a CO2-water multiphase problem, and proposes the U-FNO architecture
to enhance the prediction accuracy in multiphase flow systems. Through a
systematic comparison among a CNN benchmark and three types of FNO
variations, we show that the U-FNO architecture has the advantages of both
the traditional CNN and original FNO, providing significantly more accurate
and efficient performance than previous architectures. The trained U-FNO
predicts gas saturation and pressure buildup with a 104 order of magnitude
speed-up compared to traditional numerical simulators while maintaining
similar accuracy. The trained models can act as a general-purpose simulator
alternative for 2D-radial CO2 injection problems with wide ranges of perme-
ability and porosity heterogeneity, anisotropy, reservoir conditions, injection
configurations, flow rates, and multiphase flow properties.
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1. Introduction

Multiphase flow in porous media is important for many geoscience ap-
plications, including contaminant transport [1], carbon capture and storage
(CCS) [2], hydrogen storage [3], oil and gas extraction [4], and nuclear waste
storage [5]. Due to the multi-physics, non-linear, and multi-scale nature of
these processes, numerical simulation is the primary approach used to solve
mass and energy conservation equations for these applications [6]. These
numerical simulations are often very time consuming and computationally
intensive since they require fine spatial and temporal discretization to accu-
rately capture the flow processes [7, 8]. Meanwhile, the inherent uncertainty
in property distributions of heterogeneous porous medium necessitates prob-
abilistic assessments and inverse modeling to aid engineering decisions [9, 10].
Both of these procedures require large numbers of forward numerical simu-
lation runs and are often prohibitively expensive [11].

A number of machine learning-based methods have been proposed over
the past few years to provide faster alternatives to numerical simulation.
Most existing machine learning-based methods can be categorized into the
following two categories: (1) data-driven finite-dimensional operators that
learn Euclidean space mappings from numerical simulation data [12, 13, 14,
15, 16, 17], and (2) physics-informed/ physics-constrained/neural finite dif-
ference learning methods that parameterize the solution functions with a neu-
ral network [18, 19, 20]. The first type, finite-dimensional operators, is often
implemented with convolutional neural networks (CNN). These CNN-based
models have been successful in providing fast and accurate predictions for
high-dimensional and complex multiphase flow problems [16, 21, 17, 22, 23].
However, CNN-based methods are prone to overfitting, therefore requiring
large numerical simulation data sets that can be unmanageable as the prob-
lem dimension grows. Also, the results produced by these models are tied
to the specific spatial and temporal meshes used in the numerical simulation
data set. The second approach using neural finite difference methods requires
separate trainings for any new instance of the parameters or coefficients [18]
(e.g., new permeability map or injection rate). Therefore, these methods
require as much computational effort as traditional numerical solvers, if not
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more. Furthermore, these methods often struggle with multiphase flow prob-
lems with shock fronts, which are common for many classes of geoscience
problems [24, 25].

Recently, a novel approach, the neural operator, has been proposed that
directly learns the infinite-dimensional-mapping from any functional para-
metric dependence to the solution [26, 27, 28, 29]. Unlike neural finite dif-
ference methods, neural operators are data-driven therefore require training
only once. Meanwhile, neural operators are mesh-independent, so they can be
trained and evaluated on different grids. Due to the cost of evaluating global
neural integral operators, previously proposed neural operators have not yet
been able to achieve the desirable degree of computational efficiency [30].
However, one type of neural operator, the Fourier neural operator (FNO),
alleviates this issue through the implementation of a Fast Fourier Trans-
form [30]. The FNO has shown excellent performance on single-phase flow
problems with great generalization ability, and is significantly more data ef-
ficient than CNN-based methods [30].

Here we extend the FNO-based architecture to multiphase flow prob-
lems. We find that while FNO’s testing accuracy is generally higher than
CNN-based models, the training accuracy is sometimes lower due to the reg-
ularization effect of the FNO architecture. To improve upon this, we present
an enhanced Fourier neural operator, named U-FNO, that combines the ad-
vantages of FNO-based and CNN-based models to provide results that are
both highly accurate and data efficient. Through the implementation of the
newly proposed U-Fourier layer, we show that the U-FNO model architec-
ture produces superior performance over both the original FNO [30] and a
state-of-the-art CNN benchmark [17]. We apply the U-FNO architecture to
the highly complex CO2-and-water multiphase flow problem in the context
of CO2 geological storage to predict dynamic pressure buildup and gas sat-
uration. The trained U-FNO models provide an alternative to numerical
simulation for 2D-radial CO2 injection problems with wide ranges of perme-
ability and porosity heterogeneity, anisotropy, reservoir conditions, injection
configurations, flow rates, and multiphase flow properties.

