
DeGNN: Improving Graph Neural Networks with
Graph Decomposition

Xupeng Miao
∗1
, Nezihe Merve Gürel

∗2
, Wentao Zhang

∗3
, Zhichao Han

4
, Bo Li

5
, Wei Min

6
,

Susie Xi Rao
7
, Hansheng Ren

8
, Yinan Shan

9
, Yingxia Shao

10
, Yujie Wang

11
, Fan Wu

12
, Hui Xue

13
,

Yaming Yang
14
, Zitao Zhang

15
, Yang Zhao

16
, Shuai Zhang

17
, Yujing Wang

18
, Bin Cui

19
, Ce Zhang

20

1,3,11,19
Department of Computer Science & Key Lab of High Confidence Software Technologies (MOE), Peking University,

2,7,17,20
ETH Zurich,

4,6,9,15,16
eBay China,

5,12
UIUC,

8
UCAS China,

10
BUPT,

1,3
Tencent Inc.,

13,14,18
MSRA

1,3,11,18,19
{xupeng.miao, wentao_zhang, alfredwang, yujwang, bin.cui}@pku.edu.cn

2,7,17,20
{nezihe.guerel, raox, shuazhang, ce.zhang}@inf.ethz.ch

4,6,9,15,16
{zhihan, wmin, yshan, zitzhang, yzhao5}@ebay.com

8
renhansheng16@mails.ucas.edu.cn

5,12
{fanw6, lbo}@illinois.edu

10
shaoyx@bupt.edu.cn

ABSTRACT

Mining from graph-structured data is an integral component of

graph data management. A recent trending technique, graph convo-

lutional network (GCN), has gainedmomentum in the graphmining

field, and plays an essential part in numerous graph-related tasks.

Although the emerging GCN optimization techniques bring im-

provements to specific scenarios, they perform diversely in different

applications and introduce many trial-and-error costs for practition-

ers. Moreover, existing GCN models often suffer from oversmooth-

ing problem. Besides, the entanglement of various graph patterns

could lead to non-robustness and harm the final performance of

GCNs. In this work, we propose a simple yet efficient graph decom-

position approach to improve the performance of general graph

neural networks.We first empirically study existing graph decompo-

sition methods and propose an automatic connectivity-ware graph

decomposition algorithm, DeGNN. To provide a theoretical expla-

nation, we then characterize GCN from the information-theoretic

perspective and show that under certain conditions, the mutual

information between the output after 𝑙 layers and the input of GCN

converges to 0 exponentially with respect to 𝑙 . On the other hand,

we show that graph decomposition can potentially weaken the

condition of such convergence rate, alleviating the information

loss when GCN becomes deeper. Extensive experiments on various

academic benchmarks and real-world production datasets demon-

strate that graph decomposition generally boosts the performance

of GNN models. Moreover, our proposed solution DeGNN achieves

state-of-the-art performances on almost all these tasks.

CCS CONCEPTS

• Computing methodologies → Knowledge representation

and reasoning; •Mathematics of computing→ Information

theory; • Information systems→ Data mining.

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467312

KEYWORDS

Graph neural network, Graph decomposition, Information loss

ACM Reference Format:

Xupeng Miao, Nezihe Merve Gürel, Wentao Zhang, Zhichao Han, Bo Li,

Wei Min, Susie Xi Rao, Hansheng Ren, Yinan Shan, Yingxia Shao, Yujie

Wang, Fan Wu, Hui Xue, Yaming Yang, Zitao Zhang, Yang Zhao, Shuai

Zhang, Yujing Wang, Bin Cui, Ce Zhang. 2021. DeGNN: Improving Graph

Neural Networks with Graph Decomposition. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3447548.3467312

1 INTRODUCTION

Graph data is ubiquitous in various real-world applications, ranging

from social networks to business transaction data [4] as well as bib-

liographic data [7]. Extensive efforts have been put into the filed of

storage and access of graph data and numerous graph databases [13]

and query techniques [8, 12] have been proposed. Yet, effectively

utilizing graph data, i.e., node classification [37, 42, 44] or link

predictions [3], is also an integral component of graph data man-

agement and remains to be a challenging topic. Given its emerging

popularity, improving and understanding graph neural networks

(GNNs) is important, for both future graph datamanagement system

and practitioners in general. However, despite its popularity, one

pressing limitation is that the performances of GCNs on practical ap-

plications are usually not satisfactory enough “out of the box.” As a

result, practitioners are often left with a range of GCN variants — to

name a few JK-Net [40], ResGCN [15], DenseGCN [19], GPNN [20],

NGCN [2], DGCN [46], DropEdge [29], LGCN [9], GMI [27], and

GAT [34] — to try in practice. This vast diversity poses challenges

on both the system and practitioners. In this paper, we ask: Can we
design a single family of GCN models that matches, or outperforms,
the best of these state-of-the-art models?

