LATTE: Improving LaTeX Recognition for Tables and Formulae With Iterative
Refinement

Nan Jiang', Shanchao Liang!, Chengxiao Wang' 2, Jiannan Wang', Lin Tan'

! Purdue University, USA
2 University of Illinois Urbana-Champaign, USA
jiang719@purdue.edu, liang422 @purdue.edu, cw124 @illinois.edu, wang4524 @purdue.edu, lintan @purdue.edu

Abstract

Portable Document Format (PDF) files are dominantly used
for storing and disseminating scientific research, legal docu-
ments, and tax information. LaTeX is a popular application
for creating PDF documents. Despite its advantages, LaTeX
is not WYSWYG—what you see is what you get, i.e., the
LaTeX source and rendered PDF images look drastically dif-
ferent, especially for formulae and tables. This gap makes it
hard to modify or export LaTeX sources for formulae and ta-
bles from PDF images, and Fault Location

existing work is still limited. First, prior work generates La-
TeX sources in a single iteration and struggles with complex
LaTeX formulae. Second, existing work mainly recognizes
and extracts LaTeX sources for formulae; and is incapable or
ineffective for tables. This paper proposes LATTE, the first it-
erative refinement framework for LaTeX recognition. Specif-
ically, we propose delta-view as feedback, which com-
pares and pinpoints the differences between a pair of rendered
images of the extracted LaTeX source and the expected cor-
rect image. Such delta-view feedback enables our fault
localization model to localize the faulty parts of the incor-
rect recognition more accurately and enables our LaTeX re-
finement model to repair the incorrect extraction more accu-
rately. LATTE improves the LaTeX source extraction accu-
racy of both LaTeX formulae and tables, outperforming exist-
ing techniques as well as GPT-4V by at least 7.07% of exact
match, with a success refinement rate of 46.08% (formula)
and 25.51% (table).

Introduction

Portable Document Format (PDF) files are dominantly used
for storing and disseminating academic research, legal doc-
uments, and tax information (Blecher et al. 2023; Kuchta
et al. 2018a). While documents in such format provide ex-
ceptional cross-platform consistency and readability and are
flexible in display resolutions, the source code of the PDF
files is typically unavailable to the readers. Thus, it is hard
to moditfy, extract, and export PDF documents to other target
formats, especially those containing mathematical formulae
and tables with complex structures and styles.

Since LaTeX is one widely used system to produce PDF
documents (Kuchta et al. 2018b), researchers have explored

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LaTeX recognition (LR) to extract mathematical expressions
from images using either rule-based or learning-based ap-
proaches (Wang and Liu 2021; Peng et al. 2021; Deng et al.
2017; Pang et al. 2021; Yan et al. 2021; Long, Hong, and
Yang 2023; Anderson 1967). Other work focuses on ex-
tracting table structures or detecting the content in each
cell (Hashmi et al. 2021; Kayal et al. 2022), which helps
understand and analyze tables.

These existing techniques (Wang and Liu 2021; Peng
et al. 2021; Deng et al. 2017; Pang et al. 2021; Yan et al.
2021; Long, Hong, and Yang 2023; Anderson 1967) is lim-
ited in recognizing LaTeX images. First, they produce La-
TeX sources in a single round of generation and often fail
to recognize complex formulae. Our insight is that humans
often write complex formulae and tables in multiple itera-
tions. For example, if the first version of the LaTeX source
is incorrect, they fix the mistakes, re-render the modified La-
TeX source, and keep this iterative process. Second, existing
techniques focus on LaTeX formulae. The few table recog-
nition techniques do not extract ready-to-use LaTeX source
for tables (Hashmi et al. 2021; Kayal et al. 2022), but only
extract table structures or textual content. Simply combin-
ing the table structures and content does not produce LaTeX
sources that can be rendered (Kayal et al. 2022), because the
structures and content may mismatch with each other.

In this paper, we propose LATTE, a LaTeX recognition
framework with iterative refinement. We also create a new
LaTeX table dataset, TAB2LATEX, by collecting LaTeX tables
source code from arXiv preprints and the corresponding La-
TeX sources. TAB2LATEX is a dataset for end-to-end LaTeX
tables recognition, aiding the development of techniques to
produce renderable LaTeX sources for tables. We demon-
strate the effectiveness of LATTE on recognizing both La-
TeX tables and formulae.

The concept of iterative refinement has been applied in
various fields, including code generation and code refine-
ment (Madaan et al. 2023; Scheurer et al. 2023; Chen et al.
2023a,c; Olausson et al. 2023). The process typically con-
sists of two parts: generating an initial draft and then itera-
tively refining it using collected feedback until it meets the
requirements. Yet, applying the refinement framework in the
field of LR is challenging, as it is hard to generate feedback
that effectively connects the expected ground-truth image
and the generated textual draft. The difference between the

Generation Phase

Feedback Generation

Iterative Refinement Phase

: | Feedback F 1@®>2!

- AT TargetIm ik
eap([{-. - MLy 0n0l jar)) | a’get(D;eg@M :
G

S

exp \Big(\int \{

(o)] o 1

@ Rendered LaTex I; 1

@ a Eval i

M0 0})

<= M_{\;\;\;ab} {-1}

\Omega_\mu~{a\nu} \Omega_\nu*a| ®-

S

' +
Delta View A(Z, I;) | % Mp

s con([~

@ Zx%|Eval :

exp \Big(\int \{

\Omega_\mu~{a\nu} \Omega_\nu”a
\} dx \Big)

. _ M_(i;\;\;ab}A{_l} E Refined LaTex C;.q |—@ i

exp \Big(\int \{

. - {MA{-1}}_{ab}*{\mu\nu}

e:tp(f{...—]\/[’;bQﬁVQa) Em@_

Generated LaTex Cj

E \Omega_\mu~a \Omega_\nu~b H
v |\} dx \Big) N

Figure 1: Overview of LATTE. Mg, M, and My, are the initial generation, fault localization, and the refinement models.

expected image and the image rendered from the draft needs
to be identified automatically. And the model is also required
to learn the portions of the generated text that cause such
differences in images, i.e., building the connection between
textual scripts and rendered images. To overcome this chal-
lenge, we propose an ImageEdit algorithm to pinpoint the
differences between the ground truth and rendered images,
referred to as delta-view. We use delta-view as feedback
to aid LATTE to localize and refine the error.

