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Abstract

Recent studies have revealed that self-sustaining cascading
failures in distributed systems frequently lead to widespread
outages, which are challenging to contain and recover from.
Existing failure detection techniques struggle to expose such
failures prior to deployment, as they typically require a com-
plex combination of specific conditions to be triggered. This
challenge stems from the inherent nature of cascading fail-
ures, as they typically involve a sequence of fault propaga-
tions, each activated by distinct conditions.

This paper presents CSnake, a fault injection framework
to expose self-sustaining cascading failures in distributed sys-
tems. CSnake uses the novel idea of causal stitching, which
causally links multiple single-fault injections in different test
workloads to simulate complex fault propagation chains. To
identify propagation chains between faults, CSnake designs
a counterfactual causality analysis of fault propagations –
fault causality analysis (FCA): FCA compares the execution
trace of a fault injection run with its corresponding profile
run (i.e., running the same test without the injection) and
identifies any additional faults triggered, which are consid-
ered to have a causal relationship with the injected fault.
To address the large search space of fault and workload

combinations, CSnake employs a three-phase allocation (3PA)
protocol of test budget that prioritizes faults with unique
and diverse causal consequences, thereby increasing the like-
lihood of uncovering conditional fault propagations. Fur-
thermore, to avoid incorrectly connecting fault propagations
from workloads with incompatible conditions, CSnake per-
forms a local compatibility check that approximately checks
the compatibility of the path constraints associated with
connected fault propagations with low overhead.

CSnake has detected 15 bugs that resulted in self-sustaining
cascading failures in five widely deployed distributed sys-
tems, five of which have been confirmed with two fixed.
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1 Introduction

Distributed systems are designed to tolerate component fail-
ures [28]. However, recent research has revealed self-sus-
taining cascading failures [41, 48, 66, 80], wherein a fault
propagates across components and replicates itself through
a self-reinforcing loop [48, 80]. These failures undermine
the intended fault tolerance, resulting in widespread outages
with severe consequences. For example, a self-sustaining
cascading failure happened in Amazon AWS [1] on July 30th,
2024, significantly disrupting core AWS services, including
AWS Lambda, EC2, and S3. The incident also brought down
many dependent services, such asWhole Foods Supermarket,
Amazon Alexa, and Goodreads [44].
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Figure 1.A real-world self-sustaining cascading failure from
Amazon AWS. The Cell (Cluster) Manager manages a cluster
of hosts (servers), each storing a set of data shards.

Such failures often require intricate combinations of con-
ditions to manifest [80], as they typically involve a sequence
of fault propagations, each activated by distinct conditions.
For instance, as shown in Figure 1, the Amazon AWS inci-
dent [1] occurred in a cluster of servers (hosts) managed
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by a cluster (cell) manager, with each server hosting a set
of data shards. During a routine system upgrade, the cell
manager ( 1 ) restarted some hosts (e.g., Host 1), and ( 2 ) re-
distributed their shards to other hosts (e.g., Host 2). Due to a
latent bug in the load balancer, the cell manager mistakenly
redistributed all low-throughput shards to a small number of
hosts (Host 2). Consequently, these hosts started ( 3 ) send-
ing abnormally large status reports that include metadata
for all hosted shards. The increased size of these reports
caused delays in both transmission and processing ( 4 ), caus-
ing the management system to misclassify these servers as
unhealthy. The management system consequently removed
these servers from the cluster, and ( 5 ) redistributed their
shards to other servers, which causes the receiving servers
(e.g., Host 3) to send large-sized reports ( 6 ) and subsequently
be removed from the cluster ( 7 ). This failure involves two
fault propagations, each requiring distinct conditions. First,
for a server removal to propagate and trigger incorrect re-
distribution ( 1 → 2 and 4 → 5 ), the redistributed shards
must have low throughput. Second, for incorrect redistribu-
tion to induce report delay and subsequent server removal
( 2 → 4 and 5 → 7 ), the report size (or, the number of
affected shards) must be sufficiently large.
Existing fault injection techniques [9, 19, 20, 29, 31, 38,

40, 58, 59, 65, 66, 70, 72, 73, 76, 77, 85, 88, 91] fall short of
exposing such self-sustaining cascading failures before de-
ployment, because they only inject faults into a limited set of
manually selected (e.g., stress tests) or synthetically crafted
workloads (e.g., benchmark workloads), which often lack

the required combination of conditions. Conversely, if
a workload satisfying both of the previously described con-
ditions had been exercised, a traditional fault commonly
used in existing fault injection frameworks – a server crash
– would have exposed the AWS self-sustaining cascading
failure before deployment. Missing triggering conditions is a
known challenge to effective fault injection testing [31, 67].
Without prior knowledge of the targeted bug, it is exception-
ally hard for the developers tomanually create test workloads
or rules for workload generators [43, 58, 62, 72] that meet
all necessary conditions.
To tackle this challenge, we propose Causal Stitching

to simulate complex fault propagation under complex con-
ditions by causally linking multiple single-fault injec-

tions in different workloads. Each injection uncovers one
step in the fault propagation chain. Our insight is that trigger-
ing one step in the chain requires less stringent conditions
than triggering the whole chain, increasing the likelihood
of achieving this through fault injection into existing work-
loads, such as the integration tests shipped with the system.

To illustrate, consider the two faults involved in the Ama-
zon AWS self-sustaining cascading failure: node loss (𝑓1) and
imbalanced shard redistribution (𝑓2). Their causal relation-
ships can be identified through separate fault injection runs.
Specifically, in a test case 𝑡1 with low-throughput shards

(condition 𝑐1), injecting 𝑓1 results in the triggering of an ad-
ditional fault 𝑓2, establishing the causal relationship 𝑓1 → 𝑓2.
Conversely, in a test case 𝑡2 with a large number of shards
hosted on individual nodes (condition 𝑐2) , injecting 𝑓2 (sim-
ulated via induced delay) leads to the manifestation of 𝑓1,
indicating a reverse causal relationship 𝑓2 → 𝑓1. The self-
sustaining cascading failure can be reconstructed by linking
the causal relationship among the two faults as long as the
workload and conditions in tests 𝑡1 and 𝑡2 are compatible,
resulting in a causal cycle of 𝑓1 → 𝑓2 → 𝑓1.

We could not apply this idea to the AWS incident due to the
lack of access to the source code and test suite. However, our
tool – CSnake– demonstrated its capability to detect a simi-
lar, previously unknown self-sustaining cascading failures
in HBase [4], an open-source distributed database (§8.3). No-
tably, HBase’s test suite does not contain a single workload
that satisfies all the necessary triggering conditions; instead,
CSnake identified and connected causal relationships across
multiple test cases to reveal the failure.
To obtain the causal relationships between faults inside

the system, we propose a counterfactual causality analysis of
fault propagations – fault causality analysis (FCA). FCA
compares the execution trace of a fault injection run with its
corresponding profile run (i.e., running the same test without
the injection) and identifies any additional faults triggered,
which are considered to have a causal relationship with the
injected fault.

A major challenge faced by Causal Stitching is the vast
number of combinations of faults and workloads. To effi-
ciently explore the causal relationship between faults in
such a massive search space, CSnake uses a three-phase
allocation (3PA) protocol during test execution to maxi-
mize the number of causal relationships discovered under a
fixed test budget. Intuitively, 3PA prioritizes injecting faults
with unique and diverse causal consequences. This prioriti-
zation is guided by an adaptive weighting algorithm, which
leverages runtime feedback from prior fault injection runs
to estimate the potential of each fault to uncover new causal
relationships, particularly conditional propagations. In ad-
dition, in the subsequent cycle detection phase, CSnake
utilizes a parallel beam search to construct propagation
chains, also applying this prioritization principle to favor
faults with unique and diverse causal consequences.
Another challenge is the risk of linking causal relation-

ships discovered in workloads with incompatible conditions.
For example, suppose the causal relation 𝑓1 → 𝑓2 is observed
in test 𝑡1 under a condition 𝑐1, while 𝑓2 → 𝑓1 in test 𝑡2 hap-
pens under the negation of 𝑐1, linking 𝑓1 → 𝑓2 and 𝑓2 → 𝑓1
into a single causal cycle is unsound, as the conditions re-
quired for each step are mutually exclusive. To reduce the
risk while minimize the overhead, CSnake approximates
such symbolic constraints with the fault’s local program
trace, including branch evaluation results and the call stack.
CSnake performs a local compatibility check with such
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approximated constraints before linking causal relationships,
and assumes that if the traces leading to the same fault are
similar in different tests (e.g., traces leading to 𝑓2 in 𝑡1 and
𝑡2), the compatibility between tests exists.

In summary, this paper makes the following contributions:
• We proposeCausal Stitching, a fault injection technique
that detects complex fault propagations by causally link-
ing multiple single-fault injections across workloads.
• To overcome the challenge of a massive search space, we
propose a test budget allocation protocol (3PA) and a
parallel beam search cycle detection algorithm, both
of which prioritize faults with unique and diverse causal
consequences.
• To reduce the risk of invalid linking of causal relation-
ships, we implement a local compatibility check to
eliminate incompatible conditions.
• We implement the fault injection and analysis frame-
work, CSnake. We evaluate CSnake on the latest ver-
sions of five popular open-source distributed systems, i.e.,
HDFS 2.10.2 [10], HDFS 3.4.1 [11], HBase 2.6.0 [4], OZone
1.4.0 [5], and Flink 1.20.0 [3], where CSnake detects 15
new self-sustaining cascading failures, five of which have
been confirmed with two fixed by developers. CSnake’s
source code is available at https://github.com/Purdue-
PFL/CSnake.

2 Problem Statement

To introduce our problem definition, we first present a model
of fault injection experiments of cascading failures extending
the model of general fault injection experiments [77], as well
as our fault model and causality model.

Correct
State1

Error1 Failure

Fault Injection
Correction

Fault Propagation
Correct
State2

Error2

Normal Execution

Figure 2. Model of fault injection experiments of cascading
failures, characterized by different system states.

Model of Fault Injection. As shown in Figure 2, fault
injection experiments are modeled using transitions between
system states. During normal system execution ( 4 ), a fault
can be injected ( 1 ) at different time points (Correct State1
and State2) to trigger an error (Error1 and Error2). The injec-
tion can be performed in multiple experiments with different
workloads (i.e., system inputs). An error could be masked or
corrected ( 2 ) by fault tolerance mechanisms such as replica-
tion [12] and recomputation [90]. Under special conditions,
it could propagate ( 3 ) and corrupt other parts of the system
state to cause additional errors. Such propagations (e.g., Er-
ror1→ Error2 and Error2→ Failure) may require distinct

conditions to be activated. A condition is a logical predicate
over the system state.
Compared to the general fault injection model [77], our

model captures the causal relationships between faults across
multiple fault injection experiments. Specifically, in one ex-
periment, a fault (𝑓1) injected into Correct State1 triggers
Error1 and subsequently causes Error2 (without leading to
Failure). In a separate experiment, a fault (𝑓2) injected into
Correct State2 triggers Error2 and subsequently causes Fail-
ure. Themodel captures the possible fault propagation Error1
→ Error2→ Failure, provided that the activation conditions
for each causal relationship are compatible. The definitions
of fault, causality, and compatibility are provided below.
Fault Model. Traditionally, error refers to an incorrect

system state, while fault refers to its cause, such as software
bugs and hardware faults [77]. In the remainder of this paper,
we use fault and error interchangeably, because we perform
a specific type of fault injection – software-implemented fault
injection [77], which injects the effects of a fault, such as ex-
ceptions and delays, to simulate errors directly and accelerate
the experiment, instead of injecting the actual faults.
Causality Model. To capture the causal relationship be-

tween faults (errors), we use counterfactual causality: 𝑓1 is a
counterfactual cause of 𝑓2 if and only if 𝑓2 would not occur
unless 𝑓1 occurs. According to the ladder of causation [78],
counterfactual causality offers the strongest bond between
cause and effect. To the best of our knowledge, although
recently utilized in root cause localization [34, 57], coun-
terfactual causality has not been used in fault injection to
analyze how faults propagate. Existing analysis of failure
propagation [64, 66] utilizes the happens-before relation-
ship [66] and program dependencies [64], both of which are
weaker forms of causality.