2. Methods

The goal of a neural operator is to learn an infinite-dimensional-space
mapping from a finite collection of input-output observations. To formulate
the problem, we define the domain D ⊂ Rd be a bounded and open set;
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A be the input function space; Z be the output function space. A and Z
are separable Banach spaces of functions defined on D that takes values in
Rda and Rdz respectively. G† : A → Z is a non-linear map that satisfy
the governing PDEs. Suppose we have aj that are drawn from probability
measure µ in A, then zj = G†(aj). We aim to build an operator Gθ that
learns an approximation of G† by minimizing the following problem using a
cost function C.

min
θ
Ea∼µ[C(Gθ(a),G†(a))] (1)

Since aj ∈ A and zj ∈ Z are both functions, we use n-point discretiza-
tion Dj = {x1, ..., xn} ⊂ D to numerically represent a(x)j|Dj ∈ Rn×da and
z(x)j|Dj ∈ Rn×dz . We demonstrate in this section that the proposed U-
FNO architecture learns the infinite-dimensional-space mapping Gθ from a
finite collections of a(x)j and z(x)j pairs. A table of notation is included in
Appendix A.

2.1. U-FNO architecture

The U-FNO architecture contains the following three steps:

1. Lift input observation a(x) to a higher dimensional space vl0(x) =
P (a(x)) through a fully connected neural network transformation P .

2. Apply iterative Fourier layers followed by iterative U-Fourier layers:
vl0 7→ ... 7→ vlL 7→ vm0 7→ ... 7→ vmM where vlj for j = 0, 1, ..., L and
vmk for k = 0, 1, ...,M − 1 are sequences of functions taking values in
Rc for channel dimension c.

3. Project vmM back to the original space z(x) = Q(vmM (x)) using a fully
connected neural network transformation Q.

Figure 1A provides a schematic of the U-FNO architecture. Within each
newly proposed U-Fourier layer, we have

vmk+1
(x) := σ

((
Kvmk

)
(x) +

(
Uvmk

)
(x) +W (vmk(x))

)
,∀x ∈ D (2)

where K is a kernel integral transformation parameterized by a neural net-
work, U is a U-Net CNN operator, and W is a linear operator, which are all
learnable. σ is a non-linear activation function. Refer to Li et al. [30] for the
formulation of the original Fourier layer.
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Figure 1: A. U-FNO model architecture. a(x) is the input, P and Q are fully connected
neural networks, and z(x) is the output. B. Inside the Fourier layer, F denotes the Fourier
transform, R is the parameterization in Fourier space, F−1 is the inverse Fourier transform,
W is a linear bias term, and σ is the activation function. C. Inside the U-FNO layer, U
denotes a two step U-Net, the other notations have identical meaning as in the Fourier
layer.

2.2. Integral kernel operator in the Fourier space

The integral kernel operator in Equation 2 is defined by(
K(vl)

)
(x) =

∫
D

κ(x, y)vl(y)dvl(y),∀x ∈ D. (3)

To efficiently parameterize kernel κ, the FNO method considers the rep-
resentation vl (and also vm) in the Fourier space and utilizes Fast Fourier
Transform (FFT) [30]. By letting κ(x, y) = κ(x − y) in Equation 3 and
applying the convolution theorem, we can obtain(

K(vl)
)
(x) = F−1

(
F(κ) · F(vl)

)
(x),∀x ∈ D (4)

where F denotes a Fourier transform of a function f : D → Rc and F−1 is
its inverse. Now, we can parameterize κ directly by its Fourier coefficients:(

K(vl)
)
(x) = F−1

(
R · F(vl)

)
(x),∀x ∈ D. (5)
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where R is the Fourier transform of a periodic function κ. Since we assume
that κ is periodic, we can apply a Fourier series expansion and work in the
discrete modes of Fourier transform.

We first truncate the Fourier series at a maximum number of modes kmax,
and then parameterize R directly as a complex valued (kmax × c× c)-tensor
with the truncated Fourier coefficients. As a result, multiplication by the
learnable weight tensor R is

(
R · F(vl)

)
k,i

=
c∑
j=1

Rk,i,j(F(vl))k,j, ∀k = 1, ..., kmax, i = 1, ..., c. (6)

By replacing the F by the FFT and implementing R using a direct linear
parameterization, we have obtained the Fourier operator as illustrated in
Figure 1B and C with nearly linear complexity.

2.3. Characteristics of the U-Fourier layer

In contrast to the original Fourier layer in FNO [30], the U-FNO architec-
ture proposed here appends a U-Net path in each U-Fourier layer. The U-Net
processes local convolution to enrich the representation power of the U-FNO
in higher frequencies information. The number of Fourier and U-Fourier lay-
ers, L and M , are hyperparameters that can be optimized for the specific
problem. For the multi-phase flow problem considered here, we found that
the architecture with half Fourier layers and half U-Fourier layers achieves
the best performance, compared to architectures with all Fourier layers or
all U-Fourier layers.

