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D3: Differential Testing of Distributed Deep
Learning With Model Generation

Jiannan Wang , Hung Viet Pham, Qi Li , Lin Tan , Senior Member, IEEE, Yu Guo,
Adnan Aziz, and Erik Meijer

Abstract—Deep Learning (DL) techniques have been widely
deployed in many application domains. The growth of DL models’
size and complexity demands distributed training of DL models.
Since DL training is complex, software implementing distributed
DL training is error-prone. Thus, it is crucial to test distributed
deep learning software to improve its reliability and quality. To
address this issue, we propose a differential testing technique—D3,
which leverages a distributed equivalence rule that we create to
test distributed deep learning software. The rationale is that the
same model trained with the same model input under different
distributed settings should produce equivalent prediction output
within certain thresholds. The different output indicates potential
bugs in the distributed deep learning software. D3 automatically
generates a diverse set of distributed settings, DL models, and
model input to test distributed deep learning software. Our
evaluation on two of the most popular DL libraries, i.e., PyTorch
and TensorFlow, shows that D3 detects 21 bugs, including 12
previously unknown bugs.

Index Terms—Software testing, distributed deep learning, dif-
ferential testing, model generation.

I. INTRODUCTION

DEEP learning systems are pervasive. They have been
widely deployed in many domains including recommen-

dation systems [1], [2], self-driving cars [3], machine transla-
tion [4], [5], and language representation [6], [7].

Given the complexity and large sizes of DL models [2],
[6], [7], [8], distributed DL training is required for many real-
world DL systems. For example, the Generative Pre-trained
Transformer 3 (GPT-3) model [7], which is an autoregression
DL model that generates human-like text, has 175 billion pa-
rameters and takes up 350GB of space. An implementation
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of a deep learning recommendation model (DLRM) [2] con-
tains about 23 billion parameters, and the size of the model
is 91.1GB. Training such a large DL model is time and space
expensive. First, it typically takes weeks or months to train
such models. For example, the time required to train the GPT-3
model with 175 billion parameters is 34 days on 1,024 GPUs
[8]. In addition, such a model is too large to fit in a single
GPU. As a result, it is mandatory to train such large models
on multiple processors (e.g., GPUs or CPUs). This method is
called distributed training. In distributed training, the training
task is split and sharded among multiple processors, and each
processor only handles part of the workload. By doing so, it not
only makes it possible to train models that are too large to fit
in a single processor but also speeds up the training process.

Correctly and efficiently splitting, sharding, and aggregating
models and data at a large scale is difficult, contributing to the
complexity of distributed DL training and inference [9], [10],
[11]. Thus, software implementing distributed DL training and
inference is error-prone [12], [13], [14], [15], [16], [17], [18],
[19], [20]. In consequence, it is crucial to test distributed DL
software to improve its reliability and quality.

A. Challenges and Our Approach

Our goal is to detect bugs in distributed DL software, i.e.,
detecting implementation bugs in the code that defines, trains,
and evaluates distributed DL models, including the backend
code in the DL libraries. This goal is different from existing
papers [21], [22], [23], [24] that aim to find erroneous behaviors
in the trained models instead of the code that builds and trains
models. Previous papers have shown that DL software bugs lead
to incorrect output and failures despite correct model output
[25], [26].

There are two main challenges in testing distributed DL
software. The first challenge is that it is particularly difficult
to know the expected output of DL programs, due to their
complexity and large sizes [25], [26]. Existing techniques ad-
dress this challenge by cross-checking different libraries or
execution graphs to detect inconsistency bugs [25], [26], [27],
[28], [29], [30]. None of the existing techniques is special-
ized in detecting bugs in distributed DL code. The second
challenge is that exposing bugs in distributed DL libraries re-
quires a large, diverse set of DL models to exercise distributed
DL code.
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Fig. 1. D3 detects a real-world bug, revealed by an inconsistency between
a distributed setting and a non-distributed setting. The buggy code uses sum
instead of average to aggregate gradients. The bar lengths of G0, G1, G2,
GradD , and GradND represent the magnitude of the gradient values. The
bug in the gradient aggregation leads to GradD being twice as large as
GradND , which is fixed by applying the average (“/2” in green) to the
synchronized gradient.

Distributed equivalence rules: To address the first challenge,
we build a differential testing technique—D3, which leverages
a distributed equivalence rule that we create to test distributed
deep learning software. An equivalence rule defines specific
conditions in deep learning libraries where different executions
lead to equivalent output. We define our new distributed equiv-
alence rule as that the distributed training and inference should
produce output that is equivalent to that of the non-distributed
training and inference counterparts. This rule also implies
that the output of distributed training and inference with two
distributed settings should also be equivalent.

Suppose that we start with the same DLRM model structure
and train it with the same training instances. When trained on
two GPUs (referred to as a world size of two), the resulting
DLRM model is M1, and when trained on four GPUs (world
size of four), the resulting DLRM model is M2. Here world
size is the number of processors in the distributed cluster, e.g.,
the number of GPUs when training using GPUs. To make the
large models fit in GPU memories, M1 is stored and trained
on two GPUs, while M2 is stored and trained on four GPUs.
Our distributed equivalence rule states that given the same input
instance, model M1 and model M2 should produce equivalent
output, e.g., two classification vectors with differences within
small thresholds. If there is a bug in the DL training and infer-
ence code, e.g., in the PyTorch [31] or TensorFlow [32] libraries
or the user code setting up these models, the output may be
different, indicating software bugs. Our distributed equivalence
rule enables us to detect such bugs in distributed DL software
without knowing the expected output of a given input instance.

There are more distributed parameters than just the world
size. For example, one can shard a model to multiple GPUs
using different schemes for model parallelism, e.g., column-
wise sharding splits an embedding table by its embedding
dimension, and row-wise sharding splits the embedding table
by its first dimension. Our distributed equivalence rule states
that a model trained with column-wise sharding should produce
output equivalent to a model trained with row-wise sharding.
Distributed parameters: We identify a diverse set of dis-
tributed parameters, i.e., world size, sharding type, device,

weight quantization, activation quantization, and sharder type.
D3 then uses these distributed parameters to generate a full set
of distributed settings, to cross-check the equivalence of model
training and inference to detect bugs in distributed DL soft-
ware. Here a distributed setting consists of one concrete value
for each and all distributed parameters, e.g., {world size: 2,
sharding type: column wise, device: gpu, weight quantization:
int8, activation quantization: float16, sharder type: Embed-
dingBagSharder} is one distributed setting. Section III-C
describes the candidate values for distributed parameters.
Distributed model architectures and model input: To ad-
dress the second challenge, we design and implement a DL
model generation technique that is specialized in producing
distributed DL models and input to these models automatically
for testing distributed DL software. Our approach generates a
diverse set of DLRM models, chain structure models, and cell-
based structure models.

B. A Motivating Example

Our tool D3 detects a severe bug automatically in the produc-
tion DL software using PyTorch that affects a multi-national
company. PyTorch’s large-scale distributed recommendation
system TorchRec [33] uses different gradient aggregation strate-
gies, e.g., the sum or the average, when aggregating gradients
from the processors in a distributed cluster. By default, the
company’s production DL models mistakenly use the sum in-
stead of the average of gradients from the processors in the
distributed training. Given the large sizes of these models, they
are trained on many processors, e.g., 128 GPUs. After being put
into production, each model is trained continuously on a smaller
number of processors, e.g., 64 or 32 GPUs, since the volume of
input data for incremental updating is lower. This leads to in-
consistent gradient values, because the sum of gradients from 64
GPUs is smaller than the sum of gradients from 128 GPUs. This
kind of bug causes regression in model accuracy, i.e., model
accuracy is lower than before, in the training process and leads
to revenue losses. Loading a model from an N node setting to
an M node setting, where M <N , is tricky, and this bug is an
example of that. Section V-B Bug 1 describes this bug in detail.

Fig. 1 shows that D3 detects this bug by generating a model
and its model input and comparing the training on different
numbers of GPUs (we use two GPUs versus one GPU to illus-
trate it without losing generality). Dev 0 and Dev 1 denote the
two GPUs, while Dev 2 denotes the single GPU. The model’s
training input is split into two batches (denoted by B0 and
B1 in Fig. 1) when trained on two GPUs. When the same
model is trained on one GPU, the same training input is now
processed entirely on Dev 2. We use Gi to represent the per-
device gradients on Dev i.

During the non-distributed training, TorchRec computes
gradient G2, which is a form of average metric (detail in
Section V-B Bug 1) of all input instances in B0 and B1. For
the distributed training, TorchRec computes G0, which is a form
of the average metric of input instances in B0, while G1 is for
B1 instances. In the next step, TorchRec should compute the
synchronized gradient GradD by calculating the average of
G0 and G1, which should be equal to G2 (small floating-point
imprecisions allowed). But it computes the sum of G0 and G1
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by mistake, which is twice as large as that from non-distributed
training on a single device (Dev 2) (GradND). In summary,
GradD equals G0 +G1, while GradND is (G0 +G1)/2, al-
though they are expected to be mathematically the same. The
inconsistent gradient values reveal this bug.

D3 automatically generates test scenarios to trigger the bug.
A test scenario is a tuple of (Sk,Mi, Iij), where Sk is a dis-
tributed setting, Mi is a model, and Iij is the jth input instance
to the model Mi. D3 then compares the inference output of the
two resulting models from distributed training under every pair
of distributed settings, given the same input instance. Among
others, D3 detects an output inconsistency when comparing
one distributed setting and one non-distributed setting with two
processors and one processor respectively which leads to the
detection of this bug.

Detecting this bug is hard for several reasons. Firstly, trigger-
ing this bug requires a sharding scheme for model parallelism,
e.g., table-wise or row-wise. This bug does not happen with
the data parallelism sharding scheme, which splits data instead
of the model to multiple processors. This is because the data
parallelism sharding scheme by default uses the average instead
of the sum of the gradients from processors, resulting in consis-
tent gradients. Secondly, triggering this bug also requires that
a model contains certain types of layers such as TorchRec’s
EmbeddingBagCollection, which are lookup tables that
convert a layer’s input to a fixed length of vectors. Finally, the
gradient differences are small and do not cause big accuracy
drops without long-running training. Thus, without comparing
the output of two distributed settings, this bug with severe
consequences remained unnoticed. D3 automatically generates
test scenarios with the specific model and sharding scheme to
trigger this bug and compares the model output of different test
scenarios to detect this bug.