Problem Definition. Given a set of workloads 𝑊 =

{𝑤1,𝑤2, ...}, our main goal is to identify the causal relation-
ships between faults (𝑓1 → 𝑓2) across workloads, and connect
compatible identified causal relationships to detect cycles,
where a fault causes itself through a chain of connected
causal relationships.
Because the causal relationships may be identified in dif-

ferent workloads (e.g., 𝑓1 → 𝑓2 identified in𝑤1 and 𝑓2 → 𝑓3
in𝑤2), blindly connecting them could result in invalid causal
chains when the workloads are incompatible – the conditions
required to activate 𝑓1 → 𝑓2 in𝑤1 and 𝑓2 → 𝑓3 in𝑤2 are mu-
tually exclusive. Therefore, we require the connected causal
relationships to be compatible, meaning the conjunction of
their activating conditions is satisfiable.

For simplicity of the paper, in a causal relationship 𝑓1 → 𝑓2
identified from𝑤1, we name 𝑓2 the interference of 𝑓1 on the
system due to the fault injection. The causal relationship
also forms a fault propagation chain of length 1 from 𝑓1 to 𝑓2.
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Figure 3. Overview of CSnake. Blue boxes are components of CSnake.

3 CSnake Overview

CSnake operates by identifying causal relationships between
faults in distributed systems and linking them to form po-
tential cycles. It simulates chains of fault propagations in
complex workloads quasi-statically by combining the causal
relationships derived from fault injections on simpler work-
loads.
At the core of CSnake is a counterfactual causality anal-

ysis. Counterfactual causality analysis involves conducting
two experiments: one with a fault injected to observe its
impact on the system execution (referred to as the interfer-
ence), and the other without the fault injected to observe the
system’s execution (referred to as the counterfactual – i.e.,
what would the system execution be had the fault not been
injected). Specifically, we compare the execution trace of a
fault injection run with its corresponding profile run (i.e.,
running the same test without the injection) and identify
any additional faults triggered, which are considered to have
a counterfactual causal relationship with the injected fault.
Workflow. Figure 3 illustrates the workflow of CSnake.

( 1 ) Given the Java bytecode of the target system, CSna-
ke’s static analyzer identifies system-specific fault injection
points, and instruments fault injection andmonitoring hooks.
At runtime, CSnake’s runtime agent performs fault injection
and monitoring when a hook is encountered.

During fault injection experiments ( 2 ), a workload driver
selects combinations of faults and workloads (integration
tests shipped with the target system) to execute both the
fault injection run and the corresponding fault-free profile
run (counterfactual experiment). Note that, for each fault,
CSnake only uses the set of tests that can reach the fault
during execution in fault injection runs.
Next, the fault causality analysis module ( 3 ) compares

the execution traces from the profile and injection runs to
identify counterfactual causal relationships – i.e., fault prop-
agations. These causal relationships are used by the three-
phase allocation (3PA) protocol to guide future workload and
fault selection via feedback to the workload driver.
The discovered causal relationships are also forwarded

to CSnake’s bug detector ( 4 ), which connects compatible
relationships and performs a beam search for cycle detection
to identify self-sustaining cascading failures ( 5 ).
In the following sections, we first explain (§4) how to in-

strument faults and perform the core counterfactual causality

analysis, and then (§5) how to efficiently allocate testing re-
sources, and finally (§6) how to connect compatible causal
relationships and detect cycles.

4 Fault Causality Analysis

This section details the types of faults to inject (§4.1), the fault
injection process (§4.2), and the approach for establishing
causal relationships between faults (§4.3).

4.1 What faults to inject?

A recent study [80] on self-sustaining cascading failures from
open-source systems reveals that self-sustaining cascading
failures are often caused by functional and performance in-
terferences between requests and error handlers. Functional
interferences typically manifest as exceptions and errors cap-
tured by system-specific error detectors, and performance
interferences typically manifest as contention. Following
this observation, CSnake injects three types of faults.
Exception. A target system can encounter three types

of exceptions during its execution: (1) system-specific ex-
ceptions – exceptions thrown explicitly inside the target
system’s source code, (2) library function exceptions – excep-
tions thrown by a library or native function, (3) unchecked
(runtime) exceptions – exceptions that are not required to
be explicitly handled (by try/catch blocks in JVM-based sys-
tems) or declared explicitly in function signatures.
CSnake injects system-specific exceptions and library

function exceptions, because they occur at limited, explicitly-
declared program locations, while unchecked exceptions can
happen at arbitrary locations. Note that CSnake still injects
an unchecked exception if it is explicitly thrown in the sys-
tem’s code – e.g., an IllegalArgumentException is often
thrown when a request with invalid input is received. In
practice, CSnake filters out reflection-related and security-
related exceptions, as they tend to terminate or hang the
system rather than propagate. CSnake also ignores excep-
tions only reachable from tests.

Contention. Though contention can happen at arbitrary
program locations, CSnake only considers loops for con-
tention injection to simulate resource-intensive tasks caus-
ing contention, due to their association with performance
issues discovered by existing studies [56, 66, 80]. CSnake
uses iteration count of the workload-related loops to capture
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1 for (int i = 0; i < 10; i++) { // Loop 1
2 sock.read(); // TP1
3 if (condition1) {// TP2; MP1
4 throw new IOException();
5 }
6 for (int j = 0; j < 10; j++) { // Loop 2
7 if (foo()) { // TP3; MP2
8 throw new IOException();
9 }
10 }
11 }
12
13 boolean foo() { // NP1
14 fis = new FileInputStream(path); // TP 4
15 if (fis.read() == -1) { // MP 3; TP 5
16 return false;
17 }
18 return true;
19 }

Figure 4. Pseudo-code demonstrating the injection and mon-
itor points. “TP” means throw point and “NP” negation point.
“MP” means monitor point (used and explained in §6.2).

contention induced by increased workload (§4.3), similar to
the approach adopted by Li et al. [66].
CSnake adopts a loop scalability analysis to filter out

loops unlikely to cause performance issues. CSnake excludes
loops with a constant upper bound on their iteration count,
detected by a best-effort data flow analysis to track the loop
guard condition to a constant. In addition, CSnake ranks the
size of code reachable recursively starting from a loop and
identifies loops involving I/O operations, to exclude loops
that have a short execution (i.e., lowest ranked 10% of loops)
and do not perform I/O.

System-Specific Error. Many distributed systems imple-
ment system-specific error detectors, such as status checks
and healthmonitoring, without using exceptions. Such system-
specific error detectors are often implemented as functions
with a boolean return value. For example, in HDFS, a Na-
meNode thread checks if a DataNode’s heartbeat is received
within a timeout limit using a function node.isStale().

CSnake filters out boolean-returning functions if they are
unlikely to be a system-specific error detector. For exam-
ple, CSnake filters out such boolean-returning functions in
JDK libraries, such as contains() function of Java collec-
tion type objects (detailed filtering criteria in §7). CSnake’s
fault filtering criteria is designed to be conservative to avoid
meaningful fault being skipped accidentally. The injection
points that do not impact system execution will be automati-
cally deprioritized during fault injection experiments by the
test budget allocation protocol (§5).

4.2 How to inject faults?

CSnake’s static analyzer identifies locations to inject faults
and instruments fault injection hooks statically. The hook

transfers the control to CSnake’s runtime agent. During fault
injection experiments, CSnake dynamically injects faults
when corresponding hooks are encountered. We use a Java-
style pseudo-code with eight fault locations (shown in Fig-
ure 4) to explain how fault injection is performed.

Exception Injection. For system-specific exceptions, as
they are typically thrown inside an if-statement (lines 4 and
8), CSnake injects a one-time throw of the same exception
when the if-statement (lines 3 and 7, referred to as Throw
Point) is reached. For library function exceptions, CSnake
injects a one-time throw of the exception declared in the
function signature at the invocation site of these functions
(lines 2, 14, and 15). Exceptions are constructed at runtime
using their simplest constructor.

Contention Injection. For potentially non-scalable loops
identified by CSnake (e.g., line 1 and 6), CSnake injects a
predefined amount of spinning delay into each loop itera-
tion before the first line of the loop body executes to simulate
potential contention induced by executing a large number of
iterations of this loop. Due to the way we inject contention,
we refer to such injection as delay injection.

Each delay injection is performed seven times with vary-
ing length (100ms to 8s) to maximize the discovery of causal
relationships between faults. The system is configured with
reduced timeouts (10-20 seconds) to make it more sensitive
to additional workload.

The delay and timeout values are determined empirically
to maximize the impact of delay injections. We first lower
system timeout configurations to a safe range of 10-20s via
trial and error, which ensures normal system functionality
being preserved (i.e., all unit and integration tests still pass).
Based on this threshold, we select seven static delay values
between 100ms and 8s that are likely to cause timeouts when
injected repeatedly inside loops. We identify relevant config-
uration items using the keywords of “timeout” and “interval”.
The timeout adjustment process typically takes a student
30 minutes per system, and are not essential for CSnake’s
effectiveness, as delay-related causal relationships can still
be observed with default settings.

System-Specific Error Injection. Because system-specific
errors are captured by system-specific error detectors, whose
return values are boolean typed, CSnake negates the return
value of these functions (which is referred to as Negation
Point) before the execution returns to its caller to simulate
the effect of such faults (foo() at line 13). We refer to the
injection of system-specific error as a negation injection.

4.3 How to establish causal relationships?

CSnake records encountered faults during the injection run
and profile run, and compares them to identify additional
faults triggered to establish causal relationships. We catego-
rize the encountered faults into the following categories:

1. Execution Trace Interference. For exceptions, C-
Snake monitors whether the throw statement is reached.

5
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1 while (shouldRun()) { // Loop 1
2 resp = sendHeartBeat();
3 // Loop 2
4 for (DataNodeCommand cmd: resp.getCommands()) {
5 processCommand(cmd);
6 }
7 // ...
8 List<BlockReport> reports = new ArrayList<>();
9 // Loop 3
10 for (Map.Entry kv: perVolumeBlocks.entrySet()) {
11 reports.add(convertFormat(kv));
12 }
13 // ...
14 for (BlockReport report: reports) {
15 nnRpcStub.blockReport(report);
16 // ...
17 }
18 }

Figure 5. Pseudo-code demonstrating delay in nested loops,
code simplified from BPServiceActor in HDFS.

For system-specific errors, CSnake monitors whether the
return value of the error-detector function is negated.