Note that although the Fourier neural operator is an infinite-dimensional-
operator, when we append the U-Net block, we sacrifice the flexibility of
training and testing the model at different discretizations. We made this
choice because the CO2-water multiphase flow problem is very sensitive to
numerical dispersion and numerical dissolution, which are both tied to a spe-
cific grid resolution. When training and testing at different grid dimensions,
the numerical noise is often transformed in a nonphysical way. As a result,
for this problem, we prioritize achieving higher training and testing accuracy,
which the U-FNO provides.
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3. Problem setting

3.1. Governing equation

We consider a multi-phase flow problem with CO2 and water in the con-
text of geological storage of CO2. The CO2 and water are immiscible but have
mutual solubility. The general forms of mass accumulations for component
η = CO2 or water are written as [31]:

∂
(
ϕ
∑

p SpρpX
CO2
p

)
∂t

= −∇ ·
[
FCO2|adv + FCO2|dif

]
+ qCO2 (7)

∂
(
ϕ
∑

p SpρpX
water
p

)
∂t

= −∇ ·
[
Fwater|adv + Fwater|dif

]
. (8)

Here p denotes the phase of w (wetting) or n (non-wetting). In the siliciclastic
rocks present at most geological storage sites, water is the wetting phase [32].
However, due to the mutual solubility of water and CO2, there is a small
amount of CO2 in the water phase and a small amount of water in the CO2

phase. Here ϕ is the porosity, Sp is the saturation of phase p, and Xη
p is the

mass fraction of component η in phase p.
For both components, the advective mass flux Fη|adv is obtained by sum-

ming over phases p,

Fη|adv =
∑
p

XηFp =
∑
p

Xη
(
− kkr,pρp

µp
(∇Pp − ρpg)

)
(9)

where each individual phase flux Fp is governed by the multiphase flow exten-
sion of Darcy’s law. k denotes the absolute permeability, kr,p is the relative
permeability of phase p that non-linearly depends on Sp, µp is the viscosity
of phase p that depends on Pp, and g is the gravitational acceleration.

Due to the effect of capillarity, the fluid pressure Pp of each phase is

Pn = Pw + Pc (10)

Pw = Pw (11)

where the capillary pressure Pc is a non-linear function of Sp. Additionally,
porosity ϕ, density ρp, and the solubility of CO2 in Equation 7 and Equation 8
are also non-linear functions that depend on Pp.
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To simplify the problem setting, our simulation does not explicitly in-
clude molecular diffusion and hydrodynamic dispersion. However some un-
avoidable numerical dispersion resulting from approximating spatial gradi-
ents using the two-point upstream algorithm [33] is intrinsic to the numerical
simulations used for the neural network training.

3.2. Numerical simulation setting

We use the numerical simulator ECLIPSE (e300) to develop the multi-
phase flow data set for CO2 geological storage. ECLIPSE is a full physics
simulator that uses the finite difference method with upstream weighting
for spatial discretization and the adaptive IMplicit method for temporal dis-
cretization [33]. We inject super-critical CO2 at a constant rate into a radially
symmetrical system x(r, z) through a vertical injection well with a radius of
0.1 m. The well can be perforated over the entire thickness of the reservoir
or limited to a selected depth interval. We simulate CO2 injection for 30
years at a constant rate ranging from 0.2 to 2 Mt/year. The thickness of
the reservoir ranges from 12 to 200 m with no-flow boundaries on the top
and bottom. We use a vertical cell dimension of 2.08 m to capture the ver-
tical heterogeneity of the reservoir. The radius of the reservoir is 100,000 m.
The outer boundary is closed, but is sufficiently distant from the injection
well that it behaves like an infinite acting reservoir. Two hundred gradually
coarsened grid cells are used in the radial direction. Grid sensitivity studies
show that this grid is sufficiently refined to capture the CO2 plume migration
and pressure buildup, while remaining computationally tractable [8]. Simu-
lated values of the gas saturation (SG) and pressure buildup (dP ) fields at
24 gradually coarsening time snapshots are used for training the neural nets.
Refer to Appendix B for detailed spatial and temporal discretizations.

3.3. Variable sampling scheme

We sample two types of variables for each numerical simulation case: field
variables and scalar variables. As shown in Figure 2, field variables include
the horizontal permeability map (kx), vertical permeability map (ky), poros-
ity map (φ), and injection perforation map (perf). The reservoir thickness
b is randomly sampled in each simulation case and controls the reservoir
dimension in each of the following field variables:

• kx: The Stanford Geostatistical Modeling Software (SGeMS) [34] is
used to generate the heterogeneous kx maps. SGeMS produces perme-
ability map according to required input parameters such as correlation
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Figure 2: Example of mapping between A. input to B. output gas saturation and C.
pressure buildup. A. Field and scalar channels for each case. Note that the scalar variables
are broadcasted into a channel at the same dimension as the field channels. B. Gas
saturation evolution for 6 out of 24 time snapshots. C. Pressure buildup evolution for 6
out of 24 time snapshots.

lengths in the vertical and radial directions, medium appearances (Ap-
pendix C), as well as permeability mean and standard deviation. A
wide variety of permeability maps representing different depositional
environments are included in the data set and the permeability value
ranges widely from 10 Darcy to 0.001 mD. Appendix C summarizes
statistical parameters that characterize the permeability maps.