C. Contributions

In this paper, we make the following contributions: 1) We
build the first differential testing technique D3 that is specially
designed for testing distributed DL software. 2) We define a
new distributed equivalence rule to address the oracle challenge
of testing distributed DL software. We identify a diverse set of
distributed parameters and we use and combine them to au-
tomatically generate distributed settings for testing distributed
DL software. 3) We design a model generation method that
generates models specifically for distributed DL software, and
4) Our evaluation of D3 on two widely used distributed DL
systems PyTorch and TensorFlow shows that D3 detects 21
bugs, 12 of which are previously unknown bugs.
Availability: D3 code is available in the GitHub repo (https://
github.com/lt-asset/D3).

II. BACKGROUND

A. Deep Learning Model

A DL model structure is typically represented as a directed
acyclic graph (DAG) [34], which consists of nodes or layers
that are connected to perform a specific task (e.g., regression
or classification). Each layer applies a mathematical function
(e.g., linear, embedding, convolution, etc.) to the input data with

specific weights. Specifically, the same type of layers can be
adapted multiple times in a DL model structure. The operations
performed on those layers are generally different because these
layers have different parameters.

A DL model consists of its model structure and weights. To
obtain the correct weights for each layer in a DL model, the
model needs to be trained on a training dataset [35]. This is
called the training phase. Once the training phase is finished,
the weights (or parameters) of each layer are fixed and do not
change. Then the model can be used in the inference phase.
For evaluation, the trained model needs to be evaluated in the
inference phase on a test dataset [36], [37]. The test dataset
contains data different from the training dataset so that we can
assess the model’s performance and generalization.

DL models usually take tensors [31], [32], which are high-
dimensional data structures, as input. The shape of a tensor is
the length (number of elements) of each of the dimensions of
the tensor.

B. Distributed Training

Increasing data size and model complexity can generally lead
to better model performance. However, the training process is
very computation-intensive and thus time-consuming given the
complexity and large sizes of DL models. Distributed training
[38] is introduced to reduce the training time where the power
of multiple processors is exploited to accelerate the training
process, which is known as parallelism [39], [40].

Specifically, there are two main types of parallelism sche-
mes–Distributed Data Parallelism (DDP) [39] and Distributed
Model Parallelism (DMP) [41], [42]. When utilizing DDP,
the parameters are replicated on each distributed device, and
the dataset is split into N parts, where N is the number of
distributed devices, e.g., GPUs. During training, each device
calculates its gradients using local parameters and data. In the
end, the gradients on each device will be aggregated as the
final gradients.

For DMP, each part of the model is placed on different
devices. The DMP setting is widely used for very large deep-
learning models when the model cannot fit into a single GPU’s
memory. For example, deep learning models in the recom-
mendation system usually have very large embedding layers to
handle the high-dimensional input. Sometimes the model is too
large for a single GPU. With DMP, the huge embedding layers
are split and then distributed to multiple GPU devices, which
makes training and deployment possible.

It is non-trivial to split the model or dataset into parts and
assign each part to different computing processors. Therefore,
it is of vital importance to ensure the correctness of distributed
training and inference of deep learning models.

C. Deep Learning Recommendation Model (DLRM)

To test distributed DL libraries, we focus on a specific type
of model: the Deep Learning Recommendation Model (DLRM)
[2]. DLRM is tailored for recommendation systems and aligns
well with the requirements of distributed training and inference.
In recommendation systems, models must handle categorical
data, such as user demographics (e.g., gender, age group, oc-
cupation), and dense features, such as item prices and user
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Fig. 2. D3 overview.

ratings. Consequently, a DLRM contains multiple embedding
bags that map categorical data to dense representations in an
abstract space and a multilayer perceptron (MLP) that processes
dense features. These features are then combined and further
processed through another MLP to compute event probabili-
ties. Given that recommendation systems rely on vast amounts
of data and require sophisticated models, DLRM, which was
specifically designed for this domain, is an ideal candidate for
distributed training and inference, encompassing both model
parallelism and data parallelism.

D. Differential Testing

Finding bugs, especially non-crash bugs in deep learning
libraries is nontrivial because it is hard to know the expected
output given the increasing complexity of deep learning algo-
rithms. We cannot use the ground truth as the expected output
because the deep learning model is not 100% correct. When the
model makes mistakes on certain input, the expected output of
the model is not the ground truth. In addition, the nondetermin-
ism in the DL computation makes the same model trained on
the same input have different output [43]. For example, when
using multi-process data loading, it is hard to load data in the
same order [44], which makes training with the same model and
input have different prediction results. Such nondeterminism
adds difficulty to differential testing.

Recent studies address this challenge using differential test-
ing [25], [26], [27], [28], [45]. It uses at least two implemen-
tations of the same functionality to produce equivalent output
given the same input. Inconsistencies between output indicate
potential bugs. This method automates testing processes, saving
time and effort.

The key to applying differential testing to test deep learning
libraries is to find the equivalent components expected to
produce the same output given the same input. In this
project, we define an equivalence rule and generate equivalent
distributed settings. When the same model is distributed under
those settings, we expect equivalent output when feeding
the same input to the model. We use the equivalence rule as
the oracle to detect inconsistency bugs in distributed deep
learning libraries.

III. APPROACH

In this section, we describe how D3 detects bugs in distributed
DL libraries using the distributed equivalence rule.

A. Overview of D3

D3 automatically generates test scenarios, i.e., (Sk,Mi, Iij).
Note that we need different model input for different models
because the input layers of different models have different
shapes. D3 then compares the inference output of the two re-
sulting models from distributed training under every pair of
two distributed settings, given the same input instance, to test
distributed deep-learning software.

Fig. 2 presents the overview of D3, which automatically
generates test scenarios for the differential testing of distributed
deep learning software. D3 consists of four steps. First, we
create a new equivalence rule, which states that under certain
distributed settings, the same model trained on the same model
input should be equivalent, i.e., produces equivalent output
when feeding with the same input (©1 ). In the second step (©2 ),
we collect parameters for distributed settings and their candi-
date values. D3 generates distributed settings by selecting one
candidate value for each parameter. Those generated distributed
settings are later used to train models. D3 generates distributed
settings for all possible combinations of the distributed pa-
rameters’ candidate values that we collect. S0 represents the
non-distributed settings (a special case of distributed settings),
while Sk denotes all other distributed settings, where k > 0. For
example, S1 represents the distributed setting that the world
size equals one, the sharding type is table-wise sharding, the
device is on CPU, weight quantization is float32, activation
quantization is set to float32 as well, and the sharder to shard
the model is EmbeddingBagSharder.

In the third step (©3 ), we design and implement a model
generation component so that D3 can automatically generate
models. In this step, D3 also generates model input that are valid
for the corresponding models. Finally (©4 ), D3 executes the
generated models and their input under the distributed settings
to generate model output. Specifically, D3 trains and evaluates a
model Mi on input Iij under a distributed setting Sk, which is
denoted as TE(Sk,Mi, Iij). We use Oijk to denote the final
evaluation output of model Mi trained on input Iij under a
distributed setting Sk, i.e., Oijk = TE(Sk,Mi, Iij).

D3 then compares the model output to detect inconsis-
tency bugs. While our distributed rule enables us to detect
hard-to-find inconsistency bugs, our model generation compo-
nent may still expose crash bugs in DL software. Thus, D3 also
detects crash bugs when the evaluation of test scenarios crashes.

The rest of the approach section describes the equivalence
rule definition (Section III-B), the distributed setting generation
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TABLE I
FUZZING OVERVIEW

Fuzzing Parameter Candidate Value

Distributed
Setting

world size {1, 2, 3, 4, 8}
sharding type* {TW, RW, CW, DP}

device {cpu, gpu}
weight quantization {int8, float32}

activation quantization {int8, float16*, float32}
sharder type* {EBS, EBCS}

Model

EmbeddingBagCollection
# of embedding bags [1, 5]

Embedding Bag
# of embeddings [1, 1000]

embedding dimension {4, 8, 12, ..., 1,000}

Linear
in dimension [1, 1,000]

out dimension [1, 1,000]

∗indicates PyTorch/TorchRec’s specific components and values.
TW= table wise, RW= row wise, CW= column wise,
DP= data parallel. EBS=EmbeddingBagSharder, EBCS
=EmbeddingBagCollectionSharder.

(Section III-C), the model and model input generation
(Section III-D), and the bug detection process (Section III-E).

B. Distributed Equivalence Rule

To test deep to find inconsistency bugs, we create an equiv-
alence rule for distributed deep learning libraries. We use the
same definition of equivalence rules in the previous work [26],
which defines specific conditions in deep learning libraries
where different executions lead to equivalent output. For ex-
ample, one EAGLE equivalence rule states that if a function
has a sparse tensor version and a dense tensor version, the two
versions should produce equivalent results. Otherwise, there are
bugs in the implementations.

In this paper, we create a new distributed equivalence rule:
Distributed Equivalence Rule. For any combination of the
following distributed parameters: 1) World Size; 2) Sharding
Type; 3) Device; 4) Weight Quantization; 5) Activation Quan-
tization; and 6) Sharder Type.

The distributed training and inference should produce out-
put that is equivalent to that of the non-distributed training
and inference counterparts.

This rule implies that the output of distributed training and
inference with two different distributed settings should also be
equivalent.

Thus, a key task of our approach is to generate a large, diverse
set of distributed settings and then compare model training and
inference in these distributed settings. One distributed param-
eter is the world size, i.e., the number of devices or processes
for distributed training. For example, distributed training on two
GPUs versus four GPUs should produce equivalence output.
Another distributed parameter is sharding type, i.e., how a
model is divided into different devices or processes, e.g., row-
wise sharding and column-wise sharding. For example, dis-
tributed training with row-wise sharding on two GPUs should
produce equivalent output to that of distributed training with
column-wise sharding on four GPUs.