2. Iteration Count Interference. For contention, C-
Snake monitors whether any loop’s iteration count statisti-
cally increases compared to the profile run, as an indicator
for contention. The loop iteration count serves as a good
indicator for the amount of workload processed [66]. We
use one-sided t-test [83] with a 𝑝-value of 0.1 for statistical
significance.
CSnake executes each profile run and injection run five

times to reduce the impact of non-determinism in the
system execution. This also allows us to use statistical tests
on loop iteration counts.
Injecting 𝑓1 may trigger multiple additional faults, stem-

ming from both interference types. After all the injection
runs for 𝑓1, CSnake collects a list of additional faults trig-
gered [𝑓2, 𝑓3, ..., 𝑓𝑛].
Nested and Consecutive Loops. One special case of

iteration count interference is the handling of nested and
consecutive loops in the system. Three types of compositions
of workload related loops exist: 1) independent loops, 2)
nested loops, and 3) consecutive loops. We observe that 2)
nested and 3) consecutive workload-related loops are often
used in batch processing. In such loops, a delayed sub-request
can propagate delays to its parent request (the batch) and
the next sub-request in the same batch. For example, in a
batched RPC request, a delayed sub-request can time out the
entire call as well as the next sub-request.
CSnake identifies the parent-child loop pairs to estab-

lish this causal relationship and expand the impact scope
of contention injection. Figure 5 shows the pseudo-code
demonstrating contentions in the nested loops. If injection
𝑓1 increases iterations in loop 2 (𝐿2), its parent (𝐿1) and sib-
ling (𝐿3) can also be affected. We use 𝐿2 ICFG 𝐿1 to represent

Table 1. Summary of the causal relationships between faults.

Type Injected Fault Additional Fault

E(D) Delay Exception; Negation
S+(D) Delay Delay
E(I) Exception; Negation Exception; Negation
S+(I) Exception; Negation Delay
ICFG 𝑓1 S+(D/I) 𝑓2

ICFG 𝑓 ′2 only
CFG 𝑓1 S+(D/I) 𝑓2

ICFG 𝑓 ′2
CFG 𝑓 ′′2 only

the former (“I” for “Inverse”) and 𝐿1 CFG 𝐿3 to represent the
latter.
Summary for Fault Causality. Table 1 summarizes all

the six causal relationships between different types of faults.
The first four are differentiated by the injected fault and the
additional fault triggered. The last two are special causal
relationships handling nested loops, extending the impact
range of contentions.
1. 𝑓1 E(D) 𝑓2: Injecting a delay 𝑓1 into a loop causes an addi-

tional exception or negation 𝑓2. Delay 𝑓1 has an execution
trace interference 𝑓2 on the system (hence the name E(D)).

2. 𝑓1 S+(D) 𝑓2: Injecting a delay 𝑓1 into a loop causes an addi-
tional delay (𝑓2) in another loop. Delay 𝑓1 has an iteration
count interference 𝑓2 on the system (name S+ indicates a
statistically significant increase).

3. 𝑓1 E(I) 𝑓2: Injecting an exception or negation 𝑓1 causes
an additional exception or negation 𝑓2.

4. 𝑓1 S+(I) 𝑓2: Injecting an exception or negation 𝑓1 causes
an additional delay (𝑓2) in another loop.

5. 𝑓2 ICFG 𝑓 ′2 : 𝑓2 is an additional delay caused by the injection
𝑓1, affecting its parent loop (𝑓 ′2 ).

6. 𝑓 ′2 CFG 𝑓 ′′2 : Following 𝑓2 ICFG 𝑓 ′2 , the parent loop delay
(𝑓 ′2 ) further affects the sibling loop (𝑓 ′′2 ).

5 Test Budget Allocation

A challenge faced by the approach of causal stitching is the
vast number of combinations of faults and workloads. For
example, HDFS has about 3,000 source code locations where
exceptions can be thrown and 2,000 loops where delays can
be injected and thousands of integration tests. Combining
injected faults with different workloads can result in tens of
millions of possible fault injection scenarios. In this section,
we explain CSnake’s three-phase allocation (3PA) proto-

col of test budget, which maximizes the discovery of causal
relationships within a fixed test budget. 1

5.1 Principles of Test Allocation

The 3PA protocol leverages two principles to prioritize faults
based on the uniqueness and diversity of their causal impact:
1) injecting causally equivalent faults to diverse workloads,
and 2) extending conditional causal relationships.

1A formal definition of the 3PA protocol is in §A.
6
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Causally Equivalent Fault. Since different faults (e.g.,
𝑓1 and 𝑓2) may trigger similar interferences (i.e., additional
faults), we consider such faults (𝑓1 and 𝑓2) causally equiva-
lent with respect to their consequences. For example, in a
try-catch block, multiple exceptions in the try block might
be handled by the same catch block, in which triggers an ad-
ditional fault. In such cases, it is redundant to inject causally
equivalent faults into the same workload. Instead, CSnake
prioritizes to inject them in different workloads in order to
maximize the discovery of diverse fault propagations.
Conditional Causal Relationship. Because self-sus-

taining cascading failures are often formed by fault propa-
gations activated by specific conditions, CSnake allocates
test budget to increase the probability to extend conditional
causal relationships between faults. CSnake detects such
conditional causal relationships by checking if a fault causes
different faults in different workloads. For example, if 𝑓1 al-
ways causes 𝑓2 in different workloads, 𝑓1 → 𝑓2 is considered
unconditional, while if 𝑓1 causes 𝑓2 in one workload but 𝑓3
in another, then 𝑓1 → 𝑓2 and 𝑓1 → 𝑓3 are considered condi-
tional. CSnake prioritizes to allocate test budgets to trigger
the resulting faults (𝑓2 and 𝑓3) of such conditional causal
relationships.

5.2 Three-Phase Allocation Protocol

Following the above principles, CSnake allocates the test
budget in three phases. In phase one (causally equivalent

fault detection), CSnake conducts a preliminary explo-
ration by running each fault injection against one test work-
load, and clusters faults causing similar interferences in order
to detect causally equivalent faults. In phase two (causality
exploration), CSnake picks a fault from each set of causally
equivalent faults and injects it into diverse workloads to ex-
plore its causal relationships with other faults. In phase three
(conditional-causality-guided causality extension), C-
Snake uses the result from phase two to detect conditional
causal relationships, and prioritizes to inject faults that can
extend such conditional causal relationships. The total test
budget is calculated using the number of fault locations in
each system, currently as 4 × |F|, where F is the set of faults.
Phase one makes up the first 25% of the budget. Phase two
gets 50% of the budget, while phase three uses the remaining
25%.
Phase One: Causally Equivalent Fault Detection. In

this phase, for each fault 𝑓𝑖 , CSnake picks the workload 𝑡𝑖1
that reaches 𝑓𝑖 ’s program location and has the highest code
coverage. The rationale is that such a test is more likely to
reveal the most diverse interferences of 𝑓𝑖 . Different faults
may be injected into different workloads since a single test
may not cover all fault locations. CSnake then performs
the fault causality analysis to obtain all additional faults
triggered. We use 𝐼 (𝑓𝑖 , 𝑡 𝑗 ) to represent a list of additional
faults triggered by injecting 𝑓𝑖 to 𝑡 𝑗 .

Injections that do not affect system execution will be de-
prioritized automatically. These non-impactful injections
will be clustered together, and assigned the lowest alloca-
tion weight in the remaining phases. This complements our
conservative static filtering of the injection points (§4.1).

CSnake uses an IDF-based (inverse document frequency
[71], more details in §A.1) clustering algorithm to detect
causally equivalent faults. IDF is commonly used in text min-
ing tasks for applying weights to the words [25]. It excels
at reducing noises induced by common words such as “a”
and “the”. CSnake uses IDF to assign a weight to each fault
𝑓 in the fault corpus F. The intuition is that, similar to com-
mon words in text mining, if a fault is frequently triggered
by various other faults (e.g., inside a utility function), it is
less useful for determining the similarity of interferences
𝐼 (𝑓𝑖 , 𝑡 𝑗 ) from different injections. CSnake uses such weights
to determine the similarity of the interferences caused by
different injections.

Specifically, CSnake vectorizes each 𝐼 (𝑓𝑖 , 𝑡𝑖1 ) as𝑉 (𝑓𝑖 , 𝑡𝑖1 ) =
IDFv (𝐼 (𝑓𝑖 , 𝑡𝑖1 ), F), resulting in a real vector of length 𝑛, with
each element ranging from 0 to 1 (i.e., 𝑉 ∈ [0, 1]𝑛). CSna-
ke then performs a hierarchical clustering [60] of the faults
in F using the cosine distance [71] between all vectorized
interferences 𝑉 (𝑓𝑖 , 𝑡𝑖1 ). We select hierarchical clustering due
to their explainable nature, as required in biology [63] and
medical [93] researches. We use cosine distance instead of
euclidean distance due to their insensitive to vector length
(i.e., the number of additional faults triggered in this case).
The cosine distance here ranges from 0 to 1 because all IDF
vectors are positive.

By the end of phase one, each fault 𝑓𝑖 is clustered in to
a group 𝐺 𝑗 with other faults having similar interferences
on the system once injected. This phase makes up 25% of
the test budget, providing an initial understanding of each
fault’s interference.
Phase Two: Causality Exploration. In phase two, C-

Snake distributes test budgets among fault clusters 𝐺𝑖 in a
round-robin manner to perform injection and explore their
inteferences. This approach allocates equal test budgets to
fault clusters, not individual faults, avoiding redundant in-
jections that yield similar interferences.

In both phase two and three, each time a cluster receives
a test quota, CSnake randomly selects one fault from that
cluster and injects it into a new workload. This is to compen-
sate for potential inaccuracies in phase one due to limited
test budget. For example, injecting 𝑓1 and 𝑓2 both causes 𝑓3 in
phase one, but 𝑓1 can cause 𝑓4 in another workload which is
unfortunately not used in phase one. Using random selection,
every fault within a cluster have a chance be injected into a
new workload.

After completing all the injection runs, CSnake performs
fault causality analysis again to identify additional faults
𝐼 (𝑓𝑖 , 𝑡 𝑗 ). A second IDF vectorizer is trained with the data
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from both phases to convert 𝐼 (𝑓𝑖 , 𝑡 𝑗 ) to 𝑉 (𝑓𝑖 , 𝑡 𝑗 ), which is
used in prioritization in the next phase.
CSnake prioritizes to inject faults that can cause con-

ditional interferences to more workloads, in order to ex-
tend conditional causal relationships. It measures the diver-
sity of the causal consequences (interferences) of faults in
a cluster using an intra-cluster interference similarity score
(SimScore(𝐺𝑖 )). CSnake prioritizes to inject faults from clus-
ters with a lower score, which increases the chance for the
injection to trigger conditional interferences. The score is
the average pairwise cosine distance between all vectorized
interference results 𝑉 (𝑓𝑖 , 𝑡 𝑗 ) obtained from the injection ex-
periments conducted in cluster𝐺𝑖 during phase one and two.
SimScore(𝐺𝑖 ) ranges from 0 to 1. A value of 1 indicates that
all faults in cluster𝐺𝑖 trigger the same set of additional faults
among all injection runs. The score is then used in phase
three.

Phase Three: Conditional-Causality-Guided Causal-

ity Extension. Using the SimScore(𝐺𝑖 ) calculated in phase
two, CSnake performs a weighted random allocation fa-
voring clusters with more conditional causal consequences.
Lower similarity indicates more conditional causal conse-
quences and thus a higher allocation weight. The allocation
weight for cluster𝐺𝑖 is defined as max (𝜖, 1 − SimScore(𝐺𝑖 )).
Each cluster has a minimum weight 𝜖 of 0.01, ensuring every
cluster receives some budget, even with perfectly matched
intra-group interference results.

