# Attacking and Improving the Tor Directory Protocol

**IEEE S&P 2024** 

#### Zhongtang Luo<sup>1</sup> Adithya Bhat<sup>1</sup> Kartik Nayak<sup>2</sup> Aniket Kate<sup>13</sup>

<sup>1</sup>Purdue University, <sup>2</sup>Duke University, <sup>3</sup>Supra Research

Attacking and Improving the Tor Directory Protocol

Attacking and Improving the Tor Directory Protocol

Anonymous communication service

around 4 million users daily.



Source: https://www.torproject.org/



Source: https://tor-https.eff.org/



Source: https://tor-https.eff.org/

# Tor Directory Servers

Attacking and Improving the Tor Directory Protocol

- Volunteered servers collect relay information (IP, public key, etc.) and publish them.
- Clients pick **one server** and fetch the information.

- Volunteered servers collect relay information (IP, public key, etc.) and publish them.
- Clients pick **one server** and fetch the information.
- Problem?
  - More servers = less security

"Every directory authority was a trust bottleneck: if a single directory authority lied, it could make clients believe for a time an arbitrarily distorted view of the Tor network. (Clients trusted the most recent signed document they downloaded.) Thus, adding more authorities would make the system **less secure**, not more."

> — Tor directory protocol, version 3 Source: https://spec.torproject.org/dir-spec/

Clients download from multiple servers and aggregate the information locally.

- Clients download from multiple servers and aggregate the information locally.
- Problem?
  - Directories had grown quite large. (~5 MiB × 9 authorities × 4 million users daily = ~180 TiB)
  - Partition Attack: different set of documents = different usage pattern

"It was possible under certain perverse circumstances for clients to download an unusual set of network status documents, thus **partitioning themselves** from clients who have a more recent and/or typical set of documents."

— Tor directory protocol, version 3 Source: https://spec.torproject.org/dir-spec/

## Tor Directory Servers: Now (Version 3)

- A small set (9 as of now) of semi-trusted directory authorities hard-coded
  - Every hour send a signed summary of this view (a "status vote") to the other authorities.
  - Compute the result of this vote including relay properties, and sign a "consensus document"
  - A consensus document is valid if more than half of the authorities signed on it.
  - Directory caches download, cache, and re-serve consensus documents (saving bandwidth).
- Proposed around 2007
  - Longest running blockchain (kind of) earlier than Bitcoin!

### Tor Directory Servers in Action



## How Secure Is the Current Tor Directory Protocol?

Attacking and Improving the Tor Directory Protocol

## Empirically...

#### Tor failed to make a consensus 2010/08/29 17:00

🕑 Closed 🔲 Issue created 13 years ago by Sebastian Hahn

Karsten found this in his log (note that gabelmoo is running on utc+2):

|                                                                               | Dir auths using an unsustainable 400+ mbit/s, need to diagnose and fix                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aug 29 18:55:09.585 [wa<br>Aug 29 19:00:01.727 [wa                            | Closed Dissue created 3 years ago by Roger Dingledine                                                                                                                                                                                                         |
| Aug 29 19:00:01.727 [wa<br>Aug 29 19:00:01.727 [wa<br>Aug 29 19:00:01.759 [wa | We've been having problems establishing a consensus lately. We realized that maatuska was rate limiting to only 10MBytes/s, and asked Linus to bump it up, so he did.                                                                                         |
| Aug 29 19:00:01.759 [wa<br>Aug 29 19:00:01.759 [wa                            | Then today we realized that morial was unable to serve dirport answers because it was maxed out at its BandwidthRate of 30MBytes. I raised<br>that to 50MBytes and it stayed maxed out. I have put it back down to 30MBytes so my host doesn't get too upset. |
| and sure enough, the authorities                                              | This is not a sustainable situation. We need to figure out what is asking the dir auths for so many bytes, and get it to stop or slow down.                                                                                                                   |
| Karsten made the status votes av                                              | This is a ticket to collect info and to brainstorm ideas.                                                                                                                                                                                                     |
|                                                                               |                                                                                                                                                                                                                                                               |

To upload designs, you'll need to enable LFS and have an admin enable hashed storage. More information

Source: https://gitlab.torproject.org/tpo/core/tor/-/issues/1890 Source: https://gitlab.torproject.org/tpo/core/tor/-/issues/33018

#### Suffers problems from network instability & DDoS

## **Bad Actor Incoming: Equivocation Attack**







Mock example of three authorities:

- $\blacksquare$  E is bad
- $\blacksquare$   $H_1$  votes 0
- $\blacksquare$   $H_2$  votes 1

E equivocates

- votes 0 to  $H_1$
- votes 1 to  $H_2$

- There are different consensuses!
- $\blacksquare H_1 \text{ signs } 0$
- $\blacksquare$   $H_2$  signs 1

#### Attack 1: Liveness Attack

- Any attacker can find one property of some relay that authorities split their votes on
  - Equivocating on it causes correct authorities to sign on different things!
  - Recall that a consensus document is valid if more than half of the authorities signed it
  - So if the division is 4-4, no valid consensus document

#### What's More...

- If the attacker signs and publishes one of the consensus documents, then the other is hidden (since a 4-signature document is not publishable)
  - Client observes no difference as a consensus with 5 signatures is the same as one with 9
  - The attacker can still sign on the other consensus privately and obtain 5 signatures
    - Bad things on the document anonymity attack
    - Circumvents all public detection measures that Tor is heavily reliant on (depictor, TorDoc, etc.)