C. Generation of Distributed Settings

This section describes the set of distributed parameters
and how we generate distributed settings following these
parameters. Table I (Row ‘Distributed Setting’) presents the five
distributed parameters and their possible values, while
Section III-D “DLRM-like Model Generation” describes Row
‘Model’ regarding model fuzzing.
Distributed Parameter 1: World Size World size is the
number of processes participating in the distribution job. It is
usually equal to the number of devices, such as the number of
GPUs, in the distributed system. Rank is the unique ID given
to a process so that the process can identify itself. For example,
suppose a distributed system consists of four GPUs with each
GPU running one process. Then in that system, the world size
is four, and the ranks for the four processes are in [0, 1, 2, 3].
We compare the output of distributed training with one to eight
world sizes. The World Size Equivalence rule applies to both
DDP and DMP paradigms.
Distributed Parameter 2: Sharding Type Sharding is a con-
cept in database systems that distributes a single database across
multiple smaller databases, which can then be stored on multi-
ple machines. The two common sharding types in database sys-
tems are horizontal sharding (each shard has the same schema
but unique rows) and vertical sharding (each shard has a schema
that is a proper subset of the original table’s schema). In dis-
tributed deep-learning systems, sharding is to split a model into
multiple shards, where each shard is distributed to one proces-
sor. The sharding type defines the principle of splitting a deep
learning model. Suppose we have a TorchRec model consisting
of multiple embedding tables with each table for one feature.
For example, table-wise sharding splits such a model by placing
each table on one processor. While table-wise sharding keeps
a whole embedding table on one processor, column-wise and
row-wise sharding split an embedding table such that one table
is placed on multiple processors. Column-wise sharding splits
an embedding table by its embedding dimension and row-wise
sharding splits the table by its first dimension. Data-parallel
sharding is the same as DDP, which replicates the model on each
processor. Data-parallel shards the dataset instead of the model.
Distributed Parameter 3: Device DL libraries usually provide
support for both CPU and GPU devices. While libraries often
have the same high-level API for users no matter whether
CPUs or GPUs are used, they have different kernel implemen-
tations for the operations on different devices. For example,
in PyTorch, there are operations that communicate between
distributed processes, such as all_gather which gathers
tensors from all the processes in a list and all_reduce
which performs a reduce operations (e.g., reduce sum) to the
tensor data across all machines in a way that all get the final
result. Such operations are supported by the NCCL library when
training or inference on GPUs while by the Gloo library when
on CPUs. Although they have different implementations, we
expect them to produce equivalent results when training or
inferencing the same model using the same model input.
Distributed Parameter 4: Weight Quantization Weight
quantization refers to techniques for performing computations
and storing tensors at lower bitwidths than floating point
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precision. It can reduce the model size in storage as well
as bandwidth requirements for the hardware platform. It can
also speed up the model inference procedure. Although weight
quantization changes the data type of the model’s parameters
to lower precision, which inevitably leads to differences, the
influence of quantization on to model’s prediction results should
be similar between distributed settings and the non-distributed
setting.
Distributed Parameter 5: Activation Quantization Besides
weights, the model’s activations can also be quantized to low-
precision data types to further reduce the memory cost and
speed up communication between devices. Regardless of the ac-
tivation data type used, the performance of the distributed model
should be equivalent to that of the non-distributed version.
Distributed Parameter 6: Sharder Type The sharder
implements partitions for the embedding tables according to the
specified sharding type. Different types of sharders can shard
different layers. For example, EmbeddingBagSharder
shards EmbeddingBag, while EmbeddingBagCollec-
tionSharder shards EmbeddingBagCollection,
which is an optimized implementation of multiple embedding
bags. Those sharders have different implementations, but they
are expected to produce the same output, because the sharded
models combined should be equivalent to the original model.
Generation and Combination of Distributed Settings We
support the combination of different parameters. Distributed
training and inference with a combination of values of five
different distributed parameters should produce equivalent out-
put to the non-distributed training and inference. For example,
distributed training and inference with a mix of different world
sizes and sharding types should produce equivalent output.

We first collect candidate values of the distributed param-
eters, by leveraging our domain knowledge about distributed
DL and consulting the deep-learning libraries’ documentation.
Table I lists all the parameters and their candidate values eval-
uated in this paper. The candidate values for the distributed
parameter world size are {1, 2, 3, 4, 8}. The candidate values
for sharding type are {table wise, row wise, column wise,
data parallel}. The candidate values for the device are {cpu,
gpu}. For weight quantization, the candidate values are int8,
representing quantization is used and the model’s weights are
quantized to int8, and float32, representing quantization is not
used and the model’s weights are in their original data type
float32. As for activation quantization, the candidate values are
{int8, float16, float32}. For the sharder type, the candidate val-
ues are {EmbeddingBagSharder, EmbeddingBagCol-
lectionSharder}, specifying how deep learning libraries
shard models.

Then D3 generates one candidate value for each distributed
parameter in one distributed setting. For example, {world
size: 1, sharding type: column wise, device: gpu, weight quan-
tization: int8, activation quantization: float32, sharder type:
EmbeddingBagSharder} is one distributed setting. D3

generates distributed settings for all the combinations of the
distributed parameters’ candidate values. Then we removed
unsupported distributed settings by checking the DL library
documentation and unit tests written by the developers.

Fig. 3. DLRM-like model template. Green components denote model com-
ponents on which D3 fuzzes.

D. Generation of Models and Model Input

We start from popular, realistic DL structures and mutate
them to generate a diverse set of models. We use (1) a DLRM-
like structure to focus on fuzzing embedding components, and
(2) a classic chain structure template and a cell-based structure
template following previous work [46] to generate model struc-
tures to fuzz on other components.

First, Fig. 3 shows the template that we create for
generating model structures. The template structure is a
DLRM-like structure because our model template consists
of the three components in DLRM: (1) a sparse component
to process the sparse features that represent the categorical
data, such as the rating of a movie, (2) a dense component
to process the dense features, which usually represents the
embedding of users, and (3) an over component that serves as
an interaction among all the features. We choose a DLRM-like
structure because DLRM is a real-world architecture, which
makes it more likely to detect realistic bugs. We fuzz on all
three components to mutate the DLRM-like model structure
to generate a diverse set of models.
DLRM-like Model Structure The sparse component mainly
consists of EmbeddingBag layers, which are used to handle
the categorical features of the input. The EmbeddingBag
layer is a kind of embedding layer. A general embedding layer
is a lookup table that can convert the layer’s input to a fixed
length of vectors. An EmbeddingBag layer is a general em-
bedding layer followed by a sum/mean/max operation, while
the EmbeddingBag is more efficient than using a chain of
those operations because it does not need to initiate the inter-
mediate embedding. An EmbeddingBagCollection layer
collects multiple EmbeddingBag layers together so that the
user only feeds one tensor to the EmbeddingBagCollec-
tion layer for all the embedding bags instead of one tensor
for each embedding bag. We focus on the EmbeddingBag
and EmbeddingBagCollection layers because they sup-
port distributed model parallelism with multiple sharding types,
which is an important distributed setting for distributed deep-
learning systems.

The dense component contains a single linear layer to pro-
cess the dense features in the input. The over component first
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concatenates the results from the dense component and sparse
component, then applies a linear layer followed by mean and
sigmoid functions to produce a score, which indicates how
likely one would click their mouse given the input data.
DLRM-like Model Generation Table I Row ‘Model’ presents
the details for DLRM-like model generation, which fuzzes all
three components of the model structure. The sparse component
consists of multiple embedding bags, with each embedding bag
for one sparse feature of the input. We generate two types of em-
bedding bags, i.e., weighted embedding bags and unweighted
embedding bags. If per-sample weights are passed as argu-
ments to embedding bags, they are called weighted embedding
bags and the output of the embedding bags is scaled before
performing a weighted reduction. Otherwise, for unweighted
embedding bags, the output of the embedding bags will be
directly reduced. In this project, we randomly generate 1–5
embedding bags and 1–5 weighted embedding bags.

For each embedding bag, D3 generates a random integer
between 1 and 1,000 as the size of the dictionary of embeddings,
and a random number that is a multiple of 4 between 1 and
1,000, as the size of embedding vectors. We use a multiple of
4 due to PyTorch’s FBGEMM library’s requirement.

For the dense component consisting of a linear layer, D3

randomly generates the shape of the linear layer. In other
words, it generates the dimension of the linear layer matrix
(in dimension, out dimension). The in dimension and out di-
mension each is an integer in the range of [1, 1,000].

For the over component, which also contains a dense layer,
D3 randomly generates the out dimension between 1 and 1,000
inclusive. The in dimension is derived from the output dimen-
sion for all the input features, including the dense features and
the sparse features from the dense and sparse components.
Other Model Generation Second, we follow the approach
used in Muffin [46] to generate chain structure models and
cell-based structure models. Muffin generates models by first
generating the model structure and then generating each layer.
For model structure generation, Muffin starts by selecting one
template. Muffin implements two model templates. One is the
chain structure with skip connections, which contains a se-
quence of layers with random skip connections. The other is
the cell-based structure, which consists of a sequence of cells.
Each cell is a DAG with one input vertex and one output vertex
and each vertex in the DAG represents a DL layer. Given the
generated structure information, then Muffin refines the layer
information, i.e., determines the specific layer type for each
vertex in the DAG.
Layer Frozen Model Generation Distributed training and
quantization are implemented through conversions in PyTorch
and TensorFlow. For instance, during distributed training in
PyTorch, a single-device model (i.e., torch.nn.Module)
is converted into a multiple-device distributed model (i.e.,
torch.nn.parallel.DistributedDataParallel).
Similarly, in TensorFlow, quantization is achieved by convert-
ing a layer into a QuantizeWrapper layer. Besides adding
new functionalities, such as data parallelism and quantization,
these conversions should maintain the properties of the original
layers, like whether a layer is trainable or not. However, bugs
in the implementation can lead to incorrect conversions.

To verify the correctness of these conversions, we generate
layer-frozen models by randomly freezing a layer in the
model. This is done by setting trainable = False in
TensorFlow and requires_grad = False in PyTorch.
We then test these layer-frozen models using our distributed
equivalence rule to check for any inconsistencies introduced
by incorrect conversions.
Model Input Generation For each generated DL model, D3

generates model input according to the models’ input layers.
Since the model is generated according to the DLRM model

template, the model input consists of three components: sparse
features (i.e., the features for embedding bag layers), dense
features (i.e., the features for fully connected layers), and labels.
When D3 generates input, D3 reads parameters from the model’s
input layers, e.g., the input dimension of the fully connected
layers and the embedding layers. For example, if the model that
D3 generated consists of one fully connected layer in its dense
part and one embedding bag in its sparse part, the randomly
generated input to this model consists of two tensors, one tensor
with the shape of (n, i), where n is the batch size and i is the
input dimension of the fully connected layer, and one tensor
with the shape of (n, r), where r is a random number with value
within the range [0, e), where e is the vocabulary size of the
embedding layer.

For the sparse features, D3 obtains the vocabulary size
of each feature by reading certain parameters from each
embedding bag, e.g. parameter num_embeddings of Py-
Torch’s layer API torch.nn.EmbeddingBag. The vocab-
ulary sizes specify the range of input values for each feature.
For example, if the num_embeddings is 100 for embedding
bag eb1, then the value of relative sparse feature f1 in the model
input should be within the range of [0, 100).

For dense features, D3 generates a tensor with the shape
of [batch_size, in dimension] and values between [0.0, 1.0],
where batch_size is set to 2,400 in our experiment and
in dimension is the input dimension of the Linear layer.

For the labels, D3 generates a random vector with the shape
of [batch_size] and values between [0.0, 1.0].