Another challenge of applying the refinement framework
in LR is identifying the faulty location of the generated La-
TeX script. The faulty LaTeX scripts typically are only incor-
rect in a small portion, such as a few incorrect characters for
mathematical formulae, or a few cells for tables. Instead of
re-generating the whole LaTeX script, one can localize the
faulty parts and re-generate those parts only. Thus, we im-
plement a fault localization model trained along with the re-
finement model to predict the faulty location. Once we sur-
mount this challenge and successfully identify the faulty lo-
cation of the LaTeX script, LATTE only need to re-generate
the incorrect portion of it, which minimizes the learning
challenges of the refinement model.

To sum up, this paper makes the following contributions:

* We create the first iterative-refinement approach for La-
TeX recognition, which fine-tunes a localization model
to identify the faulty part in LaTeX sources and use a re-
finement model to regenerate the faulty part of the LaTeX
sources iteratively.

* We propose a novel algorithm, ImageEdit, which pro-
duces effective feedback, delta-view, to enhance the
refinement accuracy.

* We collect and open-source a new dataset for LaTeX ta-
bles recognition, TAB2LATEX, filling the blank of no pub-
lished dataset for end-to-end LaTeX table recognition.

* By combining iterative-refinement and ImageEdit, we
develop LATTE to produce renderable LaTeX code for
both formulae and tables, outperforming existing tech-
niques on formulae by 7.07% of exact match, and com-
mercial tools on tables by 56.00%, with an overall fault
localization accuracy of 56.90-60.53%, and refinement
rate of 25.51-46.08%.

* Availability: https://github.com/It-asset/Latte.git

Approach

Figure 1 provides an overview of LATTE, which consists of
two phases — the Generation Phase and the Iterative Re-
finement Phase. Given the target document image [to rec-
ognize, the generation model M generates a LaTeX output
(' as the initial draft (step (D). LATTE then uses pdflatex
to render the LaTeX source draft into an image I; (step @)
and compares it with the ground-truth image I (step ®). If
they match at the pixel level, signaling that the LaTeX source
(' is correct, the process ends and LATTE outputs C'.

Otherwise, LATTE enters the Refinement Phase (step @).
During the z‘h iteration of the refinement phase, LATTE
automatically generates feedback F; consisting of C; and
delta-view A(I,I;), highlighting the difference between
the ground truth and the rendered image. Then, LATTE uses
the fault localization model, Mp, to predict the faulty lo-
cation in the LaTeX script. The predicted location is used
to construct the input for the refinement model Mpr. Mg
generates the refined LaTeX script starting from the pre-
dicted faulty location (step 3), which replaces the faulty
parts in C; to form the fully refined script C; 1. The refined
script C;y1 is rendered into a new image I; 11 (step ®), and
is compared to the ground-truth image for evaluation (step
(D). Such a refinement phase continues until the evaluation
passes (step) or reaches the iteration limit.

Generation Phase

LATTE’s generation model, M, is fine-tuned on top of the
Nougat-base (Blecher et al. 2023), a multi-modal vision-
encoder-decoder (Li et al. 2023b) LLM pre-trained on RGB
images of academic documents and their markdown sources.
The input for the M is an image I € NHXW X3 of a ren-
dered formula or a table, where H and W represent the
height and width of the image respectively, and 3 refers to
the color channels in RGB images. The vision-encoder of
Mg encodes the image, and the text decoder generates the
corresponding LaTeX source code of the input image.

Evaluation and Feedback Generation

After the generation model M produces the initial LaTeX
draft, LATTE evaluates its correctness by rendering it using
renderer pdflatex, and comparing it with the ground-truth
image. If the rendered image matches the ground-truth im-

o—eSubstitution e—eInsertion +—eDeletion

eap([{..— MmO dr)
eap([{. - Mliiéulﬂf}dx)a

(a) Example of Formula's Delta-View

Detector | Anch.-Based Anch.-Free | Single-Scale Multi-Scale

R-CNN v v
DN-DETR v v

Detector | Anch.-Based Anch.-Free | Single-Scale Multi-Scale
R-CNN v v
DN-DETR v v

(b) Example of Table's Delta-View

Figure 2: Formula and table examples of delta-view gen-
erated by the ImageEdit algorithm.

age, the generated LaTeX script will be returned without re-
finement. Otherwise, it needs to be refined.

The feedback, which is the input to the refinement model,
contains two elements: delta-view A(I, ;) and the gen-
erated LaTeX script of the current refinement iteration C;. To
facilitate the localization of the fault in the incorrect script
C;, this work proposes the ImageEdit algorithm, which
highlights the differences between the rendered image I;
and the ground-truth image I, and generates A(7, ;). The
ImageEdit algorithm is based on the Wagner—Fischer al-
gorithm (Wagner and Fischer 1974) used for computing the
Levenshtein-Distance. ImageEdit treats LaTeX images as
lists of columns of pixels. It calculates the least number of
insertions, deletions, and substitutions of columns needed
to transform the rendered image to the ground truth image,
which is marked by light blue or light red backgrounds.

Figure 2 (a) provides an example of computing the
delta-view for LaTeX formula. ImageEdit uses four
blocks of substitutions, one block of deletion, and one block
of insertion to show the difference. For example, the 3 in
the rendered image is incorrect and should be replaced by
the © in the ground truth. In addition, ImageEdit provides
finer-grained differences to help My generate more accu-
rate refined LaTeX sources. For the substitution from 3 to
b ImageEdit identifies that only a portion of a and b is
different, which is highlighted in blue and red. The identical
parts, i.e., v and a portion of a and b, are shown in black.