Test Budget Transfer. In phase two and three, test quotas
are transferable between clusters. In phase two, if a cluster
exhausts its (fault, test) combinations before using up its
quota, the remaining quota is randomly transferred to a
larger cluster for more thorough exploration. In phase three,
any unused budget will be transferred to clusters with a
smaller allocation weight.

Text Budget Selection. We recommend running a mini-
mum of 4 × |F| tests under the 3PA protocol. In phase one,
each fault needs one test to explore the potential interfer-
ences of the injection on the system. In phase two, each fault
is on average injected into two additional test cases, which
enables the intra-group similarity calculation. We set a num-
ber of 2 instead of 1 in this phase just in case one fault is
injected into a similar test workload as phase one. In phase
three, we naturally allocate each fault one additional test.

6 Detect Self-Sustaining Cascading Failures

This sections details how CSnake stitches causal relation-
ships to form fault propagation chains (§6.1), how to avoid
incompatible stitching (§6.2), and how CSnake searches for
cycles to detect self-sustaining cascading failures (§6.3).

6.1 Stitching Causal Relationships

CSnake stitches causal relationships when the resulting fault
in one causal relationship (𝑓2 in 𝑓1 → 𝑓2 ) matches the starting

1 public ReplicaHandler createTmp(...) {
2 do {
3 if (current == lastFoundReplica) { ... };
4 // ...
5 // Fault F2 (Injected)
6 if ((current.genStamp() >= b.genStamp()) ||

!isTransfer)↩→
7 // Fault F2 (Triggered by F1 injection)
8 throw new ReplicaAlreadyExistsException(...);
9 } while (true);
10 }
11
12 class BlockReceiver {
13 BlockReceiver(...){
14 data.createTmp(...);
15 }
16 }

Figure 6. Pseudo-code demonstrating state compatibility.
The fault is located inside a loop of createTmp(), which
is invoked from BlockReceiver(). Code simplified from
FsDatasetImpl in HDFS.

fault in another (𝑓2 in 𝑓2 → 𝑓3). In particular, based on the
type of the fault (𝑓2) used in stitching, CSnake can form four
types of connections:
1. 𝑓1 E(D/I) 𝑓2 E/S+(I) 𝑓3: The matching fault 𝑓2 is an ex-

ception or negation. Injecting 𝑓1 has an execution trace
interference 𝑓2 on the system. 𝑓1 and 𝑓3 can be of any type.

2. 𝑓1 S+(D/I) 𝑓2 E/S+(D) 𝑓3: The matching fault 𝑓2 is a delay on
a loop. Injecting 𝑓1 has an iteration count interference 𝑓2
on the system. 𝑓1 and 𝑓3 can be of any type. For delays in
nested loops performing batch processing, there are two
variants:
a. 𝑓1 S+(D/I) 𝑓2 ICFG 𝑓 ′2

E/S+(D) 𝑓3: The delay 𝑓2 propagates
to its parent loop (𝑓 ′2 ), which is the injected fault of
the next injection and causes 𝑓3.

b. 𝑓1 S+(D/I) 𝑓2 ICFG 𝑓 ′2
CFG 𝑓 ′′2

E/S+(D) 𝑓3: The delay
𝑓2 propagates to its sibling loop (𝑓 ′′2 ), which is the
injected fault of the next injection and causes 𝑓3.

6.2 Local Compatibility Check

When connecting causal relationships of faults obtained
from different tests, CSnake performs a compatibility check
between the tests involved. Theoretically, to check for in-
compatible propagation activation conditions across tests
(and skip stitching), a symbolic constraint collection (i.e.,
path condition collection used in symbolic execution tech-
niques [27, 32]) should be applied during the fault propaga-
tion: collect the path conditions 𝑐1 and 𝑐2 during the propa-
gation of 𝑓1 → 𝑓2 in test 𝑡1 and 𝑓2 → 𝑓3 in test 𝑡2 respectively,
and check the satisfiability of their conjunction 𝑐1 ∧ 𝑐2.
To minimize the overhead, CSnake approximates this

analysis by checking whether 1) the local execution trace
associated with the fault used in stitching (𝑓2) and 2) the
call stack match with their counterparts in the other test. In
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practice, we find CSnake’s strategies successfully eliminates
most incompatible workloads.
To facilitate the compatibility check, in injection runs,

CSnake records call stack and execution trace as follows:
1. Execution trace recording. CSnake records the branch

statements and the evaluation results of the conditions lo-
cally in the fault’s enclosing loop or function as the path
conditions. For example, in Figure 4, the three ifs (line 3, 7,
and 15) serve as monitor points for such branch statements.

2. Call stack recording. An error occurred in the same
function but at different call sites may represent errors for
different types of requests, which is invalid when stitched
together. To address this, CSnake records the closest two
levels of call stack for each loop iteration, exception, and
boolean return value (excluding the enclosing function it-
self). This method resembles the 2-call-site sensitivity in
pointer analysis, a common method balancing speed and
accuracy [51, 68, 86]. Note that the scope of execution trace
and call stack used in the comparison can both be adjusted.
Figure 6 shows an example for the compatibility check.

The fault 𝑓2 (exception on line 8) used in stitching is inside
a loop of createTmp(). CSnake checks the following two
things before stitching 𝑓1 → 𝑓2 and 𝑓2 → 𝑓3 together: 1) (call
stack) createTmp() must be both invoked from BlockRe-
ceiver(); 2) (execution trace) the traces of line 3-5 in the
fault-happening iteration of the fault-enclosing loop match
between tests. If the fault is not within a loop, we use the
trace of the enclosing function (e.g., BlockReceiver()) in-
stead. Because delay injection is injected at the beginning
of all iterations of a loop, CSnake conservatively checks for
matching traces in any loop iterations between tests.

6.3 Searching for Self-Sustaining Cascading Failures

Due to the large search space and the need to incorporate the
local compatibility check, CSnake uses a customized par-

allel beam search to find cycles, as shown in Algorithm 1.
The algorithm starts from all causal relationships obtained
from the three-phased fault injection, forming propagation
chains of length 1 (line 2). Each while-loop iteration (line 4)
represents one-level on the search tree, where one edge e is
connected to each propagation chain c in the queue (lines
6-13). Before connection, CSnake performs the compatibil-
ity check (line 17) between the last edge in the chain and
the new edge (line 8). If each chain cycles back to its begin-
ning (line 10), CSnake reports a potential self-sustaining
cascading failure.
At each level of the beam search, only 𝐵 active chains

are kept, sorted by the average intra-cluster interference
similarity score (§5.2) of the injected faults in the chain (lines
14-15). The intuition is that CSnake favors self-sustaining
cascading failures involving complex error handling logic,
which developers might overlook during testing. Suppose
each chain 𝐶𝑖 has 𝑟 fault injections 𝑓𝑘1 , 𝑓𝑘2 , ..., 𝑓𝑘𝑟 , and each
fault 𝑓𝑘 𝑗

belongs to fault cluster𝐺 𝑗 . The score used in ranking

Algorithm 1: Parallel Beam Search
Data: All causal relationships between faults E
Data: Beam size B
Result: All self-sustaining cascading failures C

1 Function beamSearch(E, B)
2 queue← 𝑒 ∈ E;
3 C← ∅;
4 while queue ≠ ∅ do
5 next← ∅;
6 for 𝑐 ∈ queue do in parallel

7 for 𝑒 ∈ E do in parallel

8 if match(c.lastEdge, e) then
9 new← c.append(e);

10 if isCycle(new) then
11 C.add(new)
12 else

13 next.add(new)
14 sort(next);
15 queue← next.subList(0, B);
16 return C;
17 Function match(edge1, edge2)
18 return edge1.interference == edge2.injectedFault &

isCompatible(edge1.state, edge2.state);
19 Function isCycle(c)
20 return match(c.lastEdge, c.firstEdge);

is defined as: Score(𝐶𝑖 ) = Σ𝑟𝑗=0SimScore(𝐺 𝑗 )/∥𝐶𝑖 ∥. Chains
with lower intra-cluster similarity are kept, as they likely
involve conditional causal relationships.

CSnake perform the beam search on the entire fault causal
space explored by the fault injection. Although there is no
limit on the number of faults in each chain, chains cannot
grow indefinitely as the fault injection runs in the chain must
remain compatible.
Clustering Reported Cycles. Because in 3PA’s phase

two and three, CSnake randomly picks a fault in a cluster of
causally equivalent faults to perform injection, our detection
algorithm can identify equivalent self-sustaining cascading
failures which contains causally equivalent faults. For ex-
ample, suppose CSnake reports two cycles “𝑓1 → 𝑓2 → 𝑓1”
and “𝑓3 → 𝑓2 → 𝑓3”, while 𝑓1 and 𝑓3 are from the same fault
cluster 𝐺 , the two cycles reported are likely the same bug
due to 𝑓1 and 𝑓3’s similar interference on the system. CSnake
automatically clusters cycles found in the beam search based
on the fault clusters (§5.2) involved in the cycle.

7 Implementation Details

CSnake is implemented with over 16,000 lines of Java code,
4,000 lines of Python, and 700 lines of shell scripts. The static
analyzer uses WALA [18]. The instrumentor and runtime
agent are based on a customized version of Byteman [17] for
dynamic instrumentation. The test runner uses a modified
version of JUnit [14], which works with CSnake’s instru-
mentor and the runtime agent to dynamically inject faults
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Table 2. Number of injection points, monitor points, and
integration tests in each system.

System Loop Exception Negation Branch Test

HDFS 2 2067 2316 770 26941 2674
HDFS 3 2736 2707 974 36745 4426
HBase 3227 2369 1002 38192 4436
Flink 2860 2619 447 27947 2036
OZone 1361 1395 395 18212 1219

before each test. Checkpoint/Restore In Userspace (CRIU) [8]
snapshots the JVM, speeding up the test initialization.
System-Specific Error Filtering. Except for filtering out
system-agnostic functions with boolean return value such
as Java collection operations (§4.1), CSnake filters out more
system-specific errors according to the following criteria:

1. The boolean return value of the function only involves
variables declared as final. Such variables are often related
to system configurations. Configuration errors are not within
the scope of this study. Instead of hunting for configuration
errors, CSnake searches for fault propagation under valid
configurations in different workloads.

2. The return value is constant or never used in the pro-
gram. A negation placed on those functions will not have an
impact on the system.

3. The return value is calculated only from primitive-
type variables. This happens when the function is a utility
function used in implementations of classic algorithms (e.g.,
isSorted() in a sorting algorithm). A negation will cause
incorrect calculations, which is not a fault under CSnake’s
scope.
Additional implementation details, including a dynamic

call graph construction and a customized JUnit framework,
can be found in §B.

8 Evaluation

We evaluate CSnake on the latest versions of five popular dis-
tributed systems, namely, HDFS 3.4.1 [11], HDFS 2.10.2 [10],
HBase 2.6.0 [4], Flink 1.20.0 [3], OZone 1.4.0 [5]. The fault in-
jection tests and beam search are performed on two Ubuntu
22.04 servers: one with two Intel Xeon Gold 5220R CPUs and
512 GB of memory, and the other with two AMD EPYC 7313
CPUs and 256 GB of memory. Each profile and injection run
is executed in a Docker container with Java 1.8. Each JVM
instance is limited to 6 CPU cores and a heap size of 32GB.

Table 2 summarizes the number of injection points, moni-
tor points, and test workloads identified in each system. In
all the evaluations, we use a beam size of 5 million chains.