E. Bug Detection

In this final step, D3 evaluates the generated test sce-
narios, i.e., the distributed settings generated in step two
(Section III-C) and the models and model input generated in
step three (Section III-D). D3 loads one pair of model Mi and
model input Iij , then trains Mi for a preset number of iterations
under the generated distributed setting Sk. Then D3 uses the
model for inference on Iij to produce output Oijk. That is,
given a triple (Sk, Mi, Iij), D3 produces output Oijk. After D3

evaluates all models and model input under different settings, it
compares all Oijk for the same i and j with different k values
to detect inconsistencies. That is, comparing output values from
the same model and model input trained and evaluated under
all distributed and non-distributed settings.

To speed up the process, we focus on comparing distributed
settings with non-distributed settings. For instance, with model
M1 and input I11, we compare O111, O112, ..., with O110,
respectively, where S0 represents the non-distributed setting
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and S1, S2, ..., denote the distributed settings. Throughout the
debugging process, we will further make comparisons between
distributed settings to help debug and identify additional incon-
sistent setting pairs, which help developers fix bugs. D3 reports
inconsistent output, i.e., the element-wise difference of output
vectors, that is bigger than the sum of two thresholds, one for
absolute difference and one for relative difference, as potential
inconsistency bugs (Section IV).
Iteratively Mapping Inconsistencies to Bugs Given the large
number of inconsistencies, we design an iterative debugging
approach to systematically map inconsistencies to bugs to help
developers fix bugs. First, we cluster inconsistencies by the
inconsistency-introducing APIs. Specifically, we employ the
rate of change metric from CRADLE [25]. For each pair of
distributed settings that produces an inconsistency above our
thresholds, we calculate the Mean Absolute Distance (MAD)
between each pair of corresponding hidden states from two
executions of the same layer on two different test scenarios,
i.e., Oijk1

and Oijk2
. Then we calculate the rate of change for

each layer, and finally cluster inconsistencies based on the layer
API which produces the largest rate of change.

Second, we randomly sample test scenarios from each cluster
for investigation. Upon identifying a bug, we seek a suitable fix.
We check existing bug reports to find fixes for known bugs, such
as converting standard batch normalization layers to synchro-
nized batch normalization layers. For new bugs, we report the
bugs to the developers to obtain a possible fix. If a viable fix is
found, we apply it and subsequently re-execute the experiments
that cause inconsistencies. After the re-execution, we count the
number of inconsistencies again. The reduction in the number
of inconsistencies is the number of inconsistencies resolved
by the fix, which is counted as the number of inconsistencies
caused by the bug. For the bugs that the developers have not
fixed yet, i.e., the confirmed bugs and the reported bugs, we
regard the inconsistencies in one cluster as one bug and wait
for the developers’ fixes. Once the developers fix the bug we
reported, we apply the fix and resume the iterative debugging
process. Ultimately, we obtain a list of bugs identified through
this systematic debugging approach.

IV. EXPERIMENT SETUP

We tested PyTorch 1.12.0 (TorchRec 0.2.0) and Tensor-
Flow 2.11.0. They were the latest versions of PyTorch and
TensorFlow when we started building the tool (October 2022
for PyTorch and November 2022 for TensorFlow). The initial
experiment was executed in February 2023 and an additional
experiment was executed in June 2024 to obtain final results.
We use docker to build environments.

We exclude a few distributed settings for PyTorch as they
have not been supported by the library yet according to its
documentation, e.g., the row-wise sharding on CPU is not
supported by PyTorch.

Following previous work [26], we use the same inconsistency
threshold formula that TensorFlow and PyTorch use in their test
suite to determine whether the two output from the two models
are equivalent. For example, model M1 and model input I11
are trained under distributed settings S1 and S2, with respective
output vectors O111 and O112. Their output are equivalent if

TABLE II
NUMBER OF INCONSISTENCIES FOUND BY D3 AND DISTRIBUTED

SETTINGS OF D3

DL Library PyTorch TensorFlow Total

# of inconsistencies 10,478 5,595 16,073
# of distributed settings 77 24 101

the equation abs(O111 −O112)<= atol + rtol ∗ abs(O112) is
element-wise true, with atol = 5 ∗ 10−4 and rtol = 1 ∗ 10−4.
In the formula, atol is the threshold for absolute difference and
rtol is for relative difference. We use both thresholds together
to measure inconsistencies.

We use an Intel(R) Xeon(R) Gold 5220R server with 504GB
memory, four NVIDIA RTX A5000 GPUs and four NVIDIA
GeForce RTX 2080 Ti GPUs.

V. RESULTS

This section presents the results of our four Research Ques-
tions (RQs). RQ1 (Section V-A) presents the number of bugs
D3 detects. RQ2 (Section V-B) describes the bugs D3 detected
using those equivalence rules. RQ3 (Section V-C) compares
D3 to other DL-library testing techniques. RQ4 (Section V-D)
studies D3’s execution time.

A. RQ1: How Many Bugs Does D3 Detect?

We evaluate D3 on two of the most popular distributed deep
learning libraries, PyTorch and TensorFlow. For each library,
D3 generates 400 models and for each model, D3 generates 10
model input, resulting in a total of 4,000 input generated. The
same 4,000 input and 400 models are used in all 77 distributed
settings for PyTorch, and another set of 4,000 input and 400
models generated for TensorFlow are used in all 24 distributed
settings for TensorFlow. D3 generates fewer distributed settings
for TensorFlow because two distributed parameters are not
supported in TensorFlow, i.e., sharding type and sharder type.
Table II shows the total number of inconsistencies D3 detects,
and Table III describes the bugs D3 detects.

Overall, D3 detects 21 bugs, including 14 inconsistency bugs
and seven crash bugs. Out of the 21 bugs, 12 are previously un-
known bugs. 14 of the 21 bugs have been confirmed or fixed by
developers. In Table III, we list root causes, affected distributed
parameters, affected libraries, and the number of inconsisten-
cies caused by each bug. The Status column shows whether the
bugs are fixed, confirmed, or reported (waiting for replies from
the developers). The New columns represent whether the bug is
a new bug or a duplicate of a known bug. While D3 detects crash
bugs, of the 21 bugs detected by D3, 14 are inconsistency bugs,
with eight being newly discovered, underscoring the significant
contribution of the distributed equivalence rule.

Out of the 21 bugs, 11 are only detected by fuzzing the em-
bedding components, demonstrating the usefulness of fuzzing
embedding components in addition to other model structures.
The remaining ten bugs are not specific to the embedding com-
ponents and are detected by D3 -generated models with chain
and cell-base structures.

Although the distributed equivalence rule in D3 is designed
to detect inconsistency bugs by comparing the results from the
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same models trained on the same model input under different
distributed settings, D3 also effectively detects crash bugs due
to the different distributed settings and the different model and
model inputs D3 generates. For example, D3 detects a crash
bug (Bug 15) when generating a distributed setting with the
EmbeddingBagSharder sharder. This specific distributed
setting, combined with a randomly generated model and
inputs, led to a mismatch of length between the input and the
model’s embedding layer. This demonstrates D3’s ability to
detect crash bugs by generating varied distributed settings,
models, and model input.

A single bug often causes many inconsistencies. Specifically,
the 21 bugs that D3 detects map to 16,073 inconsistencies
in TensorFlow and PyTorch. Table II shows the number of
inconsistencies detected by D3. Among the total 16,073 in-
consistencies D3 detects, all inconsistencies indicate true bugs,
with 366 inconsistencies mapped to Bug 1, 125 inconsistencies
mapped to Bug 2, 1,323 inconsistencies mapped to Bug 3, 1,132
inconsistencies mapped to Bug 4, 944 inconsistencies mapped
to Bug 5, 973 inconsistencies mapped to Bug 6, 230 inconsis-
tencies mapped to Bug 7, 30 inconsistencies mapped to Bug
8, 3,947 inconsistencies mapped to Bug 9, 28 inconsistencies
mapped to Bug 10, 408 inconsistencies mapped to Bug 11,
5,304 inconsistencies mapped to Bug 12, 1,147 inconsistencies
mapped to Bug 13, and 116 inconsistencies mapped to Bug 14
For example, the 230 inconsistencies that map to Bug 7 result
from 13 models that contain BatchNormalization layers.
After we apply the fix, i.e., replacing BatchNormaliza-
tion with SyncBatchNormalization, the number of
inconsistencies decreases, indicating those reduced inconsisten-
cies are caused by Bug 7.

To illustrate the effectiveness of the six distributed parame-
ters, we investigate the inconsistency-triggering parameters for
each bug. Inconsistency-triggering parameters are the param-
eters that when changed alone can cause inconsistencies or
crashes. For example, denote the bug explained in Fig. 1 as
bug 1. D3 detects inconsistencies caused by bug 1 between two
settings, S1 and S2, with S1 being {world size: 2, sharding
type: column wise, device: gpu, weight quantization: float32,
activation quantization: float32, sharder type: Embedding-
BagCollectionSharder} and S2 being {world size: 4,
sharding type: column wise, device: gpu, weight quantization:
float32, activation quantization: float32, sharder type: Embed-
dingBagCollectionSharder}. The only difference be-
tween S1 and S2 is world size. If we detect inconsistencies
between two distributed settings that have only one different
parameter, that parameter is called an inconsistency-triggering
parameter. In the above example, world size is an inconsistency-
triggering parameter to bug 1.

Note that for bug 1, the sharding type is also an inconsistency-
triggering parameter. Further investigation finds that the gra-
dient aggregation setting only affects model parallelism (i.e.,
table wise, row wise, and column wise sharding). When the
sharding type is set to data parallel, the distributed training
will obtain correct results, i.e., using the average to aggregate
per device gradients, which is inconsistent with other sharding
types, e.g., row wise sharding. Therefore, sharding type is also
an inconsistency-triggering parameter to bug 1.

Table III demonstrates that each of the six distributed parame-
ters is an inconsistency-triggering parameter to at least one bug,
indicating their effectiveness in distributed testing.

B. RQ2: What Bugs Are Detected by D3?

In this section, we describe the details of the bugs that D3

detects in addition to the bug in Fig. 1.
a) Bug 1: (PyTorch gradient aggregation bug) This is the

bug that Section I-B and Fig. 1 describe.
In principle, gradient aggregation in distributed training

should be consistent with the loss function. For example, when
using mean squared error (MSE) as the loss function in the train-
ing process, the gradient computed is the per-sample average
gradient. When switching to DDP in this case, in order to obtain
the same training result as in the non-distributed setting, users
need to use the average to aggregate per-device gradients to get
the same gradients as those in the non-distributed setting.