For the table example shown in Figure 2 (b), the col-
ored backgrounds mark the mismatched columns, while
the blue and red edits show that the real fault is the po-
sitions of the checks in each column. In addition, to han-
dle the more complex 2-D structure of table images, both
the column-wised Levenshtein-Distance and the row-wised
Levenshtein-Distance are calculated and the delta-viewis
generated using the solution with fewer edit percentages.

Iterative-Refinement Phase

The refinement phase of LATTE consists of two steps: fault
localization and refinement. The fault localization model

Key Values
(Hidden States)

| §€® Vision Encoder H
e D
[Delta View A(Z, I;)] - B@Q B

Figure 3: Fault localization model architecture.

pinpoints the faulty portion in the incorrect LaTeX script,
which enables the refinement model to focus on modifying
the wrong portion. The refinement model then generates the
refined LaTeX script to replace the faulty portion suggested
by the localization model.

Fault Localization Model LATTE’s fault localization
model predicts the location of the first erroneous token in
the corresponding LaTeX script. Figure 3 shows the fault
localization model’s architecture.

The fault localization model includes a vision-encoder-
decoder (VED) model and an attention layer. Given
the incorrect LaTeX script C; = {c1,...,¢,} and the
delta-view A(I, I;) as input, the vision-encoder-decoder
model calculates the hidden states of ¢; to ¢,, as shown in
Equation (1) (notated by H).

The following attention layer calculates the attention
scores on each token c;, using its hidden states H as keys
and h,, as the query. The reason for using h,,, the hidden
states of the last token </s> at the end of the incorrect La-
TeX script, as the query for calculating attention score is that:
h,, is the only hidden states in H that incorporates the fea-
tures of the entire C;. As in the text decoder, every other
token only incorporates the features of tokens before them,
missing the global view of the whole incorrect LaTeX script.

In the attention layer, W, W), are trainable weights to en-
code the query and keys to compute the attention score dis-
tribution P. Once P is obtained, the index with the highest
attention score will be selected as the faulty location [. The
full formulation of fault localization is as follow:

H = VED(C;, A(I, 1))
Q =ReLU(W, - h,) , K =ReLU(Wj - H)

P = Softmax (QKT) , | =argmax(P)
1<i<n

(D

The training objective for the fault localization model is
to minimize the Negative Log-Likelihood (NLL) loss on the
probability of predicting the ground-truth faulty location I;
for the given LaTeX script C; to refine by updating the fault
localization model’s weights 05,

Refinement Model with Fault Location As Figure 4
shows, given a wrong LaTeX C; to refine and the faulty loca-
tion [; of it, the textual input for refinement model is struc-
tured as follows: “C;[l; ;] <s> Ci[: li]”.

Different from inputting the whole incorrect script C;
as input and training the refinement model to generate the

Fault Location
Incorrect LaTeX [correct tokens buggy tokens]

Model Input [buggy tokens <s> correct tokens|

Model Output [buggy tokens <s> correct tokens fixed tokens]|

Refined LaTeX [correct tokens fixed tokens]

Figure 4: Workflow of the refinement model.

whole refined script, this template utilizes the faulty loca-
tion by putting the faulty part of C; at the beginning of
the prompt. <s> is used as a separator and tokens after it
are correct parts (tokens with light grey background). Such
an input format design is more effective than inputting the
whole incorrect script as is (Hossain et al. 2024). The re-
finement model is fine-tuned to generate the refined LaTeX
tokens replacing the faulty parts (e.g., generating the LaTeX
script with green background in Figure 4). The final refined
LaTeX script can be easily reconstructed from the prompt
and refinement model’s generation, which is the non-faulty
parts (LaTeX script before the faulty location) followed by
the refinement model’s generation.

Formally, given the incorrect LaTeX script C; and faulty
location [;, we notate the ground-truth of the refined part to
be R; = {ri1,72,...,7m}, then the training objective of the
refinement model is minimizing the negative log-likelihood
of generating the R; based on the prompt by updating the
model’s weights 0/,

LR(QIWR) = — IOg(P(RiHCli,CliJrh P <\S>,
Clyeony Clifl}, A(I, Iz)))

During inference, the predicted faulty location I gener-
ated by the fault localization model is used to build the
prompt for the refinement model. The refinement model
will generate the refined part R, = {ri,r5,...,7 .}
The final refined LaTeX script is constructed as C; 11 =

/ /
{er, o1,)

@

Experimental Setup
Datasets

For formulae recognition, we use IMG2LATEX-100K, which
consists of 103,556 rendered images of mathematical formu-
lae and the corresponding LaTeX scripts, collected from over
60,000 published academic documents (Deng et al. 2017).
During preprocessing, the source LaTeX scripts are first ren-
dered to PDF format and then converted to PNG format with
240 dpi. Then, the PNG images are either resized or padded
to the resolution of 1344 x 224 pixels.

For table recognition, as there are no open-sourced
datasets for end-to-end LaTeX table recognition yet, this
work constructs a new dataset, TAB2LATEX. TAB2LATEX con-
sists of 97,532 rendered images of tables (resolution of
1344 x 672 pixels) and their LaTeX sources.

Formula Models Training

We use the default split of the IMG2LATEX-100k dataset,
which has 73,812 training, 18,672 validation, and 10,072

test instances, to train the generation model. We fine-tune the
pre-trained Nougat-base model (Blecher et al. 2023), using
a batch size of 16. The model weights are optimized using
the AdamW (Loshchilov and Hutter 2019) optimizer, with
the learning rate set to 3e~°, using 1,000 steps of warm-up
and adjusted by a cosine decay scheduler.