#### Attack 2: Bandwidth Attack

- Attacker publishes a new honeypot relay with very large available bandwidth
  - Group of 3 authorities can dictate bandwidth for one relay
  - Trick clients to use with very high probability
- Usually very "loud" (detectable with public tools)
  - Main defense mechanism is public detection
  - With equivocation attack the attacker can make it silent!
- Tested
  - Verified on testnet

#### Attack 2: Bandwidth Attack

```
/* Pick a handwidth */
if (num mbws > 2) {
  rs out has bandwidth = 1:
  rs out.bw is unmeasured = 0;
  rs_out.bandwidth_kb =
    median uint 32 (measured bws kb. num mbws):
} else if (num bandwidths > 0) {
  rs out.has bandwidth = 1;
  rs out.bw is unmeasured = 1:
  rs out.bandwidth kb =
    median wint 32 (bandwidths kb. num bandwidths) :
  if (n authorities measuring bandwidth > 2) {
    /* Cap non-measured bandwidths, */
    if (rs out.bandwidth kb >
       max unmeasured bw kb) {
      rs out.bandwidth kb = max unmeasured bw kb:
```

```
r test010r kNeiqbQSrPh/JPuJiTrczlbNDTY Nf2VyvkI...
2022-04-05 17:27:05 127.0.0.1 5010 0
```

```
w Bandwidth=14597871
```

```
. . . . . . .
```

```
----BEGIN SIGNATURE-----
```

KtR7wLvxNtat1Kly71bjJVyWp9gwuPbggnQYBdZI8dWLm7M...

```
----END SIGNATURE-----
```

Apr 05 13:27:20.657 [warn] A consensus needs 5 good signatures from recognized authorities for us to accept it. This ns one has 2 (test003a test004a). 7 (test005a test000a test006a test006a test007a test007a test007a) of the authorities we know didn't sign it.

### Attack 3: Sybil Relay Attack

- Attacker publishes a ton of new honeypot relays
- Also usually "loud" (detectable with existing work and public tools)
  - The main defense mechanism is only public detection
  - No longer detectable with our attack!



- Tor makes heavy use of public audit mechanism
  - With the attack we can circumvent the audit in various ways
- Illustrates a meaningful relationship between real-life attacks and theoretical security
- We may not even know if such an attack happened in the past!

# How Can We Fix & Improve the Protocol?

Attacking and Improving the Tor Directory Protocol

# Reactively... We Can Detect Irregularities

#### TorEq: Online Equivocation Detector

Detection mechanism to see if irregular activities take place

- Periodically polls every authority for every vote received
- Merged into Tor codebase and live online!
  - https://consensus-health.torproject.org/

#### Validity of votes

This table monitors the votes each authority receives from other authorities.

| Sender     | Receiver                                                         |
|------------|------------------------------------------------------------------|
| moria1     | morial. tor26 dizum gabelmoo dannenberg maatuska longclaw bastet |
| tor26      | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| dizum      | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| gabelmoo   | moria1 tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| dannenberg | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| maatuska   | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| longclaw   | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |
| bastet     | morial tor26 dizum gabelmoo dannenberg maatuska longclaw bastet  |

## TorEq: Online Equivocation Detector

#### Performance is good

- Max ~5 min to generate report
- Limitation
  - Client places trust on the detector, creating a new trust bottleneck
  - If the detector is compromised then all bets are off

# Proactively... We Can Improve the Protocol

### What Problem Are We Solving?

- Produce a consensus document from a set of input
- The rules are complicated so local computation is easier
- The Interactive Consistency Problem: (Informally) Every server outputs the same set of values; Every correct server has their input in the set
- Implemented with parallel Byzantine Broadcast: (Informally) One (potentially faulty) server broadcasts to everyone; Every correct server agrees on the value broadcasted



- Currently bounded-synchrony setting; round time is 150 seconds
- Assume the attacker is Byzantine, i.e. may behave arbitrarily
- **Targeting** (2f + 1) security
- Particularities of Tor
  - A very low (9) number of nodes
  - Large document size (5MB)
  - Dated PKI structure
    - Public randomness, etc. can be hard to implement
  - Minimize attack surface
    - Minimize time in optimistic case

#### DirCast: New Protocol for Tor Directory

- Optimistically 4 rounds (lowest) with communication complexity *O*(*n*<sup>3</sup>)
- Two Phases: Bootstrap and Agreement
  - Bootstrap Phase
    - 2 rounds: Detects equivocation
    - Gives everyone a certificate C(x) for no equivocation
  - Agreement Phase
    - No crash: Everyone agrees, 2 rounds
    - If there is crash: Up to (*f* + 1) rounds, same as previous upper bound (Dolev-Strong, 1983)

#### DirCast: New Protocol for Tor Directory



#### DirCast: New Protocol for Tor Directory

#### Implementation

- Message Compression: broadcast only the diff from the previous consensus document
- Drastically cuts message size (~20%)
- Performance: Comparable to the current insecure protocol!



#### **Coordinated Disclosure**

- Reported on Apr 27, 2022
- Acknowledged on May 6, 2022
- Mitigation: Detector merged into the codebase on Aug 8, 2023
- Protocol: Tor is migrating to a Rust codebase, Arti
  - Looking to implement Directory Authority in Rust
  - Interesting collaboration ahead

#### **Authors**



Zhongtang Luo



Adithya Bhat



Kartik Nayak



Aniket Kate

Attacking and Improving the Tor Directory Protocol



- Discovered a protocol design vulnerability in the Tor consensus protocol
  - Exploited in the testnet that results in deanonymization
- Developed TorEq, a mitigation solution that reactively detects irregularities (already deployed)
- Proposed & prototyped DirCast, a secure improvement for the protocol