Making sure the gradient calculation is the same is important,
especially in the product development process. This is because
training hyperparameters should correspond to gradients. For
example, in Fig. 1, the gradient becomes smaller when changing
from the distributed setting to the non-distributed setting. If
the same learning rate is used, the step size in each iteration’s
optimization is smaller, finally leading to accuracy differences.
Hyperparameters are usually fine-tuned for the best training
performance. The fine-tuning process is expensive and highly
relies on human expertise. In order to avoid repeating hyperpa-
rameters fine-tuning, it is essential to make gradient calculation
the same as the non-distributed process, so that the same hyper-
parameters can be used for training with any world size.

b) Bug 2: (TensorFlow Keras distributed layer bug) D3

detects inconsistencies when training a TensorFlow model con-
sisting of Keras layers with different world sizes. The Tensor-
Flow developers confirmed this is an issue with the Keras layers.
This bug has been fixed in the latest Keras nightly version after
we reported it.

c) Bug 3: (PyTorch quantized weighted Embed-
dingBagCollection bug): D3 detects inconsistencies
when training DLRM-like models with weight quantization
and NCCL backend under different world sizes. Further
investigation shows the model’s weighted EmbeddingBag-
Collection layer’s output have huge differences under the
two distributed settings (e.g., between training on one GPU
and training on eight GPUs), which could be the cause for this
inconsistency. These inconsistencies have been fixed in the
recent nightly versions.

d) Bug 4: (PyTorch BatchNorm2d bug): D3 detects
inconsistencies when training a model containing torch.
nn.BatchNorm2d layers using different world sizes, e.g.,
training on one GPU versus training on eight GPUs. The bug
is caused by the lack of synchronization across devices with
regard to BatchNorm2d layers. Specifically, the replicated
BatchNorm2d layers on each device are trained using their
local batches which are different across devices. This leads to
different weights in different devices. This bug severely affects
model accuracy, leading to a drop in model accuracy when train-
ing on multiple GPUs. We confirmed that this bug is a known
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TABLE III
BUGS FOUND BY D3. BUG 1 IS THE BUG IN FIG. 1. “# INCONSISTENCIES” REPRESENTS THE NUMBER OF INCONSISTENCIES DETECTED FOR EACH BUG.

‘‘-’’ INDICATES A CRASH BUG. D3 DETECTS 21 BUGS, 14 OF WHICH ARE INCONSISTENCY BUGS. MAJORITY (14) OF THE 21 BUGS ARE CONFIRMED OR

FIXED BY THE DEVELOPERS. MOST (12) OF THE 21 BUGS ARE PREVIOUSLY UNKNOWN BUGS

Bug ID Root Cause Inconsistency-Triggering Parameters Software # Inconsistencies Status New

1 Gradient aggregation world size & sharding type PyTorch 366 fixed yes
2 Keras distributed layer world size TensorFlow 125 fixed yes
3 Quantized weighted EBC world size & weight quant PyTorch 1,323 fixed no
4 Batch normalization world size PyTorch 1,132 fixed no
5 Integer activation quantization world size & weight quant & activation quant PyTorch 944 fixed no
6 Float activation quantization world size & weight quant & activation quant PyTorch 973 fixed no
7 Batch normalization world size TensorFlow 230 fixed no
8 XLA precision error world size & device TensorFlow 30 fixed no
9 Quantize apply world size & weight quant TensorFlow 3,947 confirmed yes
10 Synchronized batch normalization world size & device PyTorch 28 reported yes
11 NaN results world size & weight quant PyTorch 408 reported yes
12 NaN results world size & weight quant & activation quant PyTorch 5,304 reported yes
13 Synchronized batch normalization world size & device TensorFlow 1,147 reported yes
14 Quantization trainable=False world size & weight quant TensorFlow 116 reported yes
15 Dummy feature name sharder type PyTorch - fixed no
16 Key mismatch error weight quant PyTorch - fixed no
17 CUDA error device PyTorch - fixed no
18 Missing configuration sharder type PyTorch - confirmed yes
19 MirroredStrategy overhead world size & device TensorFlow - confirmed yes
20 CUDA internal assert failed device & weight quant PyTorch - reported yes
21 to_dict() error weight quant & activation quant PyTorch - reported yes

bug (https://github.com/pytorch/pytorch/issues/2584) raised by
previous users, and the developers added a synchronized ver-
sion API torch.nn.SyncBatchNorm to fix this bug.

e) Bug 5&6: (PyTorch activation quantization bug): D3

detects two inconsistency bugs during model inferencing when
quantizing the activation to integer (e.g., torch.qint8) and
float (e.g., torch.float16), respectively. Both bugs cause the
weighted sparse layer to produce large inconsistencies during
inferencing, which then propagate to the model’s final output.
However, with activation quantized to torch.float16, there
are large inconsistencies in the sparse layer’s output as well,
while the sparse layer’s output is identical when the activation
is quantized to torch.qint8. Both bugs have been fixed in
the latest version of TorchRec.

f) Bug 7: (TensorFlow BatchNormalization
bug): D3 detects inconsistencies when training a model
containing tf.keras.layers.BatchNormalization
layer under different world sizes, e.g., training on 1 GPU
versus training on 8 GPUs. This bug has the same cause
as bug 2. After the previous users submitted a report about
this bug (https://github.com/pytorch/pytorch/issues/2584),
the developers fixed it by providing a synchronized version
API tf.keras.layers.experimental.SyncBatch
Normalization which applies batch normalization to the
global batches.

g) Bug 8: (TensorFlow XLA precision bug): D3 detects
inconsistencies when training a TensorFlow model with CPU
backends and GPU backends. The developer confirmed the
inconsistencies are precision-related because of XLA fusion.
This bug has been fixed in the latest version of TensorFlow.

h) Bug 9: (TensorFlow quantize_apply bug):
D3 detects inconsistencies when training a quantize-aware
model converted using tfmot.quantization.keras.-
quantize_apply under different world sizes, e.g., training

on one GPU versus on two GPUs. There are no inconsistencies
when the model is trained under the same world sizes, e.g.,
training on two CPUs versus on two GPUs. After we report
the bug, the developers confirm the root cause is that during
quantization, the min and max value of each activation is
not synchronized over distributed units. Many inconsistencies
are related to this bug because it affects all quantization
experiments.

i) Bug 10: (PyTorch SyncBatchNorm bug) D3 detects
inconsistencies with specific models and input even after con-
verting the BatchNorm2d layers to SyncBatchNorm. This
bug happens when training the model with multiple GPUs. We
have reported the bug to the developers.

j) Bug 11: (PyTorch training NaN results bug): D3 detects
NaN when training a quantized model with NCCL backend
and world size setting to 4. The model’s weighted Embed-
dingBagCollection layer produces some NaN values in
its output, which in turn causes the subsequent layer to produce
all NaN output.

k) Bug 12: (PyTorch inferencing NaN bug): D3 detects
another NaN bug when inferencing a model with activation
quantized to torch.qint8. Further investigation reveals that
the sparse layer and the weighted sparse layer produce NaN
output, which then propagates to the model’s output. This bug
is different from Bug 11 because reproducing this bug requires
only inferencing, while Bug 11 is caused by training. We repro-
duced the bug with the latest TorchRec and reported it to the
developers.

l) Bug 13: (TensorFlow SyncBatchNormalization
bug): D3 detects inconsistencies when training a model con-
taining SyncBatchNormalization under different world
sizes on CPU devices. However, there are no inconsistencies
when the same model is trained on the same input on different
numbers of GPUs. Thus, D3 successfully detects this bug in
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the SyncBatchNormalization layer in a recent version
of TensorFlow 2.11.0. However, this layer API is already dep-
recated in the latest version of TensorFlow 2.12.0 which is only
a few months more recent. But we found that the same bug
exists in its replacement BatchNormalization layer when
synchronized is set to true.

m) Bug 14: (TensorFlow trainable=False bug):
D3 detects inconsistencies when training a TensorFlow model
containing a quantized dense layer with trainable set
to False. Further investigation reveals that when setting
trainable=False, the kernel of the quantized dense layer
is still trainable, There is a bug in the quantization conversion
function that does not correctly set the trainable property
from the original dense layer thus leading to inconsistent results
after training.

n) Bug 15: (PyTorch EmbeddingBagSharder
dummy feature name bug): When EmbeddingBagSharder
shards the embedding bags, it generates a dummy feature
name and assigns it to all sharded embedding bags, causing the
sharded embedding bags to have the same feature name. We find
that when testing with some specific model that D3 generates,
the sharded embedding bags that have the same feature name
are regarded as one embedding bag, which causes a mismatch
of length between the input and the model’s embedding layer.
This triggers an assertion in TorchRec’s source code.

o) Bug 16: (PyTorch quantize_embeddings bug):
TorchRec raises a key mismatch error when saving and load-
ing the state_dict of a model quantized using quan-
tize_embeddings. The model’s state_dict, which is
a dictionary that maps model parameters’ names with their val-
ues, alters after quantization. This is caused by inconsistencies
between parameter names in FBGEMM backend kernels and
the canonical EmbeddingBag representation. The developers
fix this bug by adding a mapping to transfer parameter names
in backend kernels to the canonical representation.

p) Bug 17: (PyTorch DataLoader bug): A CUDA error
occurs when training a TorchRec model using DataLoader
with multiple workers on GPU. DataLoader is a class pro-
vided by PyTorch that has many options for data loading.
num_workers is an option to enable multiprocess for Dat-
aLoader. By default, num_workers is set to 0, which repre-
sents single process data loading. When num_workers is set
to a positive number, DataLoader creates num_workers
subprocesses to speed up data loading. However, a bug occurred
when using DataLoader with num_workers equals two to
generate CUDA tensors to train a DLRM model. The developers
fixed it by disabling multiprocessing for DataLoader.

q) Bug 18: (PyTorch EmbeddingBagSharder
missing configuration bug): This bug happens in TorchRec
when specifying EmbeddingBagSharder to shard a
model containing EmbeddingBagCollection. The
sharder tries to shard the model table-wise, but the table-wise
sharding is not implemented, so it raises an error. In TorchRec,
a planner is called to generate an optimized sharding plan for
a given module with its shardable parameters according to
the provided sharders, the topology of the devices, and any
customized constraints specified by users. The planner first

generates all possible sharding plans by enumerating all
combinations of available sharding types and computing
kernels and then searches for an optimized sharding plan.
The available sharding types and compute kernels are defined
in the shader’s class. However, EmbeddingBagSharder
doesn’t support table-wise sharding while it still includes the
table-wise option in its available sharding types, which leads
to this error.

r) Bug 19: (TensorFlow MirroredStrategy over-
head bug): D3 detects a hang that occurs when using
MirroredStrategy with eager mode on more than one
GPU which does not happen with graph mode or on CPUs. It is
due to significant overhead when using MirroredStrategy
in eager mode with multiple GPUs. This bug prevents the users
from utilizing the benefit of eager mode to debug efficiently.

s) Bug 20: (PyTorch quantization Gloo backend bug):
The Gloo and NCCL backends are the two collective commu-
nications libraries for distributed training of DL models mostly
on CPUs and GPUs, respectively. D3 detects crashes when
training quantized models with this Gloo backend. This bug
occurs exclusively when training quantized models with the
Gloo backend and not with the NCCL backend.

t) Bug 21: (PyTorch to_dict() crash bug): A crash
bug occurs when transferring the embedding bag collection
layer output to a dictionary in a DLRM model with activation
quantized to torch.qint8. The output of the embedding
bag collection layer, a concatenated tensor of each embed-
ding bag’s output, should be converted into a dictionary using
length_per_key to determine each embedding bag output’s
length pre-concatenation. However, TorchRec raises an error,
claiming the sum of length_per_key does not match the
concatenated tensor length. This discrepancy makes the tensor
invalid, preventing access to individual embedding bag output.
Case study In this section, we use Bug 5 as an example to
illustrate how D3 identifies a bug. After D3 completes the ex-
periment, we compare the final evaluation output between dis-
tributed and non-distributed settings to detect inconsistencies.
We then run a clustering algorithm to group inconsistencies
based on the rate of change metric. As a result, 944 inconsisten-
cies are clustered within the weighted EmbeddingBagCol-
lection layers.