8.1 New Self-Sustaining Cascading Failures

Table 3 shows the 15 new self-sustaining cascading failures
detected by CSnake in all five distributed systems, many
of which involve retries and the failure recovery logic. This

aligns with the findings of Qian et al. [80] on self-sustaining
cascading failures. Five of them have been confirmed, with
two fixed. Two bugs detected in HDFS 2 are also detected in
HDFS 3, we do not list them in Table 3 due to duplication.
Table 3 also details the characteristics of the fault injec-

tion runs for each bug. Column “Cycle” shows the number
of faults injected of each type. Column “Alloc.” shows the
test budget allocation phase after which all the causal rela-
tionships of each bug are discovered. All three phases of the
3PA protocol contributes to detecting new bugs.
To further demonstrate 3PA protocol’s effectiveness, we

compare it with a random allocation protocol, running the
same number of fault injection runs as the 3PA protocol with
randomly selected (fault, test) combinations. A “✓” in column
“Rnd.?” of Table 3 means that the bug can be detected using
random allocation. The random selection allocation protocol,
albeit effective in some systems (i.e., Flink), generally under-
performs the 3PA protocol in CSnake.
Most new failures detected by CSnake require only one

delay injection, with varying numbers of exception and nega-
tion injections. This is in line with the bug dataset provided
by Qian et al. [80], where majority of the cases only requires
a single contention to be triggered.
Self-sustaining cascading failures reported by CSnake

that involve multiple delay injections generally contribute to
the false positive cases. However, most of the false positive
cases are valid fault propagations, but categorized as false
positive because they are known (and accepted by the de-
veloper) contentions between operations in the system (e.g.,
contention between the HDFS clients performing read and
write). Details will be discussed in the §8.4.

8.2 Comparison with Alternative Strategy

We compare CSnake with a naive strategy that injects a
single fault into a system and monitors whether it causes
itself (e.g., delays a single loop in the system and monitors
if its iterations increase). This is to evaluate whether the
triggering conditions of each detected bug span multiple
tests.
Column “Alt.?” in Table 3 shows that about 73% (11 out

of 15) of the self-sustaining cascading failures detected by
CSnake cannot be triggered by the naive strategy. This un-
derscores the effectiveness of CSnake’s causal stitching, the
complexity needed to trigger these failures, and the limita-
tions of single-fault injection tools. Even when the naive
strategy works, CSnake offers detailed insights into the cy-
cle’s behavior.

8.2.1 Comparison with Existing Fuzzing Techniques.

In addition to the naive strategy above, we compare CSnake
with blackbox fuzzing techniques. Specifically, we compare
with Jepsen [9] and its Python reimplementation, Block-
ade [7]. Jepsen is a Clojure-based blackbox distributed system
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Table 3. All 15 new self-sustaining cascading failures detected by CSnake. In general, “DN” stands for DataNode, “NN” stands
for NameNode, and “IBR” stands for incremental block report. “Cycle” column shows the types of faults in each cycle. “Alloc.”
column shows the phase number in 3PA protocol that each bug is detected in. A “✓” in column “Rnd.?” means that the bug is
detectable under random allocation of test budgets. “Alt.?” column shows whether the bug can be triggered by the strategy in
§8.2. “JIRA#” column lists the bug ID in Apache issue tracker.

System # Delayed Task Other Faults Cycle* Alloc. Rnd.? Alt.? JIRA#

HDFS 2 1) Lease recovery IOE in IBR; IOE in write pipeline 1D | 2E | 0N 1 ✓ 17661
2) Edit log flushing IOE in IBR after NN failover 1D | 1E | 0N 1 ✓ 17836
3) Block recovery IOE in block recovery 1D | 1E | 0N 1 ✓ ✓ 17662
4) Write pipeline IOE in block recovery, IBR, and write pipeline 1D | 3E | 0N 2 17837
5) Block cache IOE in write pipeline; DN timeout 1D | 1E | 1N 2 17660
6) IBR IOE in IBR 1D | 1E | 0N 3 17780

HDFS 3 1) Block deletion IOE in write pipeline; DN timeout 1D | 1E | 1N 2 ✓ 17838
2) Block reconstruction; IBR DN timeout; IOE in replication 2D | 1E | 1N 3 17782

HBase 1) Write ahead log (WAL) Premature EndOfFile in WAL 1D | 0E | 1N 1 ✓ ✓ 29600
2) Region assignment IOE in assignment RPC; Node exclusion 1D | 1E | 1N 3 29006

Flink 1) Task worker Head task failure; Sink task cancellation 1D | 2E | 0N 1 ✓ 38367
2) Aggregation task Task state transition failure; Barrier task failure 1D | 2E | 0N 2 ✓ 38368

OZone 1) Container report queue Event queue dispatch failure 1D | 0E | 1N 1 13020
2) Heartbeat handling IOE in pipeline construction; Pipeline unhealthy 1D | 1E | 1N 2 ✓ ✓ 118561
3) Replication command handling IOE in replication and pipeline construction 1D | 2E | 0N 3 118562

*D: Delay; E: Exception; N: Negation
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Figure 7. The case study. “RS” stands for RegionServer, and
“IOE” stands for IOException. The yellow box indicates a
delay.

fuzzer, widely being used in the security research commu-
nity [74, 94] for distributed system testing.

We apply Jepsen on Flink [13] and Blockade onOZone [15]
with their existing test cases. Due to the lack of Jepsen or
Blockade integration and test workload, HBase and both
versions of HDFS are not included in this comparison.

The result shows that none of the self-sustaining cascad-
ing failures detected by CSnake can be detected by fuzzing-
based techniques. This highlights the necessity of causal
stitching and fine-grained fault injection in CSnake for de-
tecting self-sustaining cascading failures.

8.3 Case Study

In this section, we present case studies on two of the con-
firmed self-sustaining cascading failures.

8.3.1 Region Deployment Retry in HBase. The second
HBase bug in Table 3 is a self-sustaining cascading failure
similar to the AWS motivating example in §1. HBase is a dis-
tributed database system that divides tables into regionsman-
aged by multiple RegionServers (RS) under master nodes.

At high level, RSes in a heavily loaded cluster may throw
IOExceptions (IOEs) when handling RPC requests. The self-
sustaining cascading failure happens in a cluster with a lot
of write and table creation requests, which place signifi-
cant load on the RSes managing these tables ( 1 in Figure 7).
Some region assignment operations on these RSes may time
out and throw IOEs ( 2 ). When an RS throws an IOE, it is
excluded from the master node’s FavoredStochasticBa-
lancer, which requires at least three live RSes to function
properly. A reduced number of live RSes causes the load bal-
ancer to fail ( 3 ). An improper handling logic blindly retries
the assignment indefinitely ( 4 ), further increasing the load
on the RSes ( 5 ). This creates a self-sustaining cycle, leaving
the cluster unable to process additional region assignment
requests.

To trigger this bug in a testing environment with a single-
fault (i.e., delay) injection, we need a workload with the
following conditions:

1. It contains many region assignment requests.
2. A cluster configuration prone to be overloaded (3 nodes).
3. Load balancer configured to F.S.Balancer.
4. A workload long enough to observe the cycle.
However, no single test in HDFS satisfies all these con-

ditions (as shown in §8.2), and CSnake detects this cycle
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by injecting one delay, one exception, and one return-value
negation into three separate tests 𝑡1, 𝑡2, and 𝑡3.
First, the delay is injected into the region deployment

loop in 𝑡1 with multiple table creation and clones (cf. 1 in
Figure 7). This overloads the cluster, causing IOEs in the
region assignment request handler (cf. 2 ). This causal re-
lationship is only detected in 𝑡1, because other tests only
exercise limited number of region assignments.
In the second experiment, the same IOE is injected into

the region assignment request handler in a test (𝑡2) for RS
fault tolerance, triggering a negated return value in the load
balancer’s status checker (cf. 3 ). This causal relationship
is only detected in 𝑡2, because 𝑡2 is the only test that uses
FavoredStochasticBalancerwith a cluster of 3 nodes, and
the error detector canPlaceFavoredNodes() in Favored-
StochasticBalancer only runs into an error (negation) if
the cluster has fewer than 3 nodes (e.g., 𝑡3 uses Favored-
StochasticBalancer but has 5 nodes).

Finally, in the third experiment (𝑡3), the return-value nega-
tion is injected into the load balancer during a test for the
balancer itself, increasing the iterations of the region de-
ployment loop (cf. 4 and 5 ), indicating an increase in the
workload being handled that can potentially cause delays.
This causal relationship is only observed in 𝑡3, because it is
the only test that uses FavoredStochasticBalancer con-
figuration and has a long enough workload to observe the
increased iterations (not in 𝑡2 because it exits prematurely
after the IOE).

8.3.2 Bypassed IBR Throttling in HDFS. The sixth bug
detected on HDFS 2 is a logic error that a failed incremental
block report (IBR) is retried immediately at the next heart-
beat, incorrectly ignoring the configured IBR interval. The
unconstrained, immediate retry of IBR can cause a self-sus-
taining cascading failure if the original IBR failure is due to
a server overload. This happens when the cluster is under
high user traffic with many modifications, which triggers
many large-sized IBRs.

CSnake detects this bug by linking two injections in two
different tests 𝑡1 and 𝑡2: 1) injecting an IBR processing de-
lay into a workload with over 5,000 blocks to test the load
balancer, and 2) injecting an RPC exception for IBR into a
workload testing the IBR report interval configuration.

In fault injection using 𝑡1, the RPC exception is observed,
but not an increase in IBR count. Because 𝑡2 is the only one
with IBR throttling configured. Without it, IBRs are sent with
every heartbeat. As a result, although IBR failures occur in
the first workload, they are still sent at the original frequency
and cannot be detected by execution trace comparison.
In fault injection using 𝑡2, the IBR increment is observed

after the RPC exception, indicating a potential delay. How-
ever, 𝑡2 involves only 8 file blocks compared to 5,000 in 𝑡1,
making IBR processing delays less likely to cause timeouts.

Table 4. Number of self-sustaining cascading failures re-
ported by CSnake and the clustering results. Column “Sys-
tem” is the targeted distributed system. Columns “Cycle”,
“Cluster”, and “TP” shows the number of cycles reported,
distinct cycle clusters, and true positive clusters respectively.
The numbers outside the parentheses are from a beam search
with unlimited number of injected faults, while the numbers
inside are from a beam search limiting to one delay injection.

System Cycle Cluster TP System Cycle Cluster TP

HDFS 2 38 (23) 15 (9) 6 (6) Flink 48 (27) 35 (17) 2 (2)
HDFS 3* 149 (59) 36 (14) 4 (3) OZone 29 (17) 11 (7) 3 (3)
HBase 72 (26) 24 (7) 2 (2) Total* 17 (16)

*Including two duplicated clusters also detected in HDFS 2

8.4 Cycle Clustering and False Positive Rate

Table 4 shows the number of self-sustaining cascading fail-
ures, distinct failure clusters, and the true positive reported
by CSnake on each system. The numbers outside the paren-
theses are from a beam search without an upper bound on
the number of injected faults, while the numbers inside the
parentheses are from a beam search for cycles with at most
one delay injection but unlimited exceptions or negations.

Limiting the beam search to one delay injection generally
reduces false positives while still identifying most failures.
Users can adjust the number of injected faults to balance
between accuracy and completeness.