In this paper, we start with the standard textbook GCN model

and try to identify its fundamental limitations. First, overmoothing is
a notorious problem in deep graph convolutional networks [19, 25].

DropEdge [29] adopts the edge sampling technique to involve regu-

larization for better performance. However, to the best of our knowl-

edge, no work so far has systematically studied the problem that

which technique significantly outperforms all the other methods.

Second, a large graph usually contains entanglement of different

graph patterns and semantics, which aggravate the oversmoothing

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1223

https://doi.org/10.1145/3447548.3467312
https://doi.org/10.1145/3447548.3467312

����0�����0�0�0�0
������������0�0�0
0�����0�����0�0�0
����0�����0�0�0�0
�����������������
0�����0�����0����
0�0�0�����0�����0
0�0�0������������
0�0�0�0�����0����

����0�����0�0�0�0
������������0�0�0
0�����0�����0�0�0
����0�����0�0�0�0
�����������������
0�����0�����0����
0�0�0�����0�����0
0�0�0������������
0�0�0�0�����0����

��0�0�0�0�0�0�0�0
0���0�0�0�0�0�0�0
0�0���0�0�0�0�0�0
0�0�0���0�0�0�0�0
0�0�0�0���0�0�0�0
0�0�0�0�0���0�0�0
0�0�0�0�0�0���0�0�
0�0�0�0�0�0�0���0
0�0�0�0�0�0�0�0��

��0�0�0�0�0�0�0�0
0�0���0�0�0�0�0�0�
0�0�0�0�0�0�0�0�0
0�0�0�0���0�0�0�0
0�0�0�0�0���0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0���0
0�0�0�0�0�0�0�0��
0�0�0�0�0�0�0�0�0

+ ��� ++ +

+ +

+ +

+

+

����0�����0�0�0�0
������������0�0�0
0�����0�����0�0�0
����0�����0�0�0�0
�����������������

0�0�0�����0�����0
0�����0�����0����

0�0�0������������
0�0�0�0�����0����

(a)	GCN	La`LY

(I)	GYaWOCNN	La`LY

(c) Node decompose

(d) Edge decompose

(e) Connectivity-aware decompose

Figure 1: (a) and (b) are illustrations of one layer in GCN and one layer under one decomposition strategy in GraphCNN. A is the adjacency

matrix, X is the input, and W (W𝑖) are learnable weights. In GraphCNN, A =
∑
𝑖 A𝑖 and A𝑖 ∩ A𝑗 = ∅ for 𝑖 ≠ 𝑗 . In our experiments and analysis,

we follow the original normalized A in GCN [15]. (c) (d) (e) are illustrations of different decomposition methods introduced in Sec. 2.

issue and make the model sensitive to noises [23, 26]. Moreover, the

choices and evaluations introduce additional complexity for practi-

cal applications. Large amounts of these improvements over GCN

are sometimes confusing and tedious, especially from a industrial

perspective.

In this paper, we aim to propose a systematic approach with

theoretical guidance to address the aforementioned limitations. A

recent empirical finding shows that a simple graph transformation

by partitioning the graph data with a hand-picked structure can

usually help boost the performance of GCNs. For example, thinking

of an image as a graph, if we decompose it into multiple subgraphs

(as illustrated in Figure 1), it is possible to design a GCN-variant to

implement a standard CNN-like model, which obviously benefits

from going deeper. GraphCNN [32] is one such example of taking

advantage of graph decomposition. However, this requires us to

know the “right” decomposition of a graph, which is often not

available in practice.

Inspired by these observations and results, we ask two questions:

(1) From the empirical perspective, can we automatically de-

compose a graph and improve the quality of state-of-the-art

Graph Neural Networks?

(2) From the theoretical perspective, can we explain the signifi-

cant impact of graph decomposition on the performance of

Graph Neural Networks?

Our first contribution is a novel graph connectivity aware de-

composition algorithm to automatically decompose a graph into

multiple subgraphs and use them to improve the quality of Graph

Neural Networks. Unlike existing graph decomposition algorithms,

which directly distribute the nodes or edges into different partitions,

our propose DeGNN algorithm preserves the graph connectivity by

a simple yet effective structure in the graph — the spanning trees.

We first generate the spanning forest as the skeletons, and then

decompose the residual graph into different subgraphs. With the

replication of these skeletons, the decomposition will not bring any

additional isolated structure so that the information propagation

process is not blocked.