Next, we randomly sampled five inconsistencies and dis-
covered that all exhibited significant inconsistencies in the
weighted EmbeddingBagCollection layers during a single for-
ward pass without training. We created a minimal reproduction
program based on the detected bug pattern. Before submitting a
bug report to the developers, we ran the reproduction program
on the latest versions of PyTorch and TorchRec (torch 2.3.0,
torchrec 0.7.0) and found that the reproduction program did not
produce inconsistencies, indicating that the bugs had been fixed
by the developers.

Since this bug was fixed silently and we could not identify the
exact commit that resolved the issue, we considered updating
to the latest version as the fix for this bug. Finally, we applied
the fix to all inconsistencies in the cluster by rerunning all test
scenarios with the latest versions to confirm that all inconsis-
tencies were resolved.
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TABLE IV
ANALYSIS QUESTION RESULTS FOR THE BUGS FOUND BY D3. � REPRESENTS DETECTING THIS BUG REQUIRES THE SPECIFIC FEATURE IN THE ANALYSIS

QUESTION, WHICH INDICATES EXISTING METHODS WOULD FAIL TO DETECT THIS BUG

Analysis Questions Bug ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

QI) Distributed setting or rule � � � � � � � � � � � � � � � � � � � �
QII) Multi-layer model � � � � � � � � � � � � � � � � �
QIII) Embedding bag layer � � � � � � � � � � �
QIV) Training � � � � � � � � � � �

C. RQ3: Does D3 Detect Bugs That Existing
DL-Library Testing Techniques Cannot Find?

In this section, we compare D3 with existing techniques that
differential test DL libraries to study the contributions of each
component of D3. The main contributions of D3 include 1)
the distributed settings generation and the distributed equiv-
alence rule, 2) the generation of multi-layer DL models 3)
the generation of DL models with embedding bag layers, and
4) testing the training phase as opposed to testing the inference
phase only like CRADLE [25], Audee [27], and LEMON [28].
We qualitatively analyze each bug found by D3 and answer
the questions below: QI) Does detecting this bug require a
distributed setting or a distributed equivalence rule? QII) Does
detecting this bug require a multi-layer DL model? QIII) Does
detecting this bug require a DL model with embedding bag
layers? QIV) Does detecting this bug require at least one step
of training?

We first study the four analysis questions QI to QIV, and
then use those answers to quantify, how many bugs existing
DL-library testing techniques cannot detect out of the 21 bugs
that D3 detects. Regarding QI, out of the total of 21 bugs
detected by D3, 20 bugs require setting up distributed settings
or a distributed equivalence rule as the oracle to detect. For
example, to detect Bug 5, it requires a distributed setting with
world size greater than one, and both weight and activation
quantization set to int8. It also requires comparing the results
from the distributed setting and the non-distributed setting to
detect inconsistencies. D3 is the first approach that defines a
distributed equivalence rule and generates distributed settings
to test distributed DL software. Since none of the prior DL-
library testing techniques generates distributed settings, they
fail to detect those bugs.

To illustrate D3’s contributions in DL model generation (QII
& QIII) and the testing of model training (QIV), we compare
D3 with previous approaches with distributed settings added. In
other words, we study if we add D3’s distributed setting gen-
eration and equivalence rules to existing approaches, whether
the enhanced existing approaches can detect the bugs that D3

detects. Regarding QII, out of the total 21 bugs, detecting 17
bugs requires multi-layer DL models that D3 generates.As for
QIII, 11 out of the total 21 bugs need models with embedding
bag layers to detect.For QIV, 11 out of the 21 require at least
one step of training to trigger.

Table IV summarizes the bugs that existing DL-library test-
ing tools cannot detect. We compare D3 with fifteen existing
tools EAGLE [26], DocTor [47], FreeFuzz [29], ∇Fuzz [48],

TABLE V
EXECUTION TIME OF D3

PyTorch TensorFlow

# (model, model input) generated 4,000 4,000
Time per pair (seconds) 373 119

FuzzGPT [49], TitanFuzz [50], DeepREL [30], CRADLE [25],
Audee [27], LEMON [28], NeuRI [51], Muffin [46], Ramos
[52], GenCoG [53], and HirGen [54]. API-based DL-library
testing approaches, i.e., EAGLE, DocTor, FreeFuzz, ∇Fuzz,
FuzzGPT, TitanFuzz, and DeepREL, cannot find 17 of the bugs
detected by D3 because they cannot generate multi-layer models
(QII). Muffin hardcoded the supported layer for generation
which does not contain the embedding bag layer. Therefore,
it cannot detect 11 bugs that require models with embedding
bag layers as test inputs (QIII). NeuRI automatically collects
layers from developer test cases, however, it focuses on test-
ing the inference stage of DL models so it cannot detect the
11 bugs that require DL training (QIV). The remaining ap-
proaches, i.e., CRADLE, Audee, LEMON, Ramos, GenCoG,
and HirGen, do not generate embedding bag layers (QIII) and
only test the inference stage (QIV). They cannot detect 19 of
the bugs.
D. RQ4: What Is the Run Time of D3?

Table V shows D3’s execution time. On average, it takes
373 seconds to evaluate a pair of (model, model input) on our
equivalence rules in PyTorch and 119 seconds in TensorFlow.

VI. THREATS TO VALIDITY

D3 does not find all bugs Since we use a threshold to de-
fine inconsistencies, we might miss bugs that cause very small
differences in the prediction results. To mitigate this threat, we
use a threshold used by popular DL libraries to measure the
inconsistencies. As a result, D3 is effective in detecting 21 bugs
in PyTorch/TorchRec and TensorFlow automatically.
Generalizability D3’s generalizability to different DL libraries
with a variety of DL model types has not been measured be-
yond the two libraries evaluated. Also, the generality of the
distributed equivalence rule and the model generation was not
quantified beyond PyTorch and TensorFlow. However, D3 de-
tects 21 bugs, including 14 inconsistency bugs, across two
of the most popular DL libraries, i.e., PyTorch/TorchRec and
TensorFlow. This already demonstrates D3’s capabilities of
finding bugs in different distributed DL libraries. In addition,
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D3 applies the equivalence rules to multiple model templates,
including the DLRM-like models, chain structure models, and
cell-based structure models, which cover a diverse set of DL
model types. It is straightforward to apply D3’s equivalence rule
on other model templates. Finally, D3 provided a new DL model
template for the DLRM-like models, which could be used to
enhance existing DL model generation tools, such as Muffin.
Nondeterminism Not all inconsistencies are bugs because DL
model training can be nondeterministic [43]. We mitigate non-
determinism by using the same random seed to make the model
training procedure algorithmically reproducible. We also use a
threshold used by popular DL libraries to take into considera-
tion floating-point precision inconsistencies. We adopt one-step
training to minimize the nondeterminism of DL model training.
Overall, all of the total 16,073 inconsistencies that D3 detects
indicate true bugs.

VII. RELATED WORK

Differential testing of DL libraries D3 is closely related to
EAGLE [26] which applies differential testing using equivalent
computational graphs to test a single DL library. EAGLE uses
equivalent graphs which use different Application Program-
ming Interfaces (APIs), data types, or optimizations to achieve
the same functionality. D3 focuses on testing distributed DL
libraries whereas none of the 16 equivalent rules proposed by
EAGLE can detect bugs in distributed DL training code.

Some recent work also leverages differential testing by com-
paring results between CPU and GPU runs [29] or between
automatically matched equivalent DL APIs [30] to detect in-
consistency bugs. Unlike these approaches, D3 detects bugs in
the DL-distributed training code with its distributed equiva-
lent rule.

Other work [25], [27], [28], [52], [55], [56], [57], [58], [59],
[60] also uses differential testing to find inconsistencies be-
tween DL libraries. These approaches require either (1) a high-
level library that supports several DL backends (e.g., Keras),
(2) a good model converter (e.g., MMdnn), or (3) heavy en-
gineering to reimplement the same DL computation in differ-
ent DL libraries. Unfortunately, Keras 2 (used in [25], [27],
[28], [59]) no longer supports multiple backends. The new
Keras 3 supports three DL backends, i.e., JAX, TensorFlow,
and PyTorch. However, cross-checking different libraries is not
possible for distributed parameters that only exist in one DL
library. For example, sharder types and sharding types are two
distributed parameters that only exist in PyTorch/TorchRec but
not in TensorFlow. It is not possible to detect bugs caused
by the two distributed parameters by cross-checking differ-
ent DL libraries. One could use MMdnn [61] or ONNX [62]
to transfer models across DL libraries, however only a few
popular layers are supported by MMdnn (e.g., RNN layers
are not supported) and one of the most popular DL libraries,
PyTorch, cannot execute ONNX models. Srisakaokul et al. [57]
only reimplements two ML algorithms (K-Nearest Neighbours
and Naive Bayes) when using differential testing on Weka,
Rapid Miner, and KNIME. Ramos [52] summarizes the API
mapping rule for model initialization methods. Gandalf [60]
adopts the context-free grammar and designed a series of equiv-
alent metamorphic relationships to generate equivalent models

in different DL libraries. However, those papers implement a
subset of DL computation in different frameworks and require
heavy engineering. In contrast, similar to EAGLE, D3 uses
the equivalence rule to find bugs in DL frameworks, which is
not limited by third-party libraries (converter or high-level API
support).
Fuzzing DL libraries Another popular approach to testing
DL libraries is fuzzing. Classic fuzzing techniques [63], [64],
[65] find some crash bugs, while more DL-specific fuzzing
techniques have been proposed [47], [66], [67], [68]. However,
they only focus on detecting crashes and testing API-level
functions.