8.4.1 Effectiveness of Cycle Clustering. We manually
inspect all the self-sustaining cascading failures and the
causally equivalent fault clusters on HDFS 2 and confirm
that the clustering algorithm effectively groups similar cy-
cles together. Examples of the clustered cycles involve faults
from 1) the write pipeline, 2) DataNode command generation
and processing.
However, we do observe false positives in the clustering

results due to 1) non-determinism and 2) insufficient test exe-
cution. For example, a fault cluster in a HDFS run mixed four
correctly-clustered data-race faults with two false positives:
a failed security check whose unique causal consequence
would have been revealed with more test cases, and a log-
ging error clustered due to non-determinism. This could
cause missed self-sustaining cascading failures in detection
if the false positive fault is selected during the 3PA allocation,
though their impact is limited as long as the majority are
clustered correctly.
The higher numbers of cycles and clusters reported in

HDFS 3 are due to the extensive usage of asynchronous
tasks and event queues, where errors in the issuer and the
executor of asynchronous tasks are processed by different
error handlers. Compared to synchronous execution, this
increases the number of error handlers, resulting in a larger
number of cycles and fault clusters.
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8.4.2 False Positive Analysis. The false positive clusters
reported by CSnake are mainly due to the following reasons:

1. In cycle searches with unlimited fault injections, many
false positives (about 70% on HDFS 2) are due to “expected”
contentions, such as between HDFS clients with heavy read
and write operations. These cases require solutions such as
throttling or capacity increases. We do not consider them as
true positives.

2. Increased loop iterations don’t always indicate delays,
especially if throttling mechanisms are already in place.
These mechanisms are often implemented ad-hoc, making
them difficult for static analyzers to identify.

From our experience, the false positives due to the above
reasons can be filtered out manually relatively easily, given
adequate understanding of the system under test.
Theoretically, CSnake could still report a self-sustaining

cascading failure involving fault propagation chains from
tests with contradictory conditions after our local compati-
bility check. However, we do not observe such cases in the
clusters reported by CSnake.

8.5 Performance Overhead

CSnake’s instrumentation and monitoring introduces an
average of 185% runtime overhead in the profile run, rang-
ing from 63% to 376%. This overhead is primarily caused by
branch tracing and call stack recording, and can be further
reduced using hardware-based tracing such as IntelPT [46].
While sampling can be used to reduce the runtime over-
head, we opt not to implement sampling in branch tracing
to maximize the detection accuracy as CSnake is intended
to be deployed in the testing environment instead of the
production environment.

8.6 Effort of Applying CSnake to a New System

CSnake is designed to be system-agonistic and requires as
little input from users as possible. Applying CSnake to a
new system only requires two steps: 1) compiling the target
system, and 2) setting up the test environment with system
dependencies. Two graduate students who have no knowl-
edge of the tool can independently apply CSnake to a new
system within half a day without consulting the authors.

9 Discussion

In this section, we discuss CSnake’s generality, its usage in
real-world scenarios, and lessons learned from the self-sus-
taining cascading failures detected.

9.1 Generality of CSnake

Across distributed system components. CSnake can
identify causal relationships across components of distributed
systems (currently supports JVM-based components). For
example, CSnake can identify causal relationships between

faults in HBase and its underlying HDFS, provided that inte-
gration tests driving multiple system components are avail-
able.
Generality of faults. CSnake’s fine-grained fault injection
(§4.1) is both representative and general. First, we achieve
completeness in exception injection by targeting all throw
statements, which are then conservatively pruned via a rule-
based approach. Second, we also achieve completeness in
contention injection for self-sustaining cascading failures
by simulating their common cause – workload-induced con-
tention [48, 80] – with spinning delay. Third, we make a
practical tradeoff with the system-specific error injection
by using a heuristic (i.e., targeting boolean-returning func-
tions) to maintain generality. While this heuristic may miss
some error detectors implemented as branch conditions, such
cases are often captured by exception injections if they guard
throw statements. Conversely, a fully complete approach
would require input from developers to distinguish normal
branch conditions from the remaining system-specific error
detectors.

9.2 Using CSnake in Real-World Scenarios

We expect CSnake to be applied before releases to catch po-
tential self-sustaining cascading failures due to its exhaustive
testing approach. To adapt CSnake for regular regression
testing, CSnake’s budget allocation algorithm can be refined
to focus on faults in the classes or packages that 1) have been
involved in prior failures or 2) involve heavy code changes
and newly introduced test workloads. However, this remains
a future direction that requires thorough evaluation.

9.3 Lessons Learned

Several ways can be applied to reduce the possibility of en-
countering self-sustaining cascading failures in real-world
distributed systems. First, workload should never be piggy-
backed on critical requests (e.g., heartbeat or failure detec-
tors). A surge in the user traffic can easily drive the system
into a cascading failure. Second, distributed systems should
properly implement throttling mechanisms by proactively
monitoring current system load such as the queue length.
In addition to dropping requests at the server side, clients
should be properly informed to refrain themselves from retry-
ing to avoid a retry storm. Third, asynchronous requests can
be used with priority queues to ensure that critical opera-
tions are handled first in a unusual traffic spike.

10 Related Work

Cascading Failure. CSnake gains insight from the work of
Qian et al. [80] and Huang et al. [48] on self-sustaining cas-
cading failures in distributed systems. Following their work,
diagnosis [45, 64, 82] and mitigation [69, 75] techniques have
been proposed and studied. However, none of them focuses
on exposing self-sustaining cascading failures caused using
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testing or fault injection. Li et al. [66] proposes a technique
to detect performance cascading failures, a subtype of cascad-
ing failures that only involves performance interference by
tracking a variant of happens-before relationship causality.
In comparison, CSnake detects fault propagation involving
both performance interference and functional interference
through counterfactual causality analysis.

Another line ofwork uses queuingmodels [42] andMarkov
chains [49, 50] to analyze the behavior of request-response
server systems and identify potential metastable failures.
Such approaches require developers to provide multiple
layers of specifications, including CTMC (continuous time
Markov chain) models and DES (discrete event simulator)
models. In comparison, CSnake works on the bytecode of
the system directly and is not limited to request-response
server systems.
Automatic Bug Detection and Diagnosis in Distributed

Systems. Recently, there has been a rise in the focus on auto-
matically detecting and diagnosing failures in distributed sys-
tems, including performance cascading bugs [66], exception-
dependent failures [64], upgrade failures [92], timeout bugs
[30], and partial failures [88]. Compared with their work,
CSnake’s causal stitching links multiple faults injected in
to the system. None of the prior work can provide detailed
insight into the root causes as well as the propagation chains
of the self-sustaining cascading failures.
Fault Injection. Traditionally, fault injection techniques
[23, 24, 47, 72, 77] focus on single-node system. Recently, it
has become a popular [9, 19, 20, 29, 31, 36, 40, 58, 59, 65, 70,
72, 73, 76, 85, 91] technique in testing distributed systems.
Compared with CSnake, many of them inject coarse-grained
external faults such as node failures and network partitions
to expose crash recovery bugs. Although more advanced
techniques exist, such as injecting faults during variable
accesses [70], none of them are able to detect and expose
the entire causal chain of self-sustaining cascading failures.
CSnake performs fine-grained injection of delay, exception,
and return value negation into the system. Combined with
the fault causality analysis, CSnake is the only tool that
can detect and diagnose self-sustaining cascading failures in
distributed systems.
Fuzzing. Fuzzing is a software testing technique that feeds
programs with large volumes of random inputs to uncover
bugs with predefined oracles such as crashes. Prior work
mainly applies fuzzing techniques to single-node systems
and programs [2, 21, 22, 26, 33, 35, 37, 53–55, 89], such as
operating systems [39, 52, 84, 87], network protocols [79,
95], and filesystems [54, 61]. Recently, fuzzing has also been
applied to test distributed systems [38, 74, 94] and shows
promising results.
CSnake complements existing black-/grey-box fuzzing

techniques. While fuzzing explores new behaviors by mu-
tating test inputs (e.g., message sequences, code coverage),

CSnake extends fault causality chains, which can be used
as feedback information for existing fuzzers. For instance,
when CSnake stitches 𝑓1 → 𝑓2 in 𝑡1 and 𝑓2 → 𝑓3 in 𝑡2 to
𝑓1 → 𝑓2 → 𝑓3, such a causality chain can guide the fuzzers
to mutate 𝑡1 and 𝑡2 together (e.g., merging workload in both
tests), helping triggering self-sustaining cascading failures.

11 Conclusion

We propose CSnake, a fault-injection-based testing and de-
tection framework for self-sustaining cascading failures in
distributed systems. CSnake leverages the novel idea of
causal stitching to expose the complex fault propagation
chains and detects potential self-sustaining cascading fail-
ures due to incorrect program logic. We evaluate CSnake
on five popular distributed systems and find 15 new self-sus-
taining cascading failures, five of which have been confirmed
with two fixed by developers. CSnake is effective with little
burden on targeted users.

Acknowledgments

The authors thank Jia-Ju Bai, our shepherd, and anonymous
reviewers for their constructive comments. This research is
partially supported by NSF 1901242, 2006688, and 2300562.
Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect the
views of the sponsors.

14



Detecting Self-Sustaining Cascading Failure via Causal Stitching EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

References

[1] Summary of the AWS Service Event in the Northern Virginia (US-
EAST-1) Region. https://aws.amazon.com/message/073024/ [Online;
accessed 2025-05-10].

[2] american fuzzy lop. https://github.com/google/AFL.
[3] Apache Flink. https://flink.apache.org/.
[4] Apache HBase. https://hbase.apache.org/.
[5] Apache OZone. https://ozone.apache.org/.
[6] async-profiler: Sampling CPU and HEAP profiler for Java featuring

AsyncGetCallTrace + perf_events. https://github.com/async-profiler
/async-profiler.

[7] Blockade. https://github.com/worstcase/blockade.
[8] CRIU. https://criu.org/Main_Page.
[9] Distributed Systems Safety Research. https://jepsen.io/.
[10] HDFS architecture guide. https://hadoop.apache.org/docs/r2.10.2/.
[11] HDFS architecture guide. https://hadoop.apache.org/docs/r3.4.1/.
[12] HDFS High Availability. https://hadoop.apache.org/docs/stable/hado

op-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html.
[13] Jepsen Flink. https://github.com/apache/flink/tree/release-1.14.6/fli

nk-jepsen.
[14] JUnit 4. https://junit.org/junit4/.
[15] OZone Blockade Tests. https://github.com/apache/ozone/tree/ozone-

1.4.0/hadoop-ozone/fault-injection-test/network-tests/src/test/blo
ckade.

[16] Parameterized tests. https://github.com/junit-team/junit4/wiki/Par
ameterized-tests.

[17] Simplify Java tracing, monitoring and testing with Byteman. https:
//byteman.jboss.org/.

[18] T.J. Watson Libraries for Analysis. https://github.com/wala/WALA.
[19] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer

Al-Kiswany. 2018. An analysis of Network-Partitioning failures in
cloud systems. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). 51–68.

[20] Peter Alvaro, Joshua Rosen, and Joseph M Hellerstein. 2015. Lineage-
driven fault injection. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. 331–346.

[21] Jia-Ju Bai, Zi-Xuan Fu, Kai-Tao Xie, and Zu-Ming Jiang. 2023. Testing
error handling code with software fault injection and error-coverage-
guided fuzzing. IEEE Transactions on Dependable and Secure Computing
21, 4 (2023), 1724–1739.

[22] Jia-Ju Bai, Hao-Xuan Song, and Shi-Min Hu. 2024. Multi-dimensional
and message-guided fuzzing for robotic programs in robot operating
system. In Proceedings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Volume 2. 763–778.