Our second contribution is to take the first step towards the the-

oretical analysis on the impact of graph decomposition. We take

an information theoretical view and analyze the infinite-sample

behaviour of Shannon’s mutual information between the output

after 𝑙 layers and the input, I(x; y(𝑙)). When I(x; y(𝑙)) = H(x),
it indicates that all information in the input are fully preserved
after 𝑙 layers; whereas when I(x; y(𝑙)) = 0, it indicates that all
information are lost. We show that:

(1) (Theorem 1, 2) Under certain conditions (on the singular

value of the graph), mutual information I(x; y(𝑙)) for GCN
converges to 0 exponentially fast with respect to the depth

𝑙 , corresponding to the oversmoothing problem of GCN in

practice;

(2) (Theorem 3, 4) Only under amuch weaker condition, the mu-

tual information I(x; y(𝑙)) of DeGNN with decomposition

converges to 0.

The theoretical analysis is non-trivial — in a concurrentwork [25],

the authors conducted engaged analysis, from dynamic system per-

spective, and lead to a similar result for GCN (Theorem 1, 2). Our

information theoretical perspective not only provides a much sim-

pler, but equally tight analysis for GCN, but more importantly,

our analysis makes it possible to analyze more complex cases for

DeGNN with the presence of decomposition (Theorem 3, 4).

We systematically benchmark DeGNN, on 11 public benchmark

datasets and three real-world datasets from our industry partners,

in both transitive and inductive setting, and comparing its per-

formance with more than twenty recent GNN models [2, 5, 6, 9,

11, 15, 16, 19, 20, 22, 27, 29, 34–36, 39–41, 46] (including GCN, JK-

Net, ResGCN, DenseGCN, GPNN, NGCN, DGCN, STGCN, DGI,

GMI, GAT, LGCN, APPNP, GIN, SGC, DropEdge, GraphSAGE, Clus-

terGCN, FastGCN, GraphSAINT). We show that with our graph

decomposition method, simpler models such as DenseGCN can

often outperform the best among these state-of-the-art models on

14 datasets. DeGNN achieves at least comparable, and often out-

performs, the best of these models across all tasks and datasets,

providing a strong method to use in future graph data management

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1224

Table 1: Test accuracy (in %) on citation datasets. We use bold font

for methods with the highest average accuracy.

Models K Cora Citeseer Pubmed

GCN 1 81.8±0.5 70.8±0.5 79.3±0.7

Node decomposed GCN

2 81.4±0.3 70.3±0.4 78.8±0.4
3 80.1±0.4 68.7±0.5 78.1±0.5
4 79.4±0.6 67.1±0.9 77.2±0.7

Edge decomposed GCN

2 81.3±0.3 70.2±0.4 78.4±0.3
3 80.7±0.5 69.7±0.4 78.3±0.3
4 79.8±0.8 68.4±0.7 77.9±0.4

systems to serve diverse applications and users. In addition, graph

decomposition largely moderates the oversmoothing problem in

an empirical study, which confirms our motivation and theoretical

conclusion in this paper.

2 METHODOLOGY

2.1 Notations

LetG = (V, E) be an undirected graphwith a vertex set 𝑣𝑖 ∈ V and

edge set 𝑒𝑖, 𝑗 ∈ E. We refer to 𝑣𝑖 as a node, and x𝑖 ∈ R𝑑 associated

with 𝑣𝑖 as its features. We denote the node feature attributes by

X ∈ R𝑛×𝑑 whose rows are given by x𝑖 . The adjacency matrix A
(weighted or binary) is derived as an 𝑛 ×𝑛 matrix with (A)𝑖, 𝑗 = 𝑒𝑖, 𝑗
if 𝑒𝑖, 𝑗 ∈ E, and (A)𝑖, 𝑗 = 0 elsewhere.

CommonGCN.We define the following operator 𝑓 : R𝑛 → R𝑛
that is composed of (1) a linear function parameterized by the

adjacency matrix A and a weight matrix W(𝑖+1) at layer 𝑖 + 1, and
(2) an activation function. Given the input matrix X, let Y(0) = X.

Each GNN layer maps it to an output vector of the same shape:

Y(𝑖+1) = 𝑓A,W(𝑖+1) (Y
(𝑖)) = 𝜎 (AY(𝑖)W(𝑖+1)) . (1)

Graph Decomposed GCN. In GraphCNN [32], the adjacency

matrix A ∈ R𝑛×𝑛 is decomposed into𝐾 additive 𝑛×𝑛 matrices such

that A =
∑𝐾
𝑘=1

A𝑘 . The layer-wise propagation rule becomes:

Y(𝑖+1) = 𝑔
A𝑘 ,W

(𝑖+1)
𝑘

(Y(𝑖)) = 𝜎
(𝐾∑
𝑘=1

A𝑘Y(𝑖)W(𝑖+1)
𝑘

)
. (2)

Unlike the image pixels graph decomposition in GraphCNN, it is

non-trivial to perform decomposition on arbitrary graph-structured

data. Clearly, there is no absolute geometric space and direction

concept in most real-world graphs, and the spatial anisotropy [17]

makes decomposing an image with the predefined coordinates and

directions much easier than a graph. As such, we first explore

existing graph decomposition methods in the following section.