Recent work fuzzes [46], [69], [70] or generates [28], [71] DL
models to test DL libraries. However, no prior work generates
distributed settings to test distributed DL software. D3 applies
DL model generation using multiple model templates along
with the distributed differential testing rule to test DL libraries
code that handles distributed computation.
Other work testing DL libraries Static analysis has been
used to detect specific types of bugs (e.g., shape-related bugs)
in DL systems [72]. D3 finds very diverse bugs in DL systems
(Section V-B) that are hard to find without equivalent distributed
settings and model generation. Metamorphic testing has also
been used to test DL compilers [73] which focuses on finding
bugs at the lower level in DL compilers. Other work also applies
metamorphic testing to validate ML classifiers [74], [75], [76],
[77]. These approaches have only found injected bugs in ML
systems, and previous work shows that injected bugs often only
have a weak correlation with real-world bugs [78].
Differential Testing of DL Models Prior work [21], [22],
[23], [24] applies differential testing to test the trained DL
models (i.e., the trained weights) instead of the underlying DL
libraries that implement machine learning algorithms. For ex-
ample, DeepXplore [22] introduces neuron coverage to measure
testing coverage in CNN models and guide test input genera-
tion or OGMA [23] adapts a grammar-based input generation
method to test NLP models. These approaches are orthogonal to
our work because they test the correctness of DL models, while
we test the correctness of DL libraries, i.e., software implemen-
tations of models. These prior techniques are not designed to
detect bugs in DL libraries, because they compare the output of
similar DL models to detect model bugs, which manifest by in-
put instances that make these models generate incorrect output.
On the other hand, our work focuses on comparing the output of
the same model under different distributed settings to detect li-
brary implementation bugs. Existing work addresses neither the
challenge of identifying equivalent distributed settings, nor the
challenge of testing distributed DL training. For the latter, the
bug in Fig. 1 is hard to detect for multiple reasons including gen-
erating the specific sharding scheme (Section I-B) for example.
Differential testing for compilers Differential testing has
been used for testing compilers [79], [80], [81], [82]. Instead
of equivalent graphs, these work generate equivalent programs
modulo input (EMI). The key in EMI is to create a collection
of correct programs that have the same output given the same
input (but might have different output for other input. Our work
is different since program compilation is a different problem
than DL graph execution which presents its own challenges.
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VIII. CONCLUSION

We propose D3, a new differential testing approach that uses
distributed equivalence rule and model generation to test dis-
tributed deep learning software. We collected and fuzzed six
distributed parameters that can generate equivalent distributed
settings under which the same model and model input trained
should produce equivalent prediction results. We evaluated D3

on the two most popular DL libraries, PyTorch/TorchRec and
TensorFlow, and found 21 bugs, 12 of which are previously
unknown bugs. Future work includes extending our approach
to fuzz other distributed components e.g., the cluster setup, to
detect more types of bugs such as configuration bugs in the
distributed deep learning software.

REFERENCES

[1] X. Yi et al., Eds., Sampling-bias-corrected neural modeling large corpus
item recommendations, in Proc. 13th ACM Conf. Recommender Syst.,
2019, pp. 269–277.

[2] M. Naumov et al., “Deep Learning recommendation model for person-
alization and recommendation Systems,” 2019, arXiv:1906.00091.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), 2015, pp. 2722–2730.

[4] M. Popel, M. Tomkova, and J. Tomek, “Transforming machine transla-
tion: A deep learning system reaches news translation quality compa-
rable to human professionals,” Nat. Commun., vol. 11, no. 1, p. 4381,
2020.

[5] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNuT:
Combining context-aware neural translation models using ensemble for
program repair,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2020, pp. 101–114.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2019,
arXiv:1810.04805. [Online]. Available: https://arxiv.org/abs/1810.04805

[7] T. Brown et al., “Language models are few-shot learners,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., Red
Hook, NY, USA: Curran Associates, Inc., 2020, pp. 1877–
1901. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[8] D. Narayanan et al., “Efficient large-scale language model training on
GPU clusters using megatron-LM,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., New York, NY, USA: ACM, 2021, doi:
10.1145/3458817.3476209.

[9] J. Wei, X. Zhang, Z. Ji, J. Li, and Z. Wei, “Deploying and scal-
ing distributed parallel deep neural networks on the tianhe-3 proto-
type system,” Sci. Rep., vol. 11, no. 1, 2021, Art. no. 20244, doi:
10.1038/s41598-021-98794-z.

[10] Y. Jiang, F. Fu, X. Miao, X. Nie, and B. Cui, “OSDP: Optimal sharded
data parallel for distributed deep learning,” in Proc. 32nd Int. Joint
Conf. Artif. Intell. (IJCAI), E. Elkind, Ed. 2023, pp. 2142–2150, doi:
10.24963/ijcai.2023/238.

[11] T. Ben-Nun and T. Hoefler, “Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis,” ACM
Comput. Surv., vol. 52, no. 4, pp. 65:1–65:43, Aug. 2019, doi:
https://doi.org/10.1145/3320060.

[12] “TensorFlow GitHub issues,” TensorFlow. Accessed: Sep. 9, 2022.
[Online]. Available: https://github.com/tensorflow/tensorflow/issues

[13] “TensorFlow GitHub pull requests,” TensorFlow. Accessed: Sep. 9, 2022.
[Online]. Available: https://github.com/tensorflow/tensorflow/pulls

[14] “PyTorch GitHub issues,” PyTorch. Accessed: 2022. [Online]. Available:
https://github.com/pytorch/pytorch/issues

[15] “PyTorch GitHub pull requests,” PyTorch. Accessed: Sep. 9, 2022.
[Online]. Available: https://github.com/pytorch/pytorch/pulls

[16] “TorchRec GitHub issues,” TorchRec. Accessed: Sep. 9, 2022. [Online].
Available: https://github.com/pytorch/torchrec/issues

[17] “TorchRec GitHub pull requests,” TorchRec. Accessed: Sep. 9, 2022.
[Online]. Available: https://github.com/pytorch/torchrec/pulls

[18] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on TensorFlow program bugs,” in Proc. 27th ACM SIGSOFT Int.

Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM, 2018,
pp. 129–140, doi: 10.1145/3213846.3213866.

[19] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proc. 27th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), New York,
NY, USA: ACM, 2019, pp. 510–520, doi: 10.1145/3338906.3338955

[20] Y. Yang, T. He, Z. Xia, and Y. Feng, “A comprehensive empirical
study on bug characteristics of deep learning frameworks,” Inf. Softw.
Technol., vol. 151, 2022, Art. no. 107004. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0950584922001306

[21] J. Guo, Y. Zhao, H. Song, and Y. Jiang, “Coverage guided differential
adversarial testing of deep learning systems,” IEEE Trans. Netw. Sci.
Eng., vol. 8, no. 2, pp. 933–942, Apr./Jun. 2021.

[22] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” Commun. ACM, vol. 62, no. 11, pp.
137–145, Oct. 2019, doi: 10.1145/3361566.

[23] S. Udeshi and S. Chattopadhyay, “Grammar based directed testing of
machine learning systems,” IEEE Trans. Softw. Eng., vol. 47, no. 11,
pp. 2487–2503, Feb. 2019.

[24] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.
Softw. Eng. (ICSE), New York, NY, USA: ACM, 2018, pp. 303–314,
doi: 10.1145/3180155.3180220

[25] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “CRADLE: Cross-backend
validation to detect and localize bugs in deep learning libraries,” in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), 2019, pp. 1027–1038.

[26] J. Wang, T. Lutellier, S. Qian, H. V. Pham, and L. Tan, “EAGLE:
Creating equivalent graphs to test deep learning libraries,” in Proc. 44th
Int. Conf. Softw. Eng. (ICSE), 2022, pp. 798–810.

[27] Q. Guo et al., “Audee: Automated testing for deep learning frameworks,”
in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), 2020,
pp. 486–498.

[28] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in Proc. 28th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York, NY, USA:
ACM, 2020, pp. 788–799.

[29] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing: Fuzzing
deep-learning libraries from open source,” in Proc. 44th Int. Conf. Softw.
Eng. (ICSE), New York, NY, USA: ACM, 2022, pp. 995–1007, doi:
10.1145/3510003.3510041.

[30] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning
libraries via automated relational API inference,” Proc. 30th ACM Joint
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York, NY,
USA: Association for Computing Machinery, 2022, p. 44–56. [Online].
Available: https://doi.org/10.1145/3540250.3549085

[31] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst. 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[32] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. Accessed: Sep. 9, 2022. [Online]. Available:
https://www.tensorflow.org/

[33] “TorchRec,” TorchRec. Accessed: Sep. 9, 2022. [Online]. Available:
https://github.com/pytorch/torchrec

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun.
2016, pp. 770–778.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no.
6, pp. 84–90, May 2017, doi: 10.1145/3065386.

[38] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., F. Pereira, C. Burges, L. Bottou, and K.
Weinberger, Eds., vol. 25. Red Hook, NY, USA: Curran Associates,
Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[39] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., J. Laf-
ferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.,
vol. 23. Red Hook, NY, USA: Curran Associates, Inc., 2010. [On-

Authorized licensed use limited to: Purdue University. Downloaded on February 12,2025 at 18:14:38 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dx.doi.org/10.1145/3458817.3476209
http://dx.doi.org/10.1038/s41598-021-98794-z
http://dx.doi.org/10.24963/ijcai.2023/238.
http://dx.doi.org/https://doi.org/10.1145/3320060
https://github.com/tensorflow/tensorflow/issues
https://github.com/tensorflow/tensorflow/pulls
https://github.com/pytorch/pytorch/issues
https://github.com/pytorch/pytorch/pulls
https://github.com/pytorch/torchrec/issues
https://github.com/pytorch/torchrec/issues
https://github.com/pytorch/torchrec/pulls
http://dx.doi.org/10.1145/3213846.3213866
http://dx.doi.org/10.1145/3338906.3338955
https://www.sciencedirect.com/science/article/pii/S0950584922001306
https://www.sciencedirect.com/science/article/pii/S0950584922001306
http://dx.doi.org/10.1145/3361566
http://dx.doi.org/10.1145/3180155.3180220
http://dx.doi.org/10.1145/3510003.3510041
https://doi.org/10.1145/3540250.3549085
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://github.com/pytorch/torchrec
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1145/3065386
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf


52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 1, JANUARY 2025

line]. Available: https://proceedings.neurips.cc/paper_files/paper/2010/
file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

[40] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for
the structured perceptron,” in Human Lang. Technol.: Annu. Conf. North
Am. Chapter Assoc. Comput. Linguistics, Dec. 2010, pp. 456–464.