[23] Jia-Ju Bai, Yu-Ping Wang, Hu-Qiu Liu, and Shi-Min Hu. 2016. Mining
and checking paired functions in device drivers using characteristic
fault injection. Information and Software Technology 73 (2016), 122–
133.

[24] Jia-Ju Bai, Yu-Ping Wang, Jie Yin, and Shi-Min Hu. 2016. Testing error
handling code in device drivers using characteristic fault injection. In
2016 USENIX Annual Technical Conference (USENIX ATC 16). 635–647.

[25] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. 2016.
Paper recommender systems: a literature survey. International Journal
on Digital Libraries 17, 4 (2016), 305–338.

[26] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. 2017. Directed greybox fuzzing. In Proceedings of the
2017 ACM SIGSAC conference on computer and communications security.
2329–2344.

[27] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unas-
sisted and automatic generation of high-coverage tests for complex
systems programs.. In OSDI, Vol. 8. 209–224.

[28] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure
detectors for reliable distributed systems. Journal of the ACM (JACM)

43, 2 (1996), 225–267.
[29] Haicheng Chen,WenshengDou, DongWang, and FengQin. 2020. CoFI:

Consistency-guided fault injection for cloud systems. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 536–547.

[30] Yuanliang Chen, FuchenMa, Yuanhang Zhou, Ming Gu, Qing Liao, and
Yu Jiang. 2024. Chronos: Finding Timeout Bugs in Practical Distributed
Systems by Deep-Priority Fuzzing with Transient Delay. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 1939–1955.

[31] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, and Tianyin Xu.
2023. Push-Button reliability testing for Cloud-Backed applications
with rainmaker. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 1701–1716.

[32] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012.
The S2E platform: Design, implementation, and applications. ACM
Transactions on Computer Systems (TOCS) 30, 1 (2012), 1–49.

[33] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
2020. Retrowrite: Statically instrumenting cots binaries for fuzzing
and sanitization. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 1497–1511.

[34] Anna Fariha, Suman Nath, and Alexandra Meliou. 2020. Causality-
guided adaptive interventional debugging. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 431–
446.

[35] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
2020. AFL++: Combining Incremental Steps of Fuzzing Research. In
14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association.

[36] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2017. Redundancy does not
imply fault tolerance: Analysis of distributed storage reactions to file-
system faults. ACM Transactions on Storage (TOS) 13, 3 (2017), 1–33.

[37] Si-Miao Gao, Pengcheng Wang, Jia-Ju Bai, Jia-Wei Yu, and Haizhou
Wang. 2025. Detecting Lifecycle-Related Concurrency Bugs in ROS
Programs via Coverage-Guided Fuzzing. IEEE Transactions on Infor-
mation Forensics and Security (2025).

[38] Yu Gao, Wensheng Dou, Dong Wang, Wenhan Feng, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Coverage Guided Fault Injection for
Cloud Systems. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). 2211–2223.

[39] Sishuai Gong, Wang Rui, Deniz Altinbüken, Pedro Fonseca, and Petros
Maniatis. 2025. Snowplow: Effective kernel fuzzing with a learned
white-box test mutator. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 1124–1138.

[40] Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M
Hellerstein, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI: A
framework for cloud recovery testing. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11).

[41] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Ying-
wei Luo, Tom Bergan, Madan Musuvathi, Zheng Zhang, and Lidong
Zhou. 2013. Failure recovery: When the cure is worse than the disease.
In 14th Workshop on Hot Topics in Operating Systems (HotOS XIV).

[42] Farzad Habibi, Tania Lorido-Botran, Ahmad Showail, Daniel C Stur-
man, and Faisal Nawab. 2024. MSF-model: Queuing-based analysis
and prediction of metastable failures in replicated storage systems.
In 2024 43rd International Symposium on Reliable Distributed Systems
(SRDS). IEEE, 12–22.

[43] Seungjae Han, Kang G Shin, and Harold A Rosenberg. 1995. Doctor:
An integrated software fault injection environment for distributed
real-time systems. In Proceedings of 1995 IEEE International Computer
Performance and Dependability Symposium. IEEE, 204–213.

15

https://aws.amazon.com/message/073024/
https://github.com/google/AFL
https://flink.apache.org/
https://hbase.apache.org/
https://ozone.apache.org/
https://github.com/async-profiler/async-profiler
https://github.com/async-profiler/async-profiler
https://github.com/worstcase/blockade
https://criu.org/Main_Page
https://jepsen.io/
https://hadoop.apache.org/docs/r2.10.2/
https://hadoop.apache.org/docs/r3.4.1/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://github.com/apache/flink/tree/release-1.14.6/flink-jepsen
https://github.com/apache/flink/tree/release-1.14.6/flink-jepsen
https://junit.org/junit4/
https://github.com/apache/ozone/tree/ozone-1.4.0/hadoop-ozone/fault-injection-test/network-tests/src/test/blockade
https://github.com/apache/ozone/tree/ozone-1.4.0/hadoop-ozone/fault-injection-test/network-tests/src/test/blockade
https://github.com/apache/ozone/tree/ozone-1.4.0/hadoop-ozone/fault-injection-test/network-tests/src/test/blockade
https://github.com/junit-team/junit4/wiki/Parameterized-tests
https://github.com/junit-team/junit4/wiki/Parameterized-tests
https://byteman.jboss.org/
https://byteman.jboss.org/
https://github.com/wala/WALA


EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Shangshu Qian, Lin Tan, and Yongle Zhang

[44] David Harris. AWS Outage Hits Amazon Services, Ring, Whole Foods,
Alexa. https://www.crn.com/news/cloud/2024/aws-outage-hits-
amazon-services-ring-whole-foods-alexa [Online; accessed 2025-05-
10].

[45] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore,
Brighten Godfrey, and Sujata Banerjee. 2023. Murphy: Performance
diagnosis of distributed cloud applications. In Proceedings of the ACM
SIGCOMM 2023 Conference. 438–451.

[46] Jack Henschel. Intel Processor Tracing. https://blog.cubieserver.de/
publications/Henschel_Intel-PT_2017.pdf.

[47] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. 1997. Fault
injection techniques and tools. Computer 30, 4 (1997), 75–82.

[48] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikr-
ishna, Salman Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu,
and Aleksey Charapko. 2022. Metastable failures in the wild. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22). 73–90.

[49] Rebecca Isaacs, Peter Alvaro, Rupak Majumdar, Kiran Kumar, Mu-
niswamy Reddy, Mahmoud Salamati, and Sadegh Soudjani. 2025. Ana-
lyzing metastable failures. In Proceedings of the 2025 Workshop on Hot
Topics in Operating Systems. 172–178.

[50] Rebecca Isaacs, Peter Alvaro, Rupak Majumdar, Kiran-Kumar
Muniswamy-Reddy, Mahmoud Salamati, and Sadegh Soudjani. 2025.
Formal Analysis of Metastable Failures in Software Systems. arXiv
preprint arXiv:2510.03551 (2025).

[51] Minseok Jeon and Hakjoo Oh. 2022. Return of CFA: call-site sensitivity
can be superior to object sensitivity even for object-oriented programs.
Proceedings of the ACM on Programming Languages 6, POPL (2022),
1–29.

[52] Zu-Ming Jiang, Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. 2019. Fuzzing
error handling code in device drivers based on software fault injec-
tion. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 128–138.

[53] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. 2020. Fuzzing
Error Handling Code using Context-Sensitive Software Fault Injection.
In 29th USENIX Security Symposium (USENIX Security 20). 2595–2612.

[54] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. 2022. Context-
sensitive and directional concurrency fuzzing for data-race detection.
In Network and Distributed Systems Security (NDSS) Symposium 2022.

[55] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful
fuzzing for database management systems with complex and valid
SQL query generation. In 32nd USENIX Security Symposium (USENIX
Security 23). 4949–4965.

[56] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
2012. Understanding and detecting real-world performance bugs.
In Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Beijing, China) (PLDI ’12).
Association for Computing Machinery, New York, NY, USA, 77–88.
doi:10.1145/2254064.2254075

[57] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal test-
ing: understanding defects’ root causes. In Proceedings of the ACM/IEEE
42nd international conference on software engineering. 87–99.

[58] Pallavi Joshi, Haryadi S Gunawi, and Koushik Sen. 2011. PREFAIL:
A programmable tool for multiple-failure injection. In Proceedings of
the 2011 ACM international conference on Object oriented programming
systems languages and applications. 171–188.

[59] Xiaoen Ju, Livio Soares, Kang G Shin, Kyung Dong Ryu, and Dilma
Da Silva. 2013. On fault resilience of openstack. In Proceedings of the
4th annual Symposium on Cloud Computing. 1–16.

[60] Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data:
an introduction to cluster analysis. John Wiley & Sons.

[61] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. 2019. Finding semantic bugs in file systems with an

extensible fuzzing framework. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles. 147–161.

[62] Daniel L Kiskis and Kang G Shin. 1996. A synthetic workload for a
distributed real-time system. Real-Time Systems 11, 1 (1996), 5–18.

[63] Antje Krause, Jens Stoye, and Martin Vingron. 2005. Large scale
hierarchical clustering of protein sequences. BMC bioinformatics 6
(2005), 1–12.

[64] Ao Li, Shan Lu, Suman Nath, Rohan Padhye, and Vyas Sekar. 2024.
ExChain: Exception Dependency Analysis for Root Cause Diagnosis.
In 21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24). 2047–2062.

[65] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. 2019. Efficient scalable thread-safety-violation detection: find-
ing thousands of concurrency bugs during testing. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 162–180.

[66] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S
Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. 2018. Pcatch:
Automatically detecting performance cascading bugs in cloud systems.
In Proceedings of the Thirteenth EuroSys Conference. 1–14.

[67] Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang,
Erci Xu, JiWang, andXiangke Liao. 2021. Challenges and opportunities:
an in-depth empirical study on configuration error injection testing.
In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 478–490.

[68] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A
principled approach to selective context sensitivity for pointer analysis.
ACM Transactions on Programming Languages and Systems (TOPLAS)
42, 2 (2020), 1–40.

[69] Yueying Li, Daochen Zha, Tianjun Zhang, G. Edward Suh, Christina
Delimitrou, and Francis Y. Yan. 2023. Mitigating Metastable Failures
in Distributed Systems with Offline Reinforcement Learning. In The
First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali,
Rwanda, May 5, 2023. https://openreview.net/forum?id=zYF6NLJl6LM

[70] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang
You. 2019. Crashtuner: Detecting crash-recovery bugs in cloud systems
via meta-info analysis. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 114–130.

[71] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
2009. Introduction to information retrieval. Cambridge University
Press.

[72] Paul D Marinescu and George Candea. 2009. LFI: A practical and
general library-level fault injector. In 2009 IEEE/IFIP International Con-
ference on Dependable Systems & Networks. IEEE, 379–388.

[73] Christopher SMeiklejohn, Andrea Estrada, Yiwen Song, HeatherMiller,
and Rohan Padhye. 2021. Service-level fault injection testing. In Pro-
ceedings of the ACM Symposium on Cloud Computing. 388–402.

[74] Ruijie Meng, George Pîrlea, Abhik Roychoudhury, and Ilya Sergey.
2023. Greybox fuzzing of distributed systems. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security.
1615–1629.

[75] Justin J Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry
Chernyshev, Yi Yu, Md Nazim Uddin, Rohan Das, Chad Nachiappan,
Sari Tran, et al. 2023. Defcon: Preventing Overload with Graceful
Feature Degradation. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). 607–622.

[76] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 33–50.