2.2 Preliminary study

To verify the effectiveness of graph decomposed GCN, we select

two representative graph decomposition methods, including node

decomposition in Figure 1 (c) (i.e., METIS [14]) and edge decompo-

sition in Figure 1 (d) (i.e., Greedy [10]), and empirically evaluate

their performance. We compare the original GCN (𝐾 = 1) with the

decomposed GCN (E.q. (2)) on the citation datasets [15] (experimen-

tal settings are consistent with Section 4.1). We build a two-layer

GCN and decompose its matrix 𝑨 into 𝐾 pieces and rebuild ev-

ery layer with 𝐾 weight matrices. As shown in Table 1, the edge

Algorithm 1 Connectivity-aware graph decomposition

Input: The graph G = (V, E) , 𝑁 = |V |.
Parameter: The number of partitions 𝑝 for METIS, the number of

decomposed graphs 𝐾 .

Output: The decomposed graph (G1, G2, ..., G𝐾) .
1: Partition the graph G into 𝑝 subgraphs with METIS.

2: Merge the subgraphs into G𝑚 .

3: 𝑇 ← Generate a random spanning forest on G𝑚 .

4: ∀𝑖 ∈ [1, 𝐾], 𝑅𝑖 ← (V,∅) .
5: 𝑘 ← 0.

6: for 𝑖 = 1 to 𝑁 do

7: for 𝑣𝑗 ∈ Neighbor(𝑣𝑖) on the residual graph G/𝑇 do

8: Assign edge (𝑣𝑖 , 𝑣𝑗) to 𝑅𝑘+1
9: 𝑘 ← (𝑘 + 1)%𝐾
10: return (𝑅1 ∪𝑇, 𝑅2 ∪𝑇, ..., 𝑅𝐾 ∪𝑇)

decomposed GCN performs better than node decomposed GCN

under different𝐾 values, but none of them outperforms the original

GCN. The empirical study implies that the typical decomposition

methodology can not bring any performance improvement and

even make it worse. It is also observed that increasing the number

of decomposition components speeds up the convergence on the

training set in our experiments but leads to lower testing accuracy.

Analysis and graph connectivity. Two possible explanations

for the above phenomenon are: (1) More weight matrices brought

by decomposition may cause overfitting; (2) Traditional decompo-

sition may break the graph connectivity and impede the spread of

information as GCN relies on the graph structures to propagate the

node features and labels along the edges. For example, based on

E.q. (2), the edge-cut algorithms decompose the adjacency matrix

𝑨 into 𝐾 matrices. Each 𝑨𝑘 only has edges inside the partition, and

those vertices outside the partition are isolated from each other. The

vertex-cut algorithms can also lead to isolation for low-degree ver-

tices due to skew power-law degree distributions of large practical

graphs. The partitioned graph may lead to the result that the nodes

can be trapped in a smaller region and cannot spread to distant

reachable nodes in the original graph. These methods result in iso-

lated vertices without any edges in graph partitions, and they have

no chance to aggregate information from its neighborhoods. The

hidden representation of these isolated vertices is only determined

by its own input features, which lacks the graph structure informa-

tion. Therefore, an inappropriate decomposition may reduce the

graph connectivity and affect the information propagation among

nodes, thus decreasing the model learning ability. How to maintain

the graph connectivity remains a challenge.

2.3 DeGNN: Connectivity-aware graph

decomposition

To overcome the defects of existing graph decomposition methods,

we propose DeGNN to take the graph connectivity into account

and automatically perform graph decomposition on general graph-

structured data. We clarify that the graph connectivity requirement

as follows: each pair of reachable vertices in the original graph are

still reachable in the decomposed graph. The graph connectivity

preserving property further leads to: 𝑨𝑙
𝑘
≈ 𝑨𝑙 , when the network

architecture is deep enough (i.e., 𝑙 →∞).