• ky: The vertical permeability map is calculated by multiplying the kx
map by the anisotropy map. To generate the anisotropy map, values of
kx are binned into naniso materials, each of which is assigned a randomly
sampled anisotropy ratio. Note that the anisotropy ratio is uncorrelated
with the magnitude of the radial permeability. This procedure roughly
mimics a facies-based approach for assigning anisotropy values.

• φ: Previous studies show that porosity and permeability are loosely
correlated with each other [35]. Therefore, to calculate porosity we
first use the fitting relationship presented in Pape et al [35] and then
perturb these values with a random Gaussian noise ε with mean value
of zero and standard deviation of 0.005.
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Table 1: Summary of input variable’s type, sampling range, distribution, and unit. All
input sampling are independent with the exception of porosity and vertical permeability
map. *: refer to Appendix C for a detailed statistical parameter summary for generating
heterogeneous kx map.

variable type sampling parameter notation distribution unit
field horizontal permeability field kx heterogeneous* -

# of anisotropic materials naniso X ∼ U{1, 6} -
material anisotropy ratio kx/ky X ∼ U [1, 150] -
porosity (perturbation) φ ε ∼ N (0, 0.005) -
reservoir thickness b X ∼ U [12, 200] m
perforation thickness bperf X ∼ U [12, b] m
perforation location - randomly placed -

scalar injection rate Q X ∼ U [0.2, 2] MT/y
initial pressure Pinit X ∼ U [100, 300] bar
iso-thermal reservior temperature T X ∼ U [35, 170] ◦C
irreducible water saturation Swi X ∼ U [0.1, 0.3] -
van Genuchten scaling factor λ X ∼ U [0.3, 0.7] -

• perf : The injection interval thickness bperf is randomly sampled within
the range from 12 m to the specific reservoir thickness b of that case.
We placed the perforation interval on the injection well, by randomly
sampling the depth of the perforation top from 0 m to (b− bperf ) m.

Visualizations of the above field variable are shown in Appendix C. Table 1
summarizes the parameter sampling ranges and distributions. The sampling
parameters are independent of each other with the exception of porosity and
permeability.

Scalar variables include the initial reservoir pressure at the top of the
reservoir (Pinit), reservoir temperature (T ), injection rate (Q), capillary pres-
sure scaling factor (λ) [36], and irreducible water saturation (Swi). The pa-
rameter sampling range and distributions are summarized in Table 1. While
the scalar variables Pinit and T and determined independently, cases that
yield unrealistic combinations of these variables are excluded. These field
and scalar input variables create a very high-dimensional input space, which
is very challenging for traditional CNN-based models. Nevertheless, the U-
FNO model architecture handles the high-dimensional input space with ex-
cellent data efficiency.
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3.4. Data configuration

Each of the field variables in Figure 2A is represented by a channel in
the data input. Since we use a gradually coarsening radial grid for the nu-
merical simulations, a logarithm conversion in the radial direction is applied
in training to project the field variables onto a uniform grid that can be
represented by a (96, 200) matrix. Notice that reservoir thickness is also a
variable and 96 cells represents a 200m thick reservoir. When the reservoir is
thinner than 200 m, we use zero-padding to denote cells that are outside of
the actual reservoir. For the scalar variables, the values are simply broadcast
into a matrix with dimension of (96, 200).

In addition to the input variables, we also supply the spatial grid infor-
mation to the training by using one channel to denote radial cell dimensions
and another channel to denote vertical cell dimensions. The temporal grid
information is supplied into the network as an additional dimension. The in-
put to each data sample is constructed by concatenating the field variables,
scalar variables, spatial grids, and temporal grid together.

For the gas saturation and pressure buildup outputs as shown in Figure 2B
and C, we use the same logarithm conversion to project the outputs onto a
uniform grid. We then concatenate the outputs for different time snapshots
to obtain a spatial-temporal 3D volume. The pressure buildup is normalized
into zero-mean and unit-variance distribution. For gas saturation, we do
not normalize the data because the saturation values always range from 0
to 1. The dimensions of the input and outputs are shown for in each model
architecture (Appendices D to G).

The data set contains 5,000 input-to-output mappings. We use a 9/1 split
to segregate the data set into 4,500 samples for training and 500 samples for
testing.

