# Are Large Language Models Good at Generating Software Specifications? Yes, but not Quite.

Danning Xie<sup>1</sup>, Byungwoo Yoo<sup>2</sup>, **Nan Jiang<sup>1</sup>**, Mijung Kim<sup>2</sup>, Lin Tan<sup>1</sup>, Xiangyu Zhang<sup>1</sup>, Judy S Lee<sup>3</sup>

# Motivation

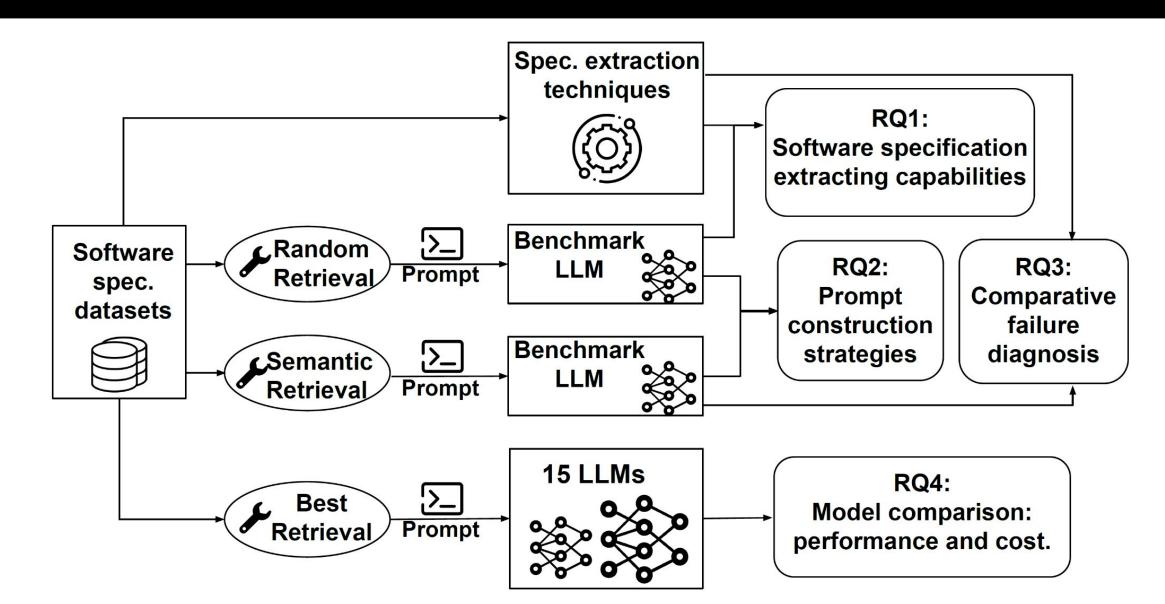
- Software specifications are essential for ensuring the reliability of software systems.
- Existing approaches on specifications extraction (from comments or documents) are domain-specific and semi-automatic.

Function signature: isNullOrEmpty(java.lang.String string) Javadoc comment: @return true if the string is null or is an empty string Specification extracted by Jdoctor: string==null | string.isEmpty() -> methodResultID==true

Are LLMs effective in generating software specifications from documentation or comments?

What are the strengths and weaknesses of LLMs for software specification generation compared to traditional approaches?

# **Study Overview**



#### Studied datasets and techniques:

- Jdoctor: translates Javadoc comments (@param, @returns, @throws) into specifications
- **DocTer:** extracts DL-specific constraints (e.g., tensor shapes) from API documentation.

#### Benchmark model — Starcoder

• 15.5 B, open-source, long input support (8,192 tokens)

## **Few-Shot Learning**

Signature:  $\langle x_i - signature \rangle$ Javadoc comment:  $\langle x_i - comment \rangle$ Specification:  $\langle y_i \rangle$ 

Signature:  $\langle x_K - \text{signature} \rangle$ Javadoc comment:  $\langle x_{\kappa}$ - comment>

Specification:  $\langle y_{\nu} \rangle$ Signature:  $\langle x_{target}$  - signature>