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1225

Considering the graph connectivity preserving principle, we

propose to utilize a simple and effective structure in the graph —

the spanning trees. As shown in Algorithm 1, unlike the previous

decomposition methods, we first generate the spanning forest (line

3) of the graph, then the replicas of the generated graph skeleton

𝑇 (i.e., bold edges in Figure 1 (e)) will be distributed to the decom-

posed graphs (line 10). In this way, the node connectivity is still

completely preserved after decomposition with the presence of𝑇 in

each sub-graph. Furthermore, we utilize METIS to eliminate some

edge cuts before generating the skeletons to control the graph con-

nectivity of the generated spanning tree structures (lines 1-2). The

hyperparameter 𝑝 in METIS controls the amounts of edge cuts and

further leads to different node connectivity. When 𝑝 = 1, the node

connectivity can be completely preserved, but the over-smoothing

issue is dominate. As supported by the theory (see Section 3), graph

decomposition alleviates the over-smoothing problem but requires

some edge cuts. Therefore, an appreciate value of 𝑝 is desired to

balance the impact of connectivity and over-smoothing. In our ex-

periments, we find 𝑝 generally works well around 100-300, and a

hyper-parameter analysis will be provided later. Finally, we decom-

pose the residual graph (lines 4-10). Specifically, for each node, the

adjacent nodes and the associated edges are distributed to each sub-

graph in a round-robin manner (lines 7-9). The advantage is that it

will not generate any additional isolated vertices or independent

sub-graphs, which facilitates the information propagation process.

3 THEORETICAL ANALYSIS

In this section, we analyze both GCN and DeGNN from the infor-

mation theoretical perspective to provide a theoretical explanation

on performing graph decomposition technique on GCN. We denote

the 𝑗th singular value of a matrix by 𝜆 𝑗 (·). We further denote the

vectorized input X and output after the 𝑙th layer Y(𝑙) by x and

y(𝑙) , respectively. For 𝑛-dimensional real random vectors x and y
defined over finite alphabets X𝑛 and Ω𝑛 , we denote entropy of x

byH(x), and mutual information between x and y by I(x; y). In
the following analysis, we focus on two measures to investigate the

effect of decomposition, that is, information preservation I(x; y(𝑙))
and the information loss L(y(𝑙)) = H(x|y(𝑙)) (relative entropy of

x with respect to y(𝑙)). We measure the information decay in GNNs

at different output layers 𝑙 : lower information loss or larger infor-

mation preservation indicates more meaningful learned features

for GNNs in the infinite-sample regime.

3.1 Information loss in GCN

In this section, our goal is to investigate the regimes where GCN

(1) does not benefit from going deeper, or (2) is guaranteed to

preserve all information at its output. We aim to understand this by

analyzing the behavior of mutual information between the input

and the output of certain network layers at different depths. Due to

the space limitation, we relegate the proof details to the Appendix A

and retains the necessary sketch.

First, we formulate the relationship between input and output

layers incorporating the non-linear activation functions. In this

paper, we focus on the most popular choices, i.e., ReLU, and leave

the study of other functions to future work. The characteristics of

the GCN layer-wise propagation rule leads to the following result:

Lemma 1. Let ⊗ denote the Kronecker product. For GCNs with
parametric ReLU activations 𝜎 : 𝑥 → max(𝑥, 𝑎𝑥) with 𝑎 ∈ (0, 1), we
define P(𝑖+1) as a diagonal mask matrix whose nonzero entries are
in {𝑎, 1} such that (P(𝑖+1)) 𝑗, 𝑗 = 1 if

(
(W(𝑖+1) ⊗ A)y(𝑖)

)
𝑗 ≥ 0, and

(P(𝑖+1)) 𝑗, 𝑗 = 𝑎 elsewhere. y(𝑙) can be written as

y(𝑙) = P(𝑙) (W(𝑙) ⊗ A) · · · P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)x.

Following our earlier discussion, we will now state our first

result which characterizes the regime in which the information

propagated across the GCN layers exponentially decays to 0.

Theorem 1. Suppose 𝜎A = max𝑗 𝜆 𝑗 (A) and 𝜎W = sup𝑖∈N+ max𝑗

𝜆 𝑗 (W(𝑖)). If 𝜎A𝜎W < 1, then I(x; y(𝑙)) = O
(
(𝜎A𝜎W)𝑙

)
, and hence

lim𝑙→∞ I(x; y(𝑙)) = 0.

This shows that under certain conditions the information after 𝑙

GCN layers with (parametric) ReLUs asymptotically converges to 0

exponentially fast. Interestingly, there are also regimes in which

GCN will perfectly preserve the information, stated as follows:

Theorem 2. Following Theorem 1, let 𝛾A = min𝑗 𝜆 𝑗 (A) and 𝛾W =

inf𝑖∈N+ min𝑗 𝜆 𝑗 (W(𝑖)). If 𝑎𝛾A𝛾W ≥ 1, then ∀𝑙 ∈ N+ the information
loss L(y(𝑙)) = 0.

Effect of Normalized Laplacian: The results obtained above holds
for any adjacency matrix A ∈ R𝑛×𝑛 . The unnormalized A, however,

comes with a major drawback as changing the scaling of feature

vectors. To overcome this problem, A is often normalized such that

its rows sum to one. We then adopt our results to GCN with nor-

malized Laplacian whose largest singular value is one, and obtain

the following results.