[41] Y. Huang et al., GPipe: Efficient Training of Giant Neural Networks
Using Pipeline Parallelism. Red Hook, NY, USA: Curran Associates
Inc., 2019.

[42] S. Fan et al., “DAPPLE: A pipelined data parallel approach for training
large models,” in Proc. 26th ACM SIGPLAN Symp. Princples Pract.
Parallel Program. (PPoPP), New York, NY, USA: ACM, 2021, pp. 431–
445, doi: 10.1145/3437801.3441593.

[43] H. V. Pham et al., “Problems and opportunities in training deep learning
software systems: An analysis of variance,” in Proc. 35th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), New York, NY, USA: ACM, 2021,
pp. 771–783, doi: 10.1145/3324884.3416545.

[44] “Pytorch reproducibility,” PyTorch. Accessed: 2022. [Online]. Available:
https://pytorch.org/docs/stable/notes/randomness.html#reproducibility

[45] K. Kallas, F. Niksic, C. Stanford, and R. Alur, “DiffStream: Differential
output testing for stream processing programs,” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, Nov. 2020, p. 153:1–153:29, Nov. 2020.
[Online]. Available: https://doi.org/10.1145/3428221

[46] J. Gu, X. Luo, Y. Zhou, and X. Wang, “Muffin: Testing deep learning
libraries via neural architecture fuzzing,” in Proc. 44th Int. Conf. Softw.
Eng. (ICSE), New York, NY, USA: ACM, 2022, pp. 1418–1430, doi:
10.1145/3510003.3510092.

[47] D. Xie et al., “DocTer: Documentation-guided fuzzing for testing deep
learning API functions,” in Proc. 31st ACM SIGSOFT Int. Symp. Softw.
Testing Anal., (ISSTA), New York, NY, USA: ACM, 2022, pp. 176–188,
doi: 10.1145/3533767.3534220.

[48] C. Yang, Y. Deng, J. Yao, Y. Tu, H. Li, and L. Zhang, “Fuzzing automatic
differentiation in deep-learning libraries,” in Proc. 45th Int. Conf. Softw.
Eng., (ICSE), Piscataway, NJ, USA: IEEE Press, 2023, pp. 1174–1186,
doi: 10.1109/ICSE48619.2023.00105.

[49] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large
language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries,” in Proc. IEEE/ACM 46th Int. Conf.
Softw. Eng. (ICSE), New York, NY, USA: ACM, 2024, pp. 1–13, doi:
10.1145/3597503.3623343.

[50] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proc. 32nd ACM SIGSOFT Int. Symp. Softw.
Testing Anal. (ISSTA), New York, NY, USA: ACM, 2023, pp. 423–435,
doi: 10.1145/3597926.3598067.

[51] J. Liu, J. Peng, Y. Wang, and L. Zhang, “NeuRI: Diversifying DNN
generation via inductive rule inference,” in Proc. 31st ACM Joint Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), New York,
NY, USA: ACM, 2023, pp. 657–669, doi: 10.1145/3611643.3616337.

[52] Y. Zou, H. Sun, C. Fang, J. Liu, and Z. Zhang, “Deep learning framework
testing via hierarchical and heuristic model generation,” J. Syst. Softw.,
vol. 201, 2023, Art. no. 111681. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0164121223000766

[53] Z. Wang et al., “GenCoG: A DSL-based approach to generating com-
putation graphs for TVM testing,” in Proc. 32nd ACM SIGSOFT Int.
Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM, 2023,
pp. 904–916, doi: 10.1145/3597926.3598105.

[54] H. Ma, Q. Shen, Y. Tian, J. Chen, and S.-C. Cheung, “Fuzzing deep
learning compilers with hirgen,” in Proc. 32nd ACM SIGSOFT Int. Symp.
Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM, 2023, pp.
248–260, doi: 10.1145/3597926.3598053.

[55] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Trans. Softw. Eng., vol. 48, no.
1, pp. 1–36, Jan. 2022.

[56] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing
probabilistic programming systems,” in Proc. 26th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2018,
pp. 574–586.

[57] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T.
Xie, “Multiple-implementation testing of supervised learning
software,” in Proc. Workshops 32nd AAAI Conf. Artif. Intell.,
2018, pp. 384–391.

[58] J. Vanover, X. Deng, and C. Rubio-González, “Discovering
discrepancies in numerical libraries,” in Proc. 29th ACM SIGSOFT Int.
Symp. Softw. Testing Anal., 2020, pp. 488–501.

[59] M. Nejadgholi and J. Yang, “A study of oracle approximations in
testing deep learning libraries,” in Proc. 34th IEEE/ACM Int. Conf.

Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 785–796.

[60] J. Liu et al., “Generation-based differential fuzzing for deep learning
libraries,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 2, pp. 50:1–
50:28, Dec. 2023. [Online]. Available: https://doi.org/10.1145/3628159.

[61] Y. Liu et al., “Enhancing the interoperability between deep learning
frameworks by model conversion,” in Proc. 28th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 1320–1330.

[62] J. Bai et al., “ONNX: Open neural network exchange,” 2019. Accessed:
Sep. 9, 2022. [Online]. Available: https://github.com/onnx/onnx

[63] “bibatlOss-fuzz.” Google. 2021. Accessed: Sep. 9, 2022. [Online].
Available: https://github.com/google/oss-fuzz

[64] C. Pacheco and M. D. Ernst, “RANDOOP: Feedback-directed
random testing for Java,” in Proc. Companion 22nd ACM SIGPLAN
Conf. Object-oriented Program. Syst. Appl. Companion, 2007,
pp. 815–816.

[65] “Libfuzzer – A library for coverage-guided fuzz testing,” LLVM.
2021. Accessed: Sep. 9, 2022. [Online]. Available: http://llvm.org/docs/
LibFuzzer.html

[66] X. Xie et al., “DeepHunter: A coverage-guided fuzz testing framework
for deep neural networks,” in Proc. 28th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2019, pp. 146–157.

[67] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “TensorFuzz:
Debugging neural networks with coverage-guided fuzzing,” in Int.
Conf. Mach. Learn., PMLR, 2019, pp. 4901–4911.

[68] X. Zhang et al., “Predoo: Precision testing of deep learning operators,”
in Proc. 30th ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2021,
pp. 400–412.

[69] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint IR-pass mutation,” Proc. ACM
Program. Lang., vol. 6, no. OOPSLA1, pp. 73:1–73:26, Apr. 2022.
[Online]. Available: https://doi.org/10.1145/3527317.

[70] W. Luo, D. Chai, X. Run, J. Wang, C. Fang, and Z. Chen, “Graph-
based fuzz testing for deep learning inference engines,” in Proc. 43rd
Int. Conf. Softw. Eng. (ICSE), IEEE Press, 2021, pp. 288–299, doi:
10.1109/ICSE43902.2021.00037.

[71] J. Liu et al., “Finding deep-learning compilation bugs with NNSmith,”
2022, arXiv:2207.13066, doi: 10.48550/arXiv.2207.13066.

[72] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis,
“Static analysis of shape in tensorflow programs,” in Proc. 34th Eur.
Conf. Object-Oriented Program. (ECOOP), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[73] D. Xiao, Z. LIU, Y. Yuan, Q. Pang, and S. Wang, “Metamorphic testing
of deep learning compilers,” in Proc. ACM Meas. Anal. Comput. Syst.,
vol. 6, no. 1, Feb. 2022, doi: 10.1145/3508035.

[74] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by metamorphic
testing,” J. Syst. Softw., vol. 84, no. 4, pp. 544–558, 2011.

[75] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp.
805–824, Sep. 2016.

[76] J. Ding, X. Kang, and X.-H. Hu, “Validating a deep learning
framework by metamorphic testing,” in Proc. 2nd Int. Workshop
Metamorphic Testing, (MET), Piscataway, NJ, USA: IEEE Press, 2017,
pp. 28–34.

[77] A. Dwarakanath et al., “Identifying implementation bugs in machine
learning based image classifiers using metamorphic testing,” in Proc.
27th ACM SIGSOFT Int. Symp. Softw. Testing Anal. (ISSTA), New
York, NY, USA: ACM, 2018, pp. 118–128.

[78] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are
they to real faults?” in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng.,
Piscataway, NJ, USA: IEEE Press, 2014, pp. 189–200.

[79] J. Chen et al., “A survey of compiler testing,” ACM Comput. Surv., vol.
53, no. 1, Feb. 2020, doi: 10.1145/3363562.

[80] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proc. 35th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, (PLDI), New York, NY, USA: ACM, 2014, pp.
216–226, doi: 10.1145/2594291.2594334.

[81] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program., Syst., Lang., Appl. (OOPSLA), New York,
NY, USA: ACM, 2015, pp. 386–399, doi: 10.1145/2814270.2814319.

[82] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proc. ACM SIGPLAN Int. Conf. Object-Oriented
Program., Syst., Lang., Appl. (OOPSLA), New York, NY, USA: ACM,
2016, pp. 849–863, doi: 10.1145/2983990.2984038.

Authorized licensed use limited to: Purdue University. Downloaded on February 12,2025 at 18:14:38 UTC from IEEE Xplore.  Restrictions apply. 

https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
http://dx.doi.org/10.1145/3437801.3441593
http://dx.doi.org/10.1145/3324884.3416545
https://pytorch.org/docs/stable/notes/randomness.html##reproducibility
http://dx.doi.org/https://doi.org/10.1145/3428221
http://dx.doi.org/10.1145/3510003.3510092
http://dx.doi.org/10.1145/3533767.3534220
http://dx.doi.org/10.1109/ICSE48619.2023.00105
http://dx.doi.org/10.1145/3597503.3623343
http://dx.doi.org/10.1145/3597926.3598067
http://dx.doi.org/10.1145/3611643.3616337
https://www.sciencedirect.com/science/article/pii/S0164121223000766
https://www.sciencedirect.com/science/article/pii/S0164121223000766
http://dx.doi.org/10.1145/3597926.3598105
http://dx.doi.org/10.1145/3597926.3598053
https://doi.org/10.1145/3628159
https://github.com/onnx/onnx
https://github.com/google/oss-fuzz
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3527317
http://dx.doi.org/10.1109/ICSE43902.2021.00037
http://dx.doi.org/10.48550/arXiv.2207.13066
http://dx.doi.org/10.1145/3508035
http://dx.doi.org/10.1145/3363562
http://dx.doi.org/10.1145/2594291.2594334
http://dx.doi.org/10.1145/2814270.2814319
http://dx.doi.org/10.1145/2983990.2984038


<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <>
		/CZE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <>
		/JPN <>
		
		/SUO <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		
		
		
		/PTB <>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <>
		/POL <>
		
		/SVE <>
		
		/ESP <>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