Javadoc comment:  $\langle x_{target}$  - comment>

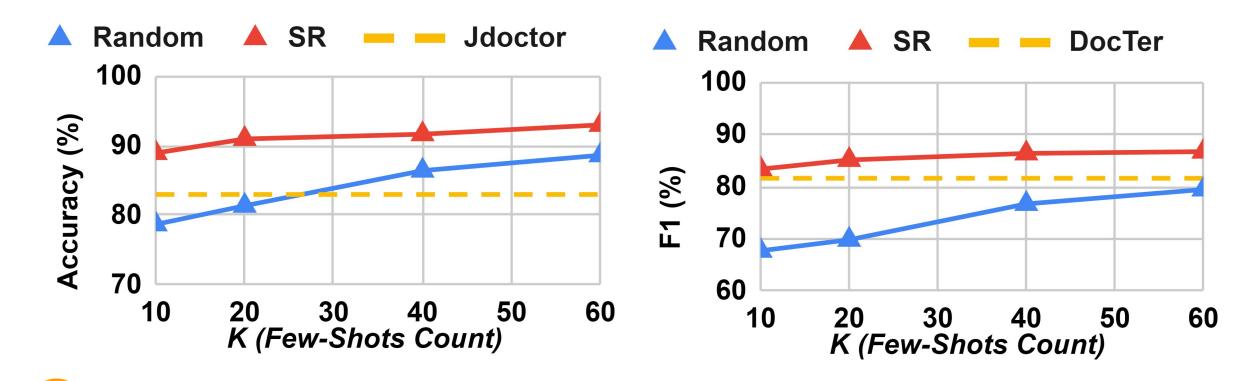
**Specification:** 

Random Retrieval: Randomly selecting K samples as the few-shots.

Semantic Retrieval (SR):

Applying a RoBERTa model as the semantic retrieval model to select the <u>most semantically similar</u> **K** samples as the few-shots.

# RQ1 & 2: Specification Extraction Capability



Starcoder, with 10–60 of randomly selected examples, achieves comparable results with the SOTA specification extraction tools.

Semantic retrieval (SR) strategy further improves Starcoder's performance to **outperforming SOTA approaches**.

# **RQ4: Model Comparison**

"-" denotes experiments skipped due to token limits.

| Approach/<br>Model (+SR) |         | #param  | open-<br>source? | Overall Accuracy (%) |      |      |      | Cost  |
|--------------------------|---------|---------|------------------|----------------------|------|------|------|-------|
|                          |         |         |                  | K=10                 | 20   | 40   | 60   | (\$)  |
| Jdoctor                  |         |         | <b>✓</b>         | 83.0                 |      |      |      |       |
| StarCoder                |         | 15.5B   | ✓                | 88.9                 | 91.0 | 91.7 | 93.0 | 0     |
| GPT-3                    | davinci | 175B*   | X                | 92.9                 | 93.5 | 94.4 | 95.6 | 163.8 |
|                          | curie   | Unknown | X                | 54.3                 | 66.4 | _    | _    | 3.9   |
| <b>GPT-3.5</b>           | turbo   | Unknown | Х                | 89.3                 | 87.9 | 87.4 | 84.4 | 16.9  |
| BLOOM                    |         | 176B    | <b>✓</b>         | 86.8                 | -    | _    | -    | 0     |
| CodeGen<br>(Multi)       |         | 16B     | <b>√</b>         | 86.4                 | 88.4 | -    | _    | 0     |
|                          |         | 6B      | <b>✓</b>         | 86.0                 | 88.4 | _    | _    | 0     |
|                          |         | 2B      | ✓                | 82.8                 | 87.4 | _    | _    | 0     |
|                          |         | 350M    | ✓                | 68.7                 | 78.5 | _    | _    | 0     |
| CodeGen2                 |         | 16B     | ✓                | 86.5                 | 89.0 | _    | _    | 0     |
|                          |         | 7B      | <b>✓</b>         | 83.5                 | 88.3 | _    | _    | 0     |
|                          |         | 3.7B    | ✓                | 70.0                 | 80.4 | _    | _    | 0     |
|                          |         | 1B      | ✓                | 75.7                 | 81.7 | _    | _    | 0     |
| Incoder                  |         | 6B      | ✓                | 52.7                 | 61.6 | -    | _    | 0     |
|                          |         | 1B      | <b>√</b>         | 54.2                 | 62.9 | -    | -    | 0     |

Most LLMs achieve better or comparable performance as custom-built traditional specification extraction techniques.