3.5. Loss function design and training

We use a relative lp-loss to train the deep learning models. The lp-loss is
applied to both the original output (y) and the first derivative of the output
in the r-direction (dy/dr), and is written as:

L(y, ŷ) =
||y − ŷ||p
||y||p

+ β
||dy/dr − ˆdy/dr||p
||dy/dr||p

, (12)

where ŷ is the predicted output, ˆdy/dr is the first derivative of the predicted
output, p is the order of norm, and β is a hyper-parameter. This relative
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loss has a regularization effect and is particularly effective when the data
have large variances on the norms. Our experiments show that, compared
to an MSE-loss, a relative loss significantly improves the performance for
both gas saturation and pressure buildup. The second term in Equation 12
greatly improves quality of predictions for gas saturation at the leading edge
of the plume. Similarly this term improves prediction of the sharp pressure
buildup around the injection well. We use the l2-loss for gas saturation and
pressure buildup since it provides faster convergence than the l1-loss.

As described in Section 3, our data set contains reservoirs with various
thicknesses and the cells outside of the reservoir are padded with zeros for
both input and output. To accommodate for the variable reservoir thick-
nesses, during training, we construct an active cell mask for each data sam-
ple and only calculate the loss within the mask. Our experiments show that
this loss calculation scheme achieves better performance than calculating the
whole field because of the better gradient distribution efficiency.

During training, the initial learning rate is 0.001 and the learning rate
gradually decreases with a constant step and reduction rate. These hyper-
parameters are optimized for the gas saturation and pressure buildup model
separately. The training stops when the loss no longer decreases.

4. Results

This section compares 4 types of model architectures: original FNO pro-
posed in Li et al. [30], the newly proposed U-FNO in this paper, a conv-FNO
that uses a conv3d in the place of the U-Net, and the state-of-the-art bench-
mark CNN used in Wen et al. [17]. All models are trained on the proposed
loss function (Equation 12) and directly output the 3D (96 × 200 × 24) gas
saturation and pressure field in space and time. Detailed parameters for each
model are summarized in Appendices D to G.

4.1. Gas saturation

Figure 3A and Table 2 demonstrates that the best performance for both
the training and testing data set is achieved with the U-FNO model. Specif-
ically, the testing set performance represents the true predictability of the
model for unseen data. The low relative loss clearly indicates the superior
performance of the proposed U-FNO.

Interestingly, we notice that although the original FNO has a higher train-
ing relative loss than the CNN benchmark, the testing relative loss by the
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Figure 3: Training and testing relative loss evolution vs. epoch for U-FNO, FNO, conv-
FNO and CNN benchmark for A. gas saturation and B. pressure buildup.

original FNO is lower than that of the CNN benchmark. This indicates that
FNO has excellent generalization ability and achieves better performance
than the CNN even though FNO has a higher training relative loss. Nev-
ertheless, the original FNO has the highest relative loss in the training set
due to the inherent regularization effect by using a finite set of truncated
Fourier basis. The Conv-FNO and U-FNO architecture is therefore designed
to enhance the expressiveness by processing the higher frequency information
that are not picked up by the Fourier basis. We can observe from Figure 3A
that the training loss is significantly improved even by simply adding a plain
conv3d in the Conv-FNO case. When the FNO layer is combined with a
U-Net in the U-FNO case, the model takes the advantages of both architec-
tures and consistently produces the lowest relative loss throughout the entire
training (Figure 3A).

Table 2: Average training and testing data set R2 scores of 500 random samples for
4 models. R2 scores measures the similarity between the prediction and the numerical
simulation output; an R2 of 1 indicates an exact match.

Model
Gas saturation (SG) Pressure buildup (dP )

Train Test Train Test
mean std mean std mean std mean std

CNN 0.994 0.007 0.986 0.018 0.990 0.029 0.988 0.023
FNO 0.990 0.013 0.986 0.017 0.991 0.014 0.990 0.017

Conv-FNO 0.993 0.011 0.990 0.013 0.992 0.018 0.991 0.018
U-FNO 0.997 0.005 0.994 0.009 0.994 0.014 0.993 0.015

In addition to considering the average performance over the entire train-
ing and testing sets, we compare model predictions for four different cases
with varying degrees of complexity in Figure 4. For each case, Figure 4 shows
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Figure 4: Visualizations and scatter plots for example a to d. In each example, visu-
alizations show the true gas saturation (SG), U-FNO predicted, U-FNO absolute error,
CNN predicted, and CNN absolute error. The mean absolute error µMAE is labeled on
the U-FNO and CNN absolute error plots. Scatter plots shows numerical simulation vs.
predicted by U-FNO and CNN model on each grid. The legend for all of the scatter plots
is shown in the bottom right.

a comparison between the predicted and true values of the CO2 saturation
for each grid cell in the model over the entire 30 year injection period. The
U-FNO has superior performance compared to the CNN for all of these ex-
amples as quantified by the higher R2 value and narrower 95% prediction
bands. Case b. and d. are especially obvious examples in which the U-
FNO successfully predicts the complicated horizontal saturation variations
where the CNN ignores the heterogeneity and simply predicts more uniform
saturation fields.
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Figure 5: Visualizations and scatter plots for examples a to d. In each example, visualiza-
tions show the true pressure buildup (dP ), U-FNO predicted, U-FNO relative error, CNN
predicted, and CNN relative errors. The relative errors are defined as in [22]; the mean
relative error µMPE is labeled on the U-FNO and CNN relative error plots. Scatter plots
shows numerical simulation vs. predicted by U-FNO and CNN model on each grid. The
legend for all of the scatter plots is shown in the bottom right.