For fault localization and refinement models, we collect
incorrect LaTeX sources by sampling 20 LaTeX sources per
image in the training set of IMG2LATEX-100K (sampling tem-
perature set to 0.8). The sampled LaTeX sources are ren-
dered and compared with the ground-truth images to judge
their correctness, among which we collect 569,499 incor-
rect LaTeX sources and their corresponding ground-truth re-
finement. Fault localization and refinement models are fine-
tuned independently, but both from the Nougat-base check-
point and for one epoch, using a batch size of 32. The opti-
mizer, and learning rate are the same as above.

Table Models Training

For table recognition, the generation model is fine-tuned on
TaB2LATEX (87,513 training, 5,000 validation, and 5,000 test
instances). The other hyper-parameters are set in the same
way as the fine-tuning of the generation model for formulae.
The training data for fault localization and refinement mod-
els are collected in the same way as formulae, which contain
326,185 incorrect LaTeX sources and their ground-truth re-
finements.

Results

To evaluate LATTE on LaTeX recognition, we study the fol-
lowing research questions:

* RQ1: What is the recognition accuracy of LATTE?
* RQ2: How is LATTE’s iterative refinement ability?
* RQ3: What is the impact of each design of LATTE?

Since LATTE refines incorrect LaTeX sources iteratively
before generating the correct ones or reaching the budget, we
use LATTEy, to present our approach with at most k£ rounds
of generation (one round of generation and k£ — 1 round of
refinements). LATTE; refers to the result of only generating
the initial draft using the LATTE’s generation model M.
LATTEs, LATTE3, and LATTE, refer to the result of letting
LATTE refine the incorrect LaTeX sources for one, two, and
three rounds. We let LATTE refine at most three rounds.

RQ1: LATTE Recognition Accuracy

We used the five metrics for evaluation. Match (exact
match accuracy) requires the rendered generated LaTeX
source to have the same pixel values as the ground-truth
image. CW-SSIM (Sampat et al. 2009) (complex-wavelet
structural similarity index) measures the structural simi-
larity between rendered and ground-truth images (we use
MATLAB’s implementation (Mehul 2024) with level=4,
or=8, K=0.01). BLEU (Papineni et al. 2002) measures
the textual similarity between the generated LaTeX source
and the ground-truth LaTeX source (we report BLEU-4).
Edit measures the column-wised edit distance between the
rendered image and the ground-truth image, calculated by

Method Match + CW-SSIM T BLEU 1 Edit T Time |
WYGIWYS 77.46 - 87.73 87.60 -
DA 79.81 - 88.42 88.57 -
EDPA 82.07 - 9231 91.39 -
WAP 82.08 - 88.21 89.58 -
MI2LaTeX 82.33 - 90.28 91.90 -
ConvMath 83.41 - 88.33 90.80 -
Vary-1.8B 11.91 0.7895 69.46 63.47 2.27s
Llava-v1.5-7B 13.54 0.7548 7540 64.61 2.29s
LATTE, 82.27 0.9462 9291 93.11 0.87s
LATTE> 90.44 0.9844 93.25 97.69 1.53s

Table 1: Evaluation on IMG2LATEX-100K.

Method Match + CW-SSIM + BLEU 1 Edit T Time |
Vary-1.8B 6.92 06253 62.89 30.50 7.13s
Llava-vl.57B 1390 0.7278 64.19 39.84 6.13s
LATTE; 4520 08128 79.06 73.82 2.24s
LATTE> 59.18 0.8221 8381 77.51 5.34s

Table 2: Evaluation on TAB2LATEX.

1 — column-wised editdistance 1 aqt]y we report the used time per
number of pixel columns

sample for available techniques.

We compare LATTE with a wide range of previous SO-
TAs (Long, Hong, and Yang 2023; Wang and Liu 2021; Yan
etal. 2021; Zhang, Bai, and Zhu 2019; Deng et al. 2017), and
also other MLLMs including a Vary-1.8B (Wei et al. 2023)
model fully fine-tuned using the training data, and a Llava-
v1.5-7B (Liu et al. 2023a) model fine-tuned using LoRA (Hu
et al. 2022). Lastly, we also report the performance of com-
mercial tools such as GPT-4V, Gemini-1.5-Pro, and Mathpix
(commercial software for LaTeX recognition).

Formulae Table 1 shows the evaluation of LATTE; and
LATTE; (the study of LATTE3 and LATTE, are in RQ2). On
IMG2LATEX-100K benchmark, with one round of refinement,
LATTE; successfully refines 823 incorrect LaTeX sources
from LATTE; and achieves 90.44% Match, significantly out-
performing all the existing state-of-the-art techniques. The
CW-SSIM, BLEU, and Edit scores are also improved with
the refinement by 0.0382, 0.34%, and 4.58%.

Tables Table 2 shows the evaluation results on TAB2LATEX.
As there are no open-sourced tools we can directly run on
table recognition, we compare LATTE; and LATTE, with
the fine-tuned Vary-1.8B and Llava-v1.5-7B. LATTE; s fine-
tuned generation model generates LaTeX sources for tables
matching 2,260 samples out of 5,000 (45.20% Match). The
lower scores of the evaluation metrics suggest the challenge
and potential for improvement of LaTeX table recognition.
With one round of refinement, LATTEs correctly refines 699
incorrect sources and boosts the Match to 59.18%. The CW-
SSIM, BLEU, and Edit scores are also improved by 0.0093,
4.75%, and 3.68%. Both LATTE; and LATTE, significantly
outperform the other MLLMs we fine-tuned.

Match CW-SSIM
® IMG2LATEX-100K = TAB2LATEX ® IMG2LATEX-100K = TAB2LATEX
100 1.00
80 o044 931 9332 0.95 e (0.9844 0.9861 0.9853

0.90 | 0.9462
0.85 [0.8128 0.8221 0.8273 0.826

8227 59.18 59.4 59.68

60| 455 A——=—=

LATTE1 LATTE2 LATTE3 LATTE4 LATTE1 LATTE2 LATTE3 LATTE4

Figure 5: Evaluation of LATTE; to LATTE,.