**StarCoder**, an open-sourced model, is the *most competitive* model for extracting specifications, with its high performance, \$0 cost, and long prompt support, facilitating its adaptability and customization.

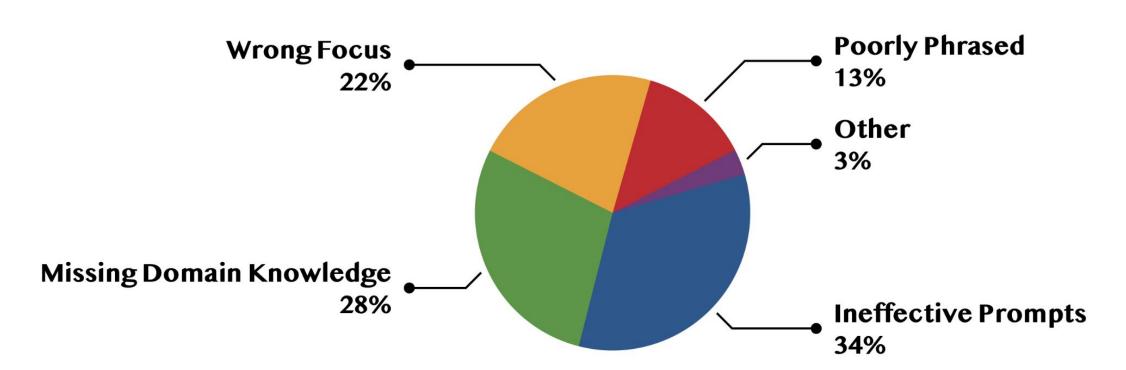
StarCoder's strong performance makes GPT3 Davinci less desirable given its size and cost. CodeGen and CodeGen2 are reasonable open-source alternatives.

# **RQ3: Failure Root Cause Analysis**

Manually sample and examine failing cases of both LLM and the baseline approaches to identify their unique failure root causes.

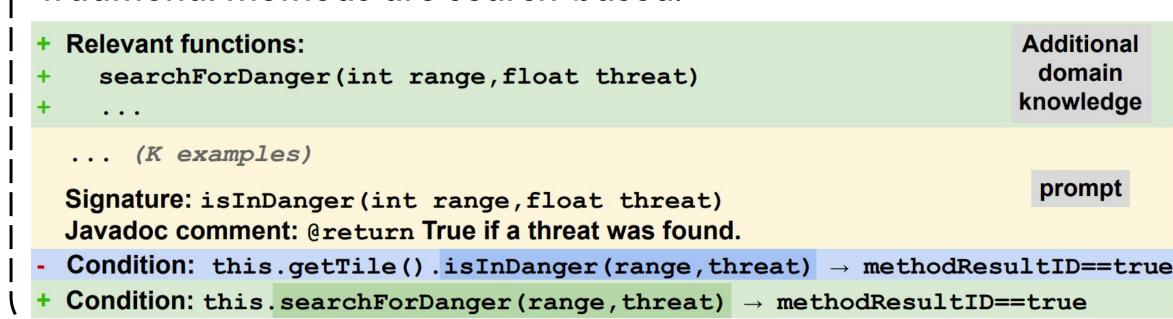
### Large Language Models

We identify the root causes of the LLM by manually fixing them.



*Ineffective prompts:* The examples selected in the prompts are not good enough. Fixed by manually selecting more relevant examples, or altering the order of examples.

Missing domain knowledge: LLM is lack of context while some traditional methods are search-based.



Wrong focus: values: 1-D or higher numeric `Tensor`. values: 1-D or higher `numeric` `Tensor`

**Poorly Phrased:** the original documents or comments are poorly written, ambiguous, or hard to understand even for humans.

Other: "contradictory document" and "unclear"

# **Baseline Approaches**

- Missing rule (78%)
- Incomplete Semantic Comprehension (13.5%)
- Incorrect Rule (8.5%)