Corollary 1. Let D denote the degree matrix such that (D) 𝑗, 𝑗 =∑
𝑚 (A) 𝑗,𝑚 , and L be the associated normalized Laplacian L = D−1/2A

D−1/2. Suppose GCNuses the followingmappingY(𝑖+1) = 𝜎 (LY(𝑖)W(𝑖))
and 𝜎W = sup𝑖 max𝑗 𝜆 𝑗 (W(𝑖+1)). If 𝜎W < 1, then I(x; y(𝑙)) =

O
(
𝜎𝑙W

)
, and hence lim𝑙→∞ I(x; y(𝑙)) = 0.

This indicates that with the standard normalized adjacency ma-

trix, the mutual information between the input and the output of

𝑙th layer of GCN will decay to 0 exponentially fast.

3.2 Information loss in DeGNN

Motivated by the graph decomposition strategy adopted by several

work including GraphCNN, in this section we aim to analyze the in-

formation loss after graph decomposition, and understand whether

the information can be preserved by aggregating local sub-graphs.

In particular, we take the DeGNN(GCN) as as an example which

sums the decomposed graphs together as the adjacency matrix to

perform the analysis.

Similarly as in Lemma 1, y(𝑙) can be reduced to y(𝑙) = P(𝑙)
∑𝐾
𝑘𝑙=1

(W(𝑙)
𝑘𝑙
⊗A𝑘𝑙) · · · (W

(2)
𝑘2
⊗A𝑘2) (W

(1)
𝑘1
⊗A𝑘1)x for a diagonal maskma-

trix P(𝑖+1) such that (P(𝑖+1)) 𝑗, 𝑗 = 1 if

∑𝐾
𝑘𝑖+1=1

(W(𝑖+1)
𝑘𝑖+1
⊗A𝑘𝑖+1)y(𝑖) ≥

0, and (P(𝑖+1)) 𝑗, 𝑗 = 𝑎 otherwise. Following a similar proof for GCN,

we obtain the following result for DeGNN:

Theorem 3. Let 𝜎 (𝑖) denotes the maximum singular value of
P(𝑖)

∑𝐾
𝑘𝑖=1
(W(𝑖)

𝑘𝑖
⊗ A𝑘𝑖) such that 𝜎 (𝑖) = max𝑗 𝜆 𝑗

(
P(𝑖)

∑
𝑘𝑖 (W

(𝑖)
𝑘𝑖
⊗

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1226

A𝑘𝑖)
)
. If sup𝑖∈N+ 𝜎

(𝑖) < 1, then I(x; y(𝑙)) = O
(
(sup𝑖∈N+ 𝜎 (𝑖))𝑙

)
,

and hence lim𝑙→∞ I(x; y(𝑙)) = 0.

Theorem 3 describes the condition on the layer-wise weight

matrices W𝑘 where DeGNN fails in capturing the feature char-

acteristics at its output in the asymptotic regime. We then state

the second result for DeGNN which ensures the information loss

L(y(𝑙)) = 0 as follows.

Theorem 4. Consider the propagation rule of DeGNN. Let 𝛾 (𝑖)

denotes the minimum singular value of P(𝑖)
∑𝐾
𝑘𝑖=1
(W(𝑖)

𝑘𝑖
⊗A𝑘𝑖) such

that 𝛾 (𝑖) = min𝑗 𝜆 𝑗
(
P(𝑖)

∑𝐾
𝑘𝑖=1
(W(𝑖)

𝑘𝑖
⊗ A𝑘𝑖)

)
. If inf𝑖 𝛾 (𝑖) ≥ 1, then

∀𝑙 ∈ N+ we have L(y(𝑙)) = 0.

Proof Sketch. Following Lemma 1, the key step in proving

above theorems is as follows. Consider the singular value decom-

position UΛV𝑇 = P(𝑙) (W(𝑙) ⊗ A) ...P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A) such
that (Λ) 𝑗,𝑗 = 𝜆𝑗 (P(𝑙) (W(𝑙) ⊗ A) ...P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)) , and
let x̃ = V𝑇 x. We have

I(x; y(𝑙)) (1)= I(x̃;Λx̃)
(2)
≤ H(x̃) (3)= H(x) (3)

where (1, 3) results from that U and V are invertible, and equality

holds in (2) iff Λ is invertible, i.e., singular values of P(𝑙) (W(𝑙) ⊗
A) ...P(2) (W(2) ⊗A)P(1) (W(1) ⊗A) are nonzero. Theorems 1, 2, 3 and 4

can be inferred from E.q. 3. That is, I(x; y(𝑙)) = 0 iff max𝑗 (Λ𝑙) 𝑗, 𝑗 =
0 in the asymptotic regime. Similarly, iff min𝑗 (Λ𝑙) 𝑗, 𝑗 > 0,I(x; y(𝑙))
is maximized and given byH(x), hence L(y(𝑙)) = 0.