Comparing with Commercial Tools Table 3 shows the
comparison with commercial tools on a subset of 100 sam-
ples from IMG2LATEX-100k and TAB2LATEX. Similarly, we use
GPT-4V; to refer to prompting GPT-4V to generate the ini-
tial draft of LaTeX source, and GPT-4Vj, to refer to prompt-
ing it for one round of refinement of the incorrect sources
(same for Gemini-1.5-Pro, and Mathpix is not applicable
for refinement). We use few-shot learning (Brown et al.
2020) with three shots provided when prompting GPT-4V
and Gemini-1.5-Pro for generation and refinement.

Table 3 shows that GPT-4V, Gemeni-1.5-Pro and Math-
pix fail to generate the correct LaTeX source code most of
the time. They also do not show the ability to effectively
refine the incorrect LaTeX source with rendering feedback.
Both LATTE; and LATTE; generate significantly more cor-
rect LaTeX sources than commercial MLLMs and software.

RQ2: LATTE’s Iterative Refinement Ability

Figure 5 shows the results when LATTE refines multiple
rounds. On IMG2LATEX-100k, LATTE’s Match keeps increas-
ing, from 82.27% to 93.32% after three rounds of refine-
ment, with the most significant improvement during the
first refinement iteration. Similarly, for TAB2LATEX, LATTE’S
Match increases from 45.20% to 59.68% in three rounds of
refinement, and the biggest gain also happens at the first re-
finement round, by 13.99%. For CW-SSIM, LATTE’s per-
formance on IMG2LATEX-100K first increases from 0.9462 to
0.9844, which is a big gain of 0.0382, then fluctuates around
it. The improvements on TAB2LATEX are more moderate com-
pared to that of IMG2LATEX-100K, by 0.0930 in the first round,
with the remaining rounds staying around the same values.
Overall, LATTE shows the ability to consistently improve
the Match result by conducting iterative refinements, while
the first round of refinement brings the most improvements.

RQ3: Impact of Each Component of LATTE

LATTE contains two designs: the delta-view feedback,
and the fault localization model. To illustrate the effective-
ness of each component, we design an ablation study by
comparing LATTE with the following variants (only one
round of refinement is conducted using each method):

* LATTE_f;_g4, is LATTE without fault localization and
delta-view. The refinement model generates a new La-
TeX source (instead of starting from the fault location),
given the original ground truth image.

* LATTE_j; is LATTE without fault localization. The re-
finement model generates a new LaTeX source, with
delta-view as the feedback.

Method IMG2LATEX-100K TAB2LATEX

Match1 CW-SSIM1T BLEUT Edit1 Match1 CW-SSIMT BLEUT{ Edit1
GPT-4V;, 3.00 0.7480 52.77 61.25 2.00 0.5189 49.56 8.98
GPT-4V, 7.00 0.7212 50.87 59.46 2.00 0.5059 44.22 5.64
Gemini 19.00 0.6485 21.47 63.60 0.00 0.3482 35.19 0.94
Geminis 19.00 0.6191 25.78 61.58 0.00 0.3911 37.58 1.27
Mathpix 20.00 0.8684 20.71 84.44 11.00 0.6749 49.45 28.31
LATTE; 77.00 0.9878 92.45 97.68 40.00 0.8659 77.53 67.49
LATTE> 87.00 0.9778 93.72 96.92 67.00 0.8723 83.82 77.36

Table 3: Comparison with commercial tools on 100 samples from IMG2LATEX-100k and TAB2LATEX.

IMG2LATEX-100K TAB2LATEX
Method
Match T Ref. Rate { Match 1 Ref. Rate 1
LATTE_f;1—q0 86.42 23.40 49.86 8.50
LATTE_f; 88.55 35.44 59.52 26.13
LATTE 90.44 46.08 59.18 25.51
LATTE" 90.45 46.14 59.72 26.50

Table 4: Impact of Fault Localization and Delta-View.

Table 4 shows the comparison between LATTE_ f;_ gy,
LATTE_; and LATTE. Match and refinement rate (the num-
ber of correct refinements divided by the total number of
incorrect sources that need refinement) are reported. By
using delta-view as feedback, LATTE_y; outperforms
LATTE_ ¢;_g4, on formulae by 2.13% more Match (88.55%
vs. 86.42%), and 12.04% higher refinement rate (35.44%
vs. 23.40%). On tables dataset, LATTE_y; benefits from
delta-view by improving the Match from 49.86% to
59.52% and refinement rate from 8.50% to 26.13%. Results
show that de1ta-view is much more effective than just pro-
viding the ground-truth image.

As for the fault localization model, when comparing
LATTE and LATTE_ f;, the fault localization model helps the
refinement model refine more incorrect formulae (46.08%
vs. 35.44%), further increasing the Match from 88.55% to
90.44%. On the tables dataset, a slight decrease is observed,
that using the fault localization model decreases the Match
by 0.34%. Such a decrease may be due to the lower fault
localization accuracy on tables than on formulae.

To better understand the impact of fault localization, Fig-
ure 6 (a) shows the fault localization accuracy on formulae
and tables scripts with different lengths. On formulae, the
fault localization accuracy (with delta-view or not) drops
dramatically when the incorrect LaTeX scripts get longer. Yet
the accuracy when using delta-view as feedback still con-
sistently outperforms the accuracy when using the ground-
truth image as feedback and the overall average is 60.53%
versus 53.36%. Surprisingly, we find the fault localization
accuracy does not drop much with longer incorrect tables,
although the overall average accuracy of using delta-view
is much higher (5§6.90% versus 45.22%).