[77] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. 2016.
Assessing dependability with software fault injection: A survey. ACM
Computing Surveys (CSUR) 48, 3 (2016), 1–55.

[78] Judea Pearl and Dana Mackenzie. 2018. The book of why: the new
science of cause and effect. Basic books.

16

https://www.crn.com/news/cloud/2024/aws-outage-hits-amazon-services-ring-whole-foods-alexa
https://www.crn.com/news/cloud/2024/aws-outage-hits-amazon-services-ring-whole-foods-alexa
https://blog.cubieserver.de/publications/Henschel_Intel-PT_2017.pdf
https://blog.cubieserver.de/publications/Henschel_Intel-PT_2017.pdf
https://doi.org/10.1145/2254064.2254075
https://openreview.net/forum?id=zYF6NLJl6LM


Detecting Self-Sustaining Cascading Failure via Causal Stitching EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

[79] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020.
AFLnet: A greybox fuzzer for network protocols. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification
(ICST). IEEE, 460–465.

[80] Shangshu Qian, Wen Fan, Lin Tan, and Yongle Zhang. 2023. Vicious
Cycles in Distributed Software Systems. In 2023 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE,
91–103.

[81] Olin Shivers. 1988. Control flow analysis in Scheme. In Proceedings of
the ACM SIGPLAN 1988 conference on Programming Language design
and Implementation. 164–174.

[82] PC Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle
Zhang. 2024. Demystifying the Fight Against Complexity: A Com-
prehensive Study of Live Debugging Activities in Production Cloud
Systems. In Proceedings of the 2024 ACM Symposium on Cloud Com-
puting. 341–360.

[83] Student. 1908. The probable error of a mean. Biometrika (1908), 1–25.
[84] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting

Chen, and Aiguo Cui. 2021. Healer: Relation learning guided ker-
nel fuzzing. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles. 344–358.

[85] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,
Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin
Xu. 2022. Automatic reliability testing for cluster management con-
trollers. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 143–159.

[86] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-
to analysis: modeling the heap by merging equivalent automata. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 278–291.

[87] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsupervised
coverage-guided kernel fuzzer.

[88] Haoze Wu, Jia Pan, and Peng Huang. 2024. Efficient Exposure of
Partial Failure Bugs in Distributed Systems with Inferred Abstract
States. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 1267–1283.

[89] Kai-Tao Xie, Jia-Ju Bai, Yong-Hao Zou, and Yu-PingWang. 2022. ROZZ:
property-based fuzzing for robotic programs in ROS. In 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 6786–6792.

[90] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’12).

[91] Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel Bittman, and
Peter Alvaro. 2021. 3milebeach: A tracer with teeth. In Proceedings of
the ACM Symposium on Cloud Computing. 458–472.

[92] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,
Shan Lu, and Ding Yuan. 2021. Understanding and detecting software
upgrade failures in distributed systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 116–131.

[93] Zhongheng Zhang, Fionn Murtagh, Sven Van Poucke, Su Lin, and
Peng Lan. 2017. Hierarchical cluster analysis in clinical research with
heterogeneous study population: highlighting its visualization with R.
Annals of translational medicine 5, 4 (2017), 75.

[94] Yonghao Zou, Jia-Ju Bai, Zu-Ming Jiang, Ming Zhao, and Diyu
Zhou. 2025. Blackbox Fuzzing of Distributed Systems with Multi-
Dimensional Inputs and Symmetry-Based Feedback Pruning. Network
and Distributed System Security (NDSS) Symposium 2025.

[95] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin,
and Shi-Min Hu. 2021. TCP-Fuzz: Detecting memory and semantic
bugs in TCP stacks with fuzzing. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 489–502.

17



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK Shangshu Qian, Lin Tan, and Yongle Zhang

A Details on 3PA Protocol

Suppose there are 𝑛 possible fault locations in the system,
namely 𝑓1, 𝑓2, ..., 𝑓𝑛 , making up the fault space F. Injecting 𝑓𝑖
into test 𝑡 𝑗 causes a𝑚 additional faults:

𝐼 (𝑓𝑖 , 𝑡 𝑗 ) = [𝑓𝑘1 , 𝑓𝑘2 , ..., 𝑓𝑘𝑚 ] 𝑘𝑥 ∈ [1..𝑛], 𝑥 ∈ [1..𝑚] (1)

A.1 IDF Vectorization

Each 𝐼 (𝑓𝑖 , 𝑡𝑖1 ) is vectorized using the inverse document fre-
quency (IDF) [71], resulting in a real vector of length 𝑛, with
each element ranging from 0 to 1. Vectorization is a common
technique before applying clustering algorithms [71].

𝑉 (𝑓𝑖 , 𝑡 𝑗 ) = IDFv (𝐼 (𝑓𝑖 , 𝑡 𝑗 ), F) ∈ [0, 1]𝑛 (2)
IDF measures how often a fault is triggered in all the fault

injection runs. Formally, it is defined [71] as:

IDF(𝑓 , F) = log
1 + 𝑁
1 + 𝑁𝑓

(3)

𝑁 is the total number of fault injection experiments, and
𝑁𝑓 is the number of experiments that triggers the additional
fault 𝑓 . The plus one smooths the IDF values and prevents
zero divisions.
To vectorize 𝐼 (𝑓𝑖 , 𝑡 𝑗 ) using IDF, each triggered fault is re-

placed with its IDF value, and other elements in 𝑉 (𝑓𝑖 , 𝑡 𝑗 ) are
set to zero. L2 normalization is applied to the final vector.
Formally, the vectorization is defined as:

𝑉 (𝑓𝑖 , 𝑡 𝑗 ) = IDFv (𝐼 (𝑓𝑖 , 𝑡 𝑗 ), F) =
(𝑣1, 𝑣2, ..., 𝑣𝑛)
∥(𝑣1, 𝑣2, ..., 𝑣𝑛)∥

𝑣𝑥 =

{
IDF(𝑓𝑥 , F), if 𝑓𝑥 ∈ 𝐼 (𝑓𝑖 , 𝑡 𝑗 )
0, otherwise

where 𝑥 ∈ [1..𝑛]

(4)

A.2 Phase One

In phase one of the 3PA protocol, CSnake injects each fault
𝑓𝑖 into workload 𝑡𝑖1 that reaches 𝑓𝑖 ’s program location and
has the highest code coverage. We perform a hierarchical
clustering [60] of the faults in F using the cosine distance
Dc between all vectorized interferences𝑉 (𝐹𝑖 ,𝑇𝑖1 ), as defined
below:

Dc (𝑉 (𝑓𝑖 , 𝑡𝑖1 ),𝑉 (𝑓𝑗 ,𝑇 𝑡 𝑗1 )) = 1 −
𝑉 (𝑓𝑖 , 𝑡𝑖1 ) ·𝑉 (𝑓𝑗 , 𝑡 𝑗1 )
∥𝑉 (𝑓𝑖 , 𝑡𝑖1 )∥∥𝑉 (𝑓𝑗 , 𝑡 𝑗1 )∥

where 𝑖, 𝑗 ∈ [1..𝑛], 𝑖 ≠ 𝑗

(5)

By the end of phase one, each fault 𝑓𝑖 is clustered in to a
group 𝐺 𝑗 with other faults having similar interferences on
the system once injected.

A.3 Phase Two

In phase two of the 3PA protocol, an intra-cluster interfer-
ence similarity score is calculated for each cluster 𝐺𝑖 . This
score is the average pairwise cosine distance of all vector-
ized interference results within the cluster. That is, suppose
𝐺𝑖 has 𝑝 faults 𝑓𝑖1 , 𝑓𝑖2 , ..., 𝑓𝑖𝑝 , 𝑓𝑖𝑘 is injected into 𝑞𝑘 different

workloads 𝑡𝑖𝑘1 , 𝑡
𝑖𝑘
2 , ..., 𝑡

𝑖𝑘
𝑞𝑘 , cluster 𝐺𝑖 has Σ

𝑝

𝑘=1𝑞𝑘 vectorized in-
terference results 𝑉 (𝑓𝑖 , 𝑡 𝑗 ), the similarity score is defined
as:

SimScore(𝐺𝑖 ) = 1 − Dc (𝑉 (𝑓𝑎, 𝑡𝑎𝑥 ),𝑉 (𝑓𝑏, 𝑡𝑏𝑦) ∈ [0, 1]
where 𝑎, 𝑏 ∈ [1..𝑝], 𝑥 ∈ [1..𝑞𝑎], 𝑦 ∈ [1..𝑞𝑏], 𝑎 ≠ 𝑏

(6)

SimScore(𝐺𝑖 ) ranges from 0 to 1. A value of 1 indicates
that all faults in cluster𝐺𝑖 triggers the same set of additional
faults among all injection runs.

A.4 Phase Three

In phase three of the 3PA protocol, the budget allocation
weight for cluster 𝐺𝑖 is defined as:

W(𝐺𝑖 ) =max (𝜖, 1 − SimScore(𝐺𝑖 )) ∈ [0, 1] (7)

Each group has a minimum weight 𝜖 of 0.01, ensuring
every cluster receives some budget, even with perfectly
matched intra-group interference results.

B Additional Implementation Details

B.1 Dynamic Call Graph Collection

Loop scalability analysis in CSnake (§4.1) requires a call
graph to identify the functions reachable from each loop.
During development, we find that WALA’s static call graph
struggles with polymorphism. More accurate algorithms
such as 2-CFA [81] do not scale well for large systems, such
as HDFS with over 359,000 lines of code. To address this, we
uses async-profiler [6]’s CPU sampler alongside CSna-
ke’s tracing capabilities to collect runtime stack snapshots,
from which a dynamic call graph is reconstructed.

B.2 Parameterized JUnit Test

A challenge in test execution is the wide use of parameterized
JUnit tests [16], which reuses the test methods with different
input parameters, often generated dynamically. CSnake uses
a modified version of JUnit that skips the test body execution
and focuses solely on parameter generation. A custom test
filter intercepts this process and captures parameters for
testing.

C Artifact Appendix

This artifact contains a minimum working example of the
CSnake.

C.1 Description & Requirements

C.1.1 How to access. The code can be downloaded at
https://doi.org/10.5281/zenodo.17049891.

The Zenodo artifact contains one file, CSnake-AE.tar.zst,
it contains a folder CSnake-AEwith a README.md inside. The
readme file contains all the necessary steps for the artifact
evaluation process.

18

https://doi.org/10.5281/zenodo.17049891


Detecting Self-Sustaining Cascading Failure via Causal Stitching EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland, UK

It is mandatory that the file is downloaded into “/” under
Linux and extracted there. In other words, the code will be
located at /CSnake-AE.

C.1.2 Hardware dependencies. Detailed requirements
are listed inside README.md. We recommend using a machine
with at least 256GB of memory and 50GB of SSD storage
space.

C.1.3 Software dependencies. We list detailed commands
for installing all the software dependencies in README.md.

C.1.4 Benchmarks. None.

C.2 Set-up

See README.md for details.

C.3 Evaluation workflow

README.md contains nine steps of demonstrating the func-
tionality of CSnake.

CSnake’s static analyzer is executed in Step 1. CSnake’s
profile run of integration tests is executed in Step 2–4. Step 5
analyzes the output and prepare CSnake for fault injection
runs. Step 6 and 7 executes the fault injection run.Meanwhile,
our runtime agents for fault injection and monitoring is
exercised. Step 8 performs the fault causality analysis. Step
9 runs the bug detector, performing the local compatibility
check and parallel beam search.
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