In order to understand the role of decomposition in DeGNN, we

revisit the conditions on full information loss (I(x; y(𝑙)) = 0) and

full information preservation (L(y(𝑙)) = 0) for a specific choice of

decomposition, which will be used to demonstrate the information

processing capability.

Corollary 2. Suppose the singular value decomposition of A
is given by A = UASV𝑇A, and each A𝑘 is set to A𝑘 = UAS𝑘V𝑇A
where (S𝑘)𝑚,𝑚 = 𝜆𝑚 (A) if 𝑘 = 𝑚 and (S𝑘)𝑚,𝑚 = 0 elsewhere.
We then have the following results: For 𝜎A𝑘 = 𝜆𝑘 (A) and 𝜎W𝑘

=

sup𝑖∈N+ max𝑗 𝜆 𝑗 (W(𝑖)𝑘), i.e., if 𝜎A𝑘𝜎W𝑘
< 1 ∀𝑘 = {1, 2, . . . , 𝑛}, then

lim𝑙→∞ I(x; y(𝑙)) = 0.

Corollary 3. Let 𝛾W𝑘
= inf𝑖∈N+ min𝑗 𝜆 𝑗 (W(𝑖)𝑘). If 𝑎𝜎A𝑘𝛾W𝑘

≥
1, ∀𝑘 ∈ {1, 2, . . . , 𝑛}, then L(y(𝑙)) = 0 ∀𝑙 ∈ N+.

Discussion: Impact of Decomposition. Consider the setting

where A is fixed for both GCN and DeGNN. The discussion below

will revolve around the regime of singular values in layer-wise

weight matrices, W(𝑖)
GCN

and W(𝑖)
DeGNN

where the information loss

L(y(𝑙)) = 0 for specific decomposition strategy used in Corollary 3.

Recall from Theorem 2 and Corollary 3 that while GCN requires

singular values of all weight matrices W(𝑖)
GCN

to compensate for

the minimum singular value of A such that min𝑗 𝜆 𝑗 (W(𝑖)
GCN
) ≥

1

𝑎min𝑘 𝜆𝑘 (A) to ensure L(y(𝑙)) = 0, DeGNN relaxes this condi-

tion by introducing a milder constraint. That is, the singular val-

ues of its weight matrices W(𝑖)
k, DeGNN

need to compensate only

for the singular value of their respective component A𝑘 , meaning

min𝑗 𝜆 𝑗 (W(𝑖)
k, DeGNN

) ≥ 1

𝑎𝜆𝑘 (A) implies L(y(𝑙) = 0.

Table 2: Dataset Statistics

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test

Cora 2,708 1,433 5,429 7 140/500/1,000

Citeseer 3,327 3,703 4,732 6 120/500/1,000

Pubmed 19,717 500 44,338 3 60/500/1,000

Amazon Computer 13,381 767 245,778 10 200/300/12,881

Amazon Photo 7,487 745 119,043 8 160/240/7,087

Coauthor CS 18,333 6,805 81,894 15 300/450/17,583

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243

Actor 7,600 931 33,544 5 3,648/608/760

Chameleon 2,277 2,325 36,101 4 1,093/182/228

eBay Small 96,532 114 1,013,936 2 709,755/101,393/202,788

eBay Large 126,327 480 5,001,222 2 3,500,855/500,122/1,000,245

Tencent 100,000 64 841,341 253 5,000/10,000/30,000

Cora (Inductive) 2,708 1,433 5,429 7 1,208/500/1,000

Flickr 89,250 500 899,756 7 44,625/22,312/22,312

Reddit 232,965 602 11,606,919 41 155,310/23,297/54,358

The decomposition makes deep GCN training easier by permit-

ting a much larger regime of model weights where the information

is still preserved. In other words, under the same weight characteris-

tics (singular values of layer-wise weight matrices), the decomposed

GCN will be able to preserve more information of the node features

than the vanilla GCN when going deeper. So far, we theoretically

justify the potential of graph decomposition in the infinite-sample

regime. For the analysis in the finite-sample regime, one could pos-

sibly utilize the theory of information bottleneck [30, 31], we leave

this as future work.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed au-

tomatic graph decomposition algorithm — DeGNN, on the semi-

supervised node classification task. In our experiments, we apply

the proposed graph decomposition method to a family of GCN

models (e.g., GCN, JK-Net, ResGCN, DenseGCN) for comparison,

and it is also viable to apply it to other graph neural networks.

4.1 Experiments setup

4.1.1 Datasets. We conduct experiments on widely used bench-

mark datasets to validate the effectiveness of our method in both

transductive and inductive settings. An overview summary of sta-

tistics of the datasets is given in Table 2.