Figure 6 (b) shows the refinement model’s successful re-
finement rate on incorrect formulae and tables with different
lengths. On formulae, the refinement rate also drops signifi-
cantly when the incorrect LaTeX script gets longer. Addition-

(a) Fault Localization Accuracy (b) Refinement Rate

® Formulae Formulae (-dv) ® Formulae (c) Formulae (w)
® Tables Tables (-dv) ® Tables (c) Tables (w)
70 60
60
40
50
20
40
30 0
& %'196\ qf’\m\ ’\qu 'Lbb(g \{L%\ Q{‘l?)b\ @6\{1’\ \Qq/"‘ &
P @»{V o &P g N

Figure 6: (a) Fault localization accuracy with delta-view
and with ground-truth image (-dv). (b) Success refinement
rate under correct (c¢) or wrong (w) fault localization. The
x-axis is the length, in the number of characters, of the in-
correct LaTeX to be refined.

ally, when the fault localization model predicts the faulty
location correctly, the refinement model has a higher suc-
cess rate. On the tables dataset, the trend is slightly different,
as the refinement rate is always low if the fault localization
model predicts incorrect faulty locations.

Potential Improvement By digging into the fault local-
ization accuracy, we see potential space for improvement by
combining LATTE with LATTE_;, referred to as LATTE"
in Table 4. LATTE* uses LATTE_j; to refine incorrect La-
TeX scripts with more than 512 characters, and uses LATTE
to refine those shorter than 512 characters. Such a simple
ensemble reaches a higher Match and refinement rate than
each single approach. Despite such potential, LATTE is still
the most effective single approach overall, and advanced en-
semble approaches could be promising future work.

Related Work
LaTeX Recognition

Existing work on LR includes rule-based, grammar-based,
and deep learning-based methods (Yan et al. 2021).
Learning-based solutions utilize the encoder-decoder archi-
tecture to tackle LR. The encoders often consist of convolu-
tion neural networks to extract image features with the de-
coders being recurrent neural networks to generate the out-
put sequence in an end-to-end manner (Zhang et al. 2017;
Peng et al. 2021; Zhang, Bai, and Zhu 2019; Wang and
Liu 2021; Long, Hong, and Yang 2023; Mirkazemy et al.

2023). On table recognition, due to the difficulty, earlier
work mainly focuses on table detection and table struc-
ture recognition (Hashmi et al. 2021). Recently, IBM re-
searchers proposed an encoder-dual-decoder model to sepa-
rately collect the structural information and contents within
table cells (Zhong, ShafieiBavani, and Jimeno Yepes 2020).
However, even with all such information, users still strug-
gle with reproducing the renderable source of LaTeX tables,
as the structure and content extracted cannot be combined.
Conversely, another work proposes a dataset (Deng, Rosen-
berg, and Mann 2019) containing pairs of table images and
the corresponding LaTeX source code. This is the only work
we have found that works on the end-to-end LaTeX table
recognition, yet their dataset is not accessible anymore.

This work not only adds the iterative-refinement pipeline
to the generation process but also includes a fault localiza-
tion model to predict the faulty location for those incorrect
sources to improve the recognition accuracy. The proposed
TaB2LATEX dataset contains 97K well-filtered table images
and source code pairs and fills the blank of the end-to-end
LaTeX tables recognition dataset.

Iterative Refinement Framework

Researchers have identified the process of refining one’s an-
swer as a typical part of the problem-solving process (Am-
abile 1983; Simon 1962; Jiang et al. 2024), which has been
added to numerous fields, e.g., program repair, code, and
text generation. Existing work on the program repair applies
automatic refinement for repair and fault localization on im-
perative programs based on symbolic execution (K&nighofer
and Bloem 2011). For code and text generation, some work
prompts the LLM to provide feedback by itself, then re-
fine its answer without additional training (Madaan et al.
2023; Chen et al. 2023c), while others fine-tune the LLMs
to enhance their ability to adopt the feedback (Scheurer
et al. 2023; Chen et al. 2023a) for better refinement. This
work is the first to apply the iterative refinement framework
within the field of LR. Applying iterative-refinement in LR
is new and has unique challenges regarding providing ef-
fective image feedback. LATTE introduces delta-view as
novel feedback to address such challenges in multi-modal
generation and refinement, which is shown to be helpful in
the ablation study.

Multi-Modal Large Language Models

Many MLLMs have shown great ability in vision and text
tasks, such as image captioning (Radford et al. 2021; Li
et al. 2022, 2023a), image understanding (Lee et al. 2023),
visual question answering (Li et al. 2022, 2023a; Liu et al.
2023b,a; Dai et al. 2023), etc. The early paradigm for build-
ing MLLMs involves jointly training vision and text mod-
els, e.g., CLIP and BLIP (Radford et al. 2021; Li et al.
2022). Later work train adapters to connect the pre-trained
vision encoder and text decoder, to borrow the strong text
generation ability of textual LLMs without retraining from
scratch (Liu et al. 2023b; Dai et al. 2023; Liu et al. 2023a;
Li et al. 2023a; Bai et al. 2023; Chen et al. 2023b). How-
ever, most existing MLLMs (including GPT-4V) are opti-
mized for understanding pictures and natural language, not

document images and LaTeX. Nougat (Blecher et al. 2023)
is the only existing MLLM pre-trained on documents, on
which we build LATTE’s models.

Limitation

One limitation of our work is that we only explore Nougat
as LATTE’s backbone model. Many other MLLMSs, such as
Llava and Vary, can be used as our backbone model. How-
ever, they are mostly pre-trained on natural language and
pictures and show very poor performance on LaTeX recogni-
tion. Nougat is the best MLLM we can find, and it is domi-
nantly pre-trained on documents.

Another possible limitation of LATTE is that existing
metrics evaluate LATTE and other related LaTeX recogni-
tion work cannot reflect human’s preference on rendered
LaTeX formulae or tables results. These metrics are either
very harsh, i.e., pixel level matching, or only consider one-
dimensional column-wise matching. To make our evaluation
more robust, we add CW-SSIM to investigate the structural
similarity of the rendered formulae or tables, but there could
be potentially better metrics.