4.2. Pressure buildup

For pressure buildup, the U-FNO also achieves the lowest relative error
for both training and testing data sets. As shown in Figure 3B, the training
and testing relative errors for the U-FNO are consistently low throughout
the training process. Generally, pressure buildup models are less prone to
overfitting than gas saturation models since pressure buildup fields are less
heterogeneous. By comparing the R2 scores for the training and testing
sets in Table 2, we can observe that all FNO-based models produce nearly
negligible overfitting.

The superior performance of the U-FNO for pressure buildup predictions
is also demonstrated for the four examples shown in Figure 5. In each case
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the U-FNO has higher R2 values and narrower 95% prediction bands. Unlike
the gas saturation outputs, pressure buildup distributions are challenging to
predict since they have a larger radius of influence and larger differences be-
tween cases. For example, the maximum pressure buildup in the 4 examples
shown in Figure 5 varies from ∼20 bar to ∼220 bar. Notice that the the CNN
model especially struggles with cases that have large radius of influence (e.g.
case d) while the U-FNO model maintains excellent accuracy at locations
that are far away from the injection well.

5. Discussion

5.1. Training size analysis

The results in Section 4 demonstrate the excellent generalization ability of
all FNO-based architectures. To further investigate the relationship between
the training size and overfitting for the newly proposed U-FNO model, we
run a set of comparisons for the U-FNO model trained with 500, 2,500 and
4,500 samples (see Figure 6). Each model is trained for the same number of
epochs. From this comparison, we can observe that the gas saturation models
are more prone to overfitting as indicated by the wider gaps in R2 mean and
standard deviations. For the pressure buildup, the training size of 4,500
produces a very similar R2 score in the training and testing set. Therefore,
a 4,500 training data-size is already sufficient for pressure buildup prediction
and more training data will note significantly improve the performance.

Figure 6: The training and testing set R2 mean and standard deviation vs. the number
of training sample for A. Gas saturation and B. pressure buildup.
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5.2. Computational efficiency analysis

We summarize the computational efficiency of the CNN, FNO, Conv-
FNO, and U-FNO in Table 3. The training and testing times are both eval-
uated on a Nvidia A100-SXM GPU. For the comparison, we run ECLIPSE
simulations on an Intel® Xeon® Processor E5-2670 CPU. Each simulation
case can utilize a fully dedicated CPU and the average run time for 1,000
random cases is 10 minutes.

Table 3: Summary of the number of parameters, training time, and testing times required
for all four models. The testing times are calculated by taking the average of 500 random
cases. The speed-up is compared with average numerical simulation run time of 10 mins.

# Parameter Training
Testing

Gas saturation Pressure Speed-up vs. numerical
(-) (s/epoch) (s) buildup (s) simulation (times)

CNN 33,316,481 562 0.050 0.050 1×104

FNO 31,117,541 711 0.005 0.005 1×105

Conv-FNO 31,222,625 1,135 0.006 0.006 1×105

U-FNO 33,097,829 1,872 0.010 0.010 6×104

All of the neural network models are at least 104 times faster than con-
ventional numerical simulation during prediction. Notice that FNO-based
models are significantly faster than the CNN model at testing time while
slower at training time. In this problem, we prioritize the prediction accu-
racy and testing time over the training time, which U-FNO provides. For
problems that are more sensitive to training time, one could also use the
Conv-FNO which provides both high accuracy and relatively fast training.

5.3. Fourier kernel visualization

Figure 7: Visualizations of random selections of (r, z) directional kernels for trained A.
gas saturation and B. pressure buildup models.
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As described in Section 2, the Fourier path within each U-Fourier layer
contains trainable kernel R that is parameterized in the Fourier space. Here
we provide visualizations for a random selection of the Fourier kernels in
the trained gas saturation and pressure buildup models. Notice that unlike
traditional CNN kernels that are generally small (e.g., (3, 3, 3) or (7, 7, 7)),
Fourier kernels are full field kernels that can be interpreted by any grid
discretization. The kernels in this paper are 3D kernels with dimensions
(r, z, t) and the examples shown in Figure 7 are the (r, z) directional slices
evaluated using the data discretization. Both gas saturation and pressure
buildup models contain a wide variety of kernels from low to high frequency.
We hypothesize that the asymmetry in the r direction might be related to
the gradually coarsening r-directional grid resolution, while the asymmetry
in the z direction might be related to the effects of buoyancy since CO2 is
less dense than water and tends to migrate to the top of the reservoir.