Transductive.Cora, Citeseer, and Pubmed are threewell-known

citation network datasets, and we follows the same training / vali-

dation / test split as [15]. We also evaluate DeGNN on five bench-

mark graph datasets, including Amazon Computers, Amazon Photo,

Coauthor CS, Coauthor Physics [43], Actor and Chameleon [41].

Inductive. Reddit is a social network dataset modeling the com-

munity structure of Reddit posts. This dataset is often used as

an inductive training setting and the training/validation/test split

is coherent with that of GraphSAGE [11]. Flickr originates from

NUS-wide and contains different types of images based on the de-

scriptions and common properties of online images. We use a public

version of Reddit and Flickr provided by GraphSAINT [41].

Production. The eBay dataset is a real-world transaction graph

which we used for fraud transactions detection. Historical trans-

action records spanning a given period of time were extracted for

graph construction. We treat each transaction as a node and assume

there is an edge between two nodes if they have the same hard

linkage, such as purchasing by the same buyer, shipping to the

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1227

Table 3: Test accuracy (in %) on the transductive benchmark

datasets.
∗
indicates that we ran our own implementation. We use

bold font for methods with the highest average accuracy.

Models Cora Citeseer Pubmed

GPNN 81.8 69.7 79.3

NGCN 83.0 72.2 79.5

DGCN 83.5 72.6 80

DropEdge 82.8 72.3 79.6

STGCN 83.6 72.6 79.5

DGI 82.3±0.6 71.8±0.7 76.8±0.6
GMI 82.7±0.2 73.0±0.3 80.1±0.2
GAT 83.0±0.7 72.5±0.7 79.0±0.3
LGCN 83.3±0.5 73.0±0.6 79.5±0.2
APPNP 83.3±0.5 71.8±0.5 80.1±0.2
GIN 77.6±1.1 66.1±0.9 77.0±1.2
SGC 81.0±0.0 71.9±0.1 78.9±0.0
GCN

∗
81.8±0.5 70.8±0.5 79.3±0.7

JK-Net
∗

81.8±0.5 70.7±0.7 78.8±0.7
ResGCN

∗
82.2±0.6 70.8±0.7 78.3±0.6

DenseGCN
∗

82.1±0.5 70.9±0.8 79.1±0.9
DeGNN(GCN)

∗
83.7±0.4 72.5±0.3 79.8±0.6

DeGNN(JK)
∗

84.1±0.3 73.1±0.5 80.0±0.4
DeGNN(Res)

∗
83.9±0.5 72.6±0.4 79.9±0.5

DeGNN(Dense)
∗

84.3±0.3 72.7±0.5 80.1±0.7

same address or using the same financial instruments etc. Node fea-

tures are constructed from individual risk factors. To reduce graph

size and meanwhile preserve graph connectivity, we adopt a graph

sampling strategy: firstly, all fraudulent transactions and random

sampled normal transactions are selected as seeds; secondly, each

seed is expanded to its 3-hop neighbors, at each hop, no more than

32 neighbors are picked. Thirdly, those groups with transaction

numbers less than 5 are filtered out. There are two different sizes of

transaction graph (eBay small and eBay large) vary in transaction

spanning periods and number of individual features.

The Tencent dataset is an short-video recommendation graph,

collected from a real-world mobile application from Tencent Inc..

We sampled 100,000 nodes and the correspond history watching

records. The generated graph is a bipartite graph including 57,022

short-videos with labels and 42,978 users. The edge between each

pair of short-video item and user represents that the user have

watched this short-video. Each user has 64 features. We category

these short-videos into 253 different pre-defined classes.

4.1.2 Settings. We use PyTorch to implement the models and we

train them using Adam optimizer. Besides, we train each model

400 epochs and terminate the training process if the validation

accuracy does not improve for 20 consecutive steps. Note that JK-

Net has three aggregators, and we choose the concatenation as the

final aggregation layer since it performs best in most cases. Every

experiment is ran ten times and the mean accuracy is reported. For

inductive tasks, the training procedure is on the training set. The

validation set and testing set are added into the graph only for the

prediction. Therefore, we need not only perform decomposition

on the training graph, but also continue to decompose the whole

graph for new nodes and edges. The second decomposition reuses

the same 𝐾 decomposition and the trained DeGNN model to make

predictions. The hyperparameters (e.g., learning rate, number of

hidden units) are selected from grid search. The grid search was

Table 4: Test accuracy (in %) on the inductive benchmark datasets.

Models Cora Reddit Flickr

GraphSAGE 73.1±1.4 95.4±0.0 50.1±1.3
ClusterGCN 80.7±0.6 96.6±0.0 48.1±0.5
FastGCN 82.7±0.1 93.7±0.0 50.4±0.1
GraphSAINT 