Conclusion

This work proposes LATTE, the first iterative-refinement ap-
proach for Latex recognition for both formulae and tables.
LATTE uses a generation model to produce LaTeX sources
from images; and builds a fault localization model and a re-
finement model to refine the generated LaTeX source itera-
tively. To provide effective feedback to the iterative process,
this work proposes the ImageEdit algorithm, which gen-
erates delta-view that pinpoints the difference between
the ground truth and rendered images. This work also con-
structs a new LaTeX table recognition dataset TAB2LATEX.
With one round of refinement, LATTE outperforms existing
techniques by 7.03% of the exact match on LaTeX formulae
recognition. Besides, LATTE’s formulae and table recogni-
tion ability exceed commercial tools by a significant mar-
gin, showing great generalizability and effectiveness. In the
future, it would be promising to develop better algorithms
for pinpointing image differences for tables and formulae to
boost the performance of our iterative refinement approach.

Acknowledgments

This research was supported in part by NSF 1901242 and
2006688 and a CFI fund.

References

Amabile, T. M. 1983. A Theoretical Framework, 65-96.
New York, NY: Springer New York. ISBN 978-1-4612-
5533-8.

Anderson, R. H. 1967. Syntax-directed recognition of hand-
printed two-dimensional mathematics. In Symposium on In-
teractive Systems for Experimental Applied Mathematics:
Proceedings of the Association for Computing Machinery
Inc. Symposium, 436-459. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450373098.

Bai, J.; Bai, S.; Yang, S.; Wang, S.; Tan, S.; Wang, P;
Lin, J.; Zhou, C.; and Zhou, J. 2023. Qwen-VL: A Fron-
tier Large Vision-Language Model with Versatile Abilities.
arXiv preprint arXiv:2308.12966.

Blecher, L.; Cucurull, G.; Scialom, T.; and Stojnic, R. 2023.
Nougat: Neural Optical Understanding for Academic Docu-
ments. arXiv:2308.13418.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, 1.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. CoRR, abs/2005.14165.

Chen, A.; Scheurer, J.; Korbak, T.; Campos, J. A.; Chan,
J. S.; Bowman, S. R.; Cho, K.; and Perez, E. 2023a. Improv-
ing Code Generation by Training with Natural Language
Feedback. arXiv:2303.16749.

Chen, L.; Li, J.; Dong, X.; Zhang, P.; He, C.; Wang, J.;
Zhao, F.; and Lin, D. 2023b. ShareGPT4V: Improving Large
Multi-Modal Models with Better Captions. arXiv preprint
arXiv:2311.12793.

Chen, X.; Lin, M.; Schirli, N.; and Zhou, D. 2023c.
Teaching Large Language Models to Self-Debug.
arXiv:2304.05128.

Dai, W.; Li, J.; Li, D.; Tiong, A. M. H.; Zhao, J.; Wang, W.;
Li, B.; Fung, P,; and Hoi, S. 2023. InstructBLIP: Towards
General-purpose Vision-Language Models with Instruction
Tuning. arXiv:2305.06500.

Deng, Y.; Kanervisto, A.; Ling, J.; and Rush, A. M. 2017.
Image-to-markup generation with coarse-to-fine attention.
In Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70,1ICML’17, 980-989. JMLR.org.

Deng, Y.; Rosenberg, D.; and Mann, G. 2019. Challenges
in End-to-End Neural Scientific Table Recognition. In 2019
International Conference on Document Analysis and Recog-
nition (ICDAR), 894-901.

Hashmi, K. A.; Liwicki, M.; Stricker, D.; Afzal, M. A.;
Afzal, M. A.; and Afzal, M. Z. 2021. Current Status and Per-
formance Analysis of Table Recognition in Document Im-
ages with Deep Neural Networks. CoRR, abs/2104.14272.

Hossain, S. B.; Jiang, N.; Zhou, Q.; Li, X.; Chiang, W.-H.;
Lyu, Y.; Nguyen, H.; and Tripp, O. 2024. A Deep Dive into
Large Language Models for Automated Bug Localization
and Repair. Proc. ACM Softw. Eng., 1(FSE).

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank Adap-
tation of Large Language Models. In International Confer-
ence on Learning Representations.

Jiang, N.; Li, X.; Wang, S.; Zhou, Q.; Hossain, S. B.; Ray,
B.; Kumar, V.; Ma, X.; and Deoras, A. 2024. LeDex:
Training LLMs to Better Self-Debug and Explain Code.
arXiv:2405.18649.

Kayal, P.; Anand, M.; Desai, H.; and Singh, M. 2022. Ta-
bles to LaTeX: structure and content extraction from scien-
tific tables. International Journal on Document Analysis and
Recognition (IJDAR), 26(2): 121-130.

Konighofer, R.; and Bloem, R. 2011. Automated error local-
ization and correction for imperative programs. In Proceed-
ings of the International Conference on Formal Methods
in Computer-Aided Design, FMCAD 11, 91-100. Austin,
Texas: FMCAD Inc. ISBN 9780983567813.

Kuchta, T.; Lutellier, T.; Wong, E.; Tan, L.; and Cadar, C.
2018a. On the correctness of electronic documents: study-
ing, finding, and localizing inconsistency bugs in PDF read-
ers and files. Empirical Software Engineering, 23(6): 3187—
3220.

Kuchta, T.; Lutellier, T.; Wong, E.; Tan, L.; and Cadar, C.
2018b. On the correctness of electronic documents: study-
ing, finding, and localizing inconsistency bugs in PDF read-
ers and files. FSE Journal First, Empirical Software Engi-
neering, 23(6): 3187-3220.

Lee, K.; Joshi, M.; Turc, I.; Hu, H.; Liu, F.; Eisenschlos, J.;
Khandelwal, U.; Shaw, P.; Chang, M.-W.; and Toutanova,
K. 2023. Pix2Struct: Screenshot Parsing as Pretraining for
Visual Language Understanding. arXiv:2210.03347.

Li, J.; Li, D.; Savarese, S.; and Hoi, S. 2023a. BLIP-2:
bootstrapping language-image pre-training with frozen im-
age encoders and large language models. In Proceedings

of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org.