6. Conclusion

This paper presents U-FNO, an enhanced Fourier neural operator for solv-
ing multiphase flow problems. We demonstrate that U-FNO predicts highly
accurate flow outputs for a complex CO2-water multiphase flow problem in
the context of CO2 geological storage.

Through comparisons with the original FNO architecture [30] and a state-
of-the-art CNN benchmark [17], we show that the newly proposed U-FNO
architecture provides the best performance for both gas saturation and pres-
sure buildup predictions. The U-FNO architecture enhances the training
accuracy of a original FNO. At the same time, U-FNO maintains the ex-
cellent generalizability of the original FNO architecture. For the CO2-water
multiphase flow application described here, our goal is to optimize for the
accuracy of gas saturation and pressure fields, for which the U-FNO provides
the highest performance.

The trained U-FNO model generates gas saturation and pressure buildup
prediction that are 104 orders of magnitude faster than a traditional nu-
merical solver. The significant improvement in the computational efficiency
can support many engineering tasks that requires repetitive forward numer-
ical simulations. For example, the trained U-FNO model can serve as an
alternative to full physics numerical simulators in probabilistic assessment,
inversion, and site selection, tasks that were prohibitively expensive with
desirable grid resolution using numerical simulation.
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Code and data availability

The python code for U-FNO model architecture and the data set used in
training will be released upon the publication of this manuscript. A web app
hosting the pre-trained models for gas saturation and pressure buildup will
be released upon the publication of this manuscript.
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Appendix A. Table of notations

Table A.4: Table of notations.
Notation Meaning

Operator learning D ∈ Rd The spatial domain for the problem
a ∈ A = D;Rda Input coefficient functions
z ∈ Z = D;Rdz Target solution functions
G† : A → Z The operator mapping from coefficients to solutions
n The size of the discretization
x Points in the spatial domain
Dj = {x1, ..., xn} ⊂ D The discretization of (aj , uj)
Gθ An approximation of G†
µ A probability measure where aj is sampled from
C Cost function

U-FNO a(x) The discretized data input
z(x) The discretized data output
vlj (x), j = 0, ..., L High dimensional representation of a(x) in Fourier layers

vmk (x), k = 0, ...,M − 1 High dimensional representation of a(x) in U-Fourier layers
Q(·) The lifting neural network
P (·) The projection neural network

U-Fourier layer K The Kernel integral operator applied on vl and vm
R The linear transformation applied on the lower Fourier modes
W The linear transformation (bias term) applied on the spatial domain
U The U-Net operator applied on vl and vm
σ The activation function
F ,F−1 Fourier transformation and its inverse
κ The kernel function learned from data
kmax The maximum number of modes
c The number of channels

Governing equation η = CO2, water Components of CO2 and water
p = w, n Phases of wetting and non-wetting
ϕ The pore volume
t Time
Sp The saturation of phase p
ρp The density of phase p
Xp The mass fraction of phase p
F Flux
q The source term
Pp The pressure of phase p
k The absolute permeability
kr,p The relative permeability of phase p
µp The viscosity of phase p
g Gravitational acceleration

Sampling variable refer to Table 1
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Appendix B. Grid discretization

Table B.5: Vertical, radial, and temporal grid discretization for ECLIPSE numerical sim-
ulation runs. The radial grid width gradually coarsens as drmin

× aj−1
r , for j ∈ [1, ..., ir].

The temporal step size gradually coarsens as dtmin × a
j−1
t , for j ∈ [1, ..., it].

Dimension Parameter Notation Value Unit
Vertical (z) box boundary zmax 12 to 200 m

grid count iz 6 to 96 -
grid thickness dz 2.08 m

Radial (r) box boundary rmax 1,000,000 m
grid count ir 200 -
minimum grid width drmin 3.6 m
amplification factor ar 1.035012 -
well radius rwell 0.1 m

Temporal (t) total length tmax 30 years
step count it 24 -
minimum step dtmin

1 day
amplification factor at 1.421245 -
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Appendix C. Heterogeneous permeability map statistical param-
eters and visualizations

Figure C.8: Horizontal permeability map, anisotropy map, and porosity map for A. Gaus-
sian, B. von Karman, C. Discontinuous, and D. Homogeneous medium appearances.

Table C.6: Statistical parameters of horizontal permeability (kx) maps generated by Stan-
ford Geostatistical Modeling Software (SGeMS) [34]. We defined the medium appearance,
spatial correlation, mean, standard deviation, and contrast ratio (khigh/klow) in each map
to create a large variety of permeability maps.