Li, J,; Li, D.; Xiong, C.; and Hoi, S. 2022. BLIP: Boot-
strapping Language-Image Pre-training for Unified Vision-
Language Understanding and Generation. In Chaudhuri, K.;
Jegelka, S.; Song, L.; Szepesvari, C.; Niu, G.; and Sabato,
S., eds., Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, 12888—-12900. PMLR.

Li,M.; Lv, T;; Chen, J.; Cui, L.; Lu, Y.; Florencio, D.; Zhang,
C.; Li, Z.; and Wei, FE. 2023b. TrOCR: Transformer-based
Optical Character Recognition with Pre-trained Models. In
AAAI 2023.

Liu, H.; Li, C.; Li, Y.; and Lee, Y. J. 2023a. Improved Base-
lines with Visual Instruction Tuning.

Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023b. Visual Instruc-
tion Tuning. arXiv:2304.08485.

Long, J.; Hong, Q.; and Yang, L. 2023. An Encoder-Decoder
Method with Position-Aware for Printed Mathematical Ex-
pression Recognition. In Fink, G. A.; Jain, R.; Kise, K.; and
Zanibbi, R., eds., Document Analysis and Recognition - IC-
DAR 2023, 167-181. Cham: Springer Nature Switzerland.
ISBN 978-3-031-41676-7.

Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. arXiv:1711.05101.

Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Gupta, S.; Majumder, B. P.; Hermann, K.; Welleck, S.;
Yazdanbakhsh, A.; and Clark, P. 2023. Self-Refine: Iterative
Refinement with Self-Feedback. arXiv:2303.17651.

Mehul. 2024. Complex-Wavelet Structural Similarity Index
(CW-SSIM). MATLAB Central File Exchange. Retrieved
March 7, 2024.

Mirkazemy, A.; Adibi, P.; Ehsani, S. M. S.; Darvishy, A.;
and Hutter, H.-P. 2023. Mathematical expression recogni-
tion using a new deep neural model. Neural Networks, 167:
865-874.

Olausson, T. X.; Inala, J. P.; Wang, C.; Gao, J.; and Solar-
Lezama, A. 2023. Demystifying GPT Self-Repair for Code
Generation. arXiv:2306.09896.

Pang, N.; Yang, C.; Zhu, X.; Li, J.; and Yin, X.-C. 2021.
Global Context-Based Network with Transformer for Im-
age2latex. In 2020 25th International Conference on Pattern
Recognition (ICPR), 4650—4656.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meeting on Asso-
ciation for Computational Linguistics, ACL *02, 311-318.
USA: Association for Computational Linguistics.

Peng, S.; Gao, L.; Yuan, K.; and Tang, Z. 2021. Image to
LaTeX with Graph Neural Network for Mathematical For-
mula Recognition. In Document Analysis and Recognition
— ICDAR 2021: 16th International Conference, Lausanne,
Switzerland, September 5-10, 2021, Proceedings, Part II,
648-663. Berlin, Heidelberg: Springer-Verlag. ISBN 978-
3-030-86330-2.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transfer-
able Visual Models From Natural Language Supervision. In
Meila, M.; and Zhang, T., eds., Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, 8748-8763.
PMLR.

Sampat, M. P.; Wang, Z.; Gupta, S.; Bovik, A. C.; and
Markey, M. K. 2009. Complex Wavelet Structural Similar-
ity: A New Image Similarity Index. IEEE Transactions on
Image Processing, 18(11): 2385-2401.

Scheurer, J.; Campos, J. A.; Korbak, T.; Chan, J. S.; Chen,
A.; Cho, K.; and Perez, E. 2023. Training Language Models
with Language Feedback at Scale. arXiv:2303.16755.
Simon, H. A. 1962. The Architecture of Complexity. Pro-
ceedings of the American Philosophical Society, 106(6):
467-482.

Wagner, R. A.; and Fischer, M. J. 1974. The String-to-String
Correction Problem. J. ACM, 21(1): 168-173.

Wang, Z.; and Liu, J.-C. 2021. Translating math formula
images to LaTeX sequences using deep neural networks with
sequence-level training. International Journal on Document
Analysis and Recognition (IJDAR), 24(1): 63-75.

Wei, H.; Kong, L.; Chen, J.; Zhao, L.; Ge, Z.; Yang, J.; Sun,
J.; Han, C.; and Zhang, X. 2023. Vary: Scaling up the Vi-
sion Vocabulary for Large Vision-Language Models. arXiv
preprint arXiv:2312.06109.

Yan, Z.; Zhang, X.; Gao, L.; Yuan, K.; and Tang, Z. 2021.
ConvMath: A Convolutional Sequence Network for Mathe-
matical Expression Recognition. In 2020 25th International

Conference on Pattern Recognition (ICPR), 4566-4572. Los
Alamitos, CA, USA: IEEE Computer Society.

Zhang, J.; Du, J.; Zhang, S.; Liu, D.; Hu, Y.; Hu, J.; Wei, S.;
and Dai, L. 2017. Watch, attend and parse: An end-to-end
neural network based approach to handwritten mathematical
expression recognition. Pattern Recognition, 71: 196-206.

Zhang, W.; Bai, Z.; and Zhu, Y. 2019. An Improved Ap-
proach Based on CNN-RNNs for Mathematical Expression
Recognition. In Proceedings of the 2019 4th International
Conference on Multimedia Systems and Signal Processing,
ICMSSP ’19, 57-61. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450371711.

Zhong, X.; ShafieiBavani, E.; and Jimeno Yepes, A. 2020.
Image-Based Table Recognition: Data, Model, and Evalua-
tion. In Vedaldi, A.; Bischof, H.; Brox, T.; and Frahm, J.-
M., eds., Computer Vision — ECCV 2020, 564-580. Cham:
Springer International Publishing. ISBN 978-3-030-58589-
1.