Medium Parameter Mean Std Max Min Unit
A. Gaussian Field average 30.8 58.3 1053 0.3 mD

Vertical correlation 7.3 3.6 12.5 2.1 m
Horizontal correlation 2190 1432 6250 208 m
Contrast ratio 4.01× 104 2.19× 105 3.00× 106 1.01 -

B. von Karman Field average 39.9 54.4 867.9 1.8 mD
[37] Vertical correlation 7.2 3.5 12.5 2.1 m

Horizontal correlation 2.15× 104 1.40× 104 6.23× 104 208 m
Contrast ratio 2.66× 104 1.54× 105 2.12× 106 1.00 -

C. Discontinuous Field average 80.8 260.2 5281 2.0 mD
Vertical correlation 7.2 3.6 12.5 2.1 m
Horizontal correlation 2176 1429 6250 208 m
Contrast ratio 2.17× 104 1.51× 105 2.68× 106 1.01 -

D. Homogeneous Field permeability 327.7 478.1 1216 4.0 mD
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Appendix D. CNN benchmark model architecture

Table D.7: CNN architecture. Conv3D denotes a 3D convolutional layer; BN denotes a batch
normalization layer; ReLu denotes a rectified linear layer; Add denotes an addition with
the identity; UnSampling denotes an unSampling layer that expands the matrix dimension
using nearest neighbor method, and Padding denotes a padding layer using the reflection
padding technique. In this model, the number of total parameters is 33,316,481 with
33,305,857 trainable parameters and 10,624 non-trainable parameters. To ensure a fair
comparison with the FNO-based models, we performed hyper-parameter optimization on
the CNN benchmark model and trained it with the same loss function (Equation 12) as
the FNO-based models.

Part Layer Output Shape
Input - (96,200,24,1)
Encode 1 Conv3D/BN/ReLu (48,100,12,32)
Encode 2 Conv3D/BN/ReLu (48,100,12,64)
Encode 3 Conv3D/BN/ReLu (24,50,6,128)
Encode 4 Conv3D/BN/ReLu (24,50,6,128)
Encode 5 Conv3D/BN/ReLu (12,25,3,256)
Encode 6 Conv3D/BN/ReLu (12,25,3,256)
ResConv 1 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 2 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 3 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 4 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
ResConv 5 Conv3D/BN/Conv3D/BN/ReLu/Add (12,25,3,256)
Decode 6 UnSampling/Padding/Conv3D/BN/Relu (12,25,3,256)
Decode 5 UnSampling/Padding/Conv3D/BN/Relu (24,50,6,256)
Decode 4 UnSampling/Padding/Conv3D/BN/Relu (24,50,6,128)
Decode 3 UnSampling/Padding/Conv3D/BN/Relu (48,100,12,128)
Decode 2 UnSampling/Padding/Conv3D/BN/Relu (48,100,12,64)
Decode 1 UnSampling/Padding/Conv3D/BN/Relu (96,200,24,32)
Output Conv3D (96,200,24,1)
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Appendix E. FNO model architecture

Table E.8: FNO model architecture. The Padding denotes a padding operator that ac-
commodates the non-periodic boundaries; Linear denotes the linear transformation to
lift the input to the high dimensional space, and the projection back to original space;
Fourier3d denotes the 3D Fourier operator; Conv1d denotes the bias term; Add operation
adds the outputs together; ReLu denotes a rectified linear layer. In this model, the number
of total parameters is 31,117,541.

Part Layer Output Shape
Input - (96,200,24,12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 4 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 5 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 6 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding - (96, 200, 24, 1)
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Appendix F. Conv-FNO model architecture

Table F.9: Conv-FNO model architecture. The Padding denotes a padding operator that
accommodates the non-periodic boundaries; Linear denotes the linear transformation
to lift the input to the high dimensional space, and the projection back to original space;
Fourier3d denotes the 3D Fourier operator; Conv1d denotes the bias term; Conv3d denotes
a 3D convolutional operator; Add operation adds the outputs together; ReLu denotes a
rectified linear layer. In this model, the number of total parameters is 31,222,625.

Part Layer Output Shape
Input - (96,200,24,12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 1 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 2 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Conv-Fourier 3 Fourier3d/Conv1d/Conv3d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding - (96, 200, 24, 1)
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Appendix G. U-FNO model architecture

Table G.10: U-FNO model architecture. The Padding denotes a padding operator that
accommodates the non-periodic boundaries; Linear denotes the linear transformation
to lift the input to the high dimensional space, and the projection back to original space;
Fourier3d denotes the 3D Fourier operator; Conv1d denotes the bias term; UNet3d denotes
a two step 3D U-Net; Add operation adds the outputs together; ReLu denotes a rectified
linear layer. In this model, the number of total parameters is 33,097,829.

Part Layer Output Shape
Input - (96,200,24,12)
Padding Padding (104, 208, 32, 12)
Lifting Linear (104, 208, 32, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (104, 208, 32, 36)
U-Fourier 1 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
U-Fourier 2 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
U-Fourier 3 Fourier3d/Conv1d/UNet3d/Add/ReLu (104, 208, 32, 36)
Projection 1 Linear (104, 208, 32, 128)
Projection 2 Linear (104, 208, 32, 1)
De-padding - (96, 200, 24, 1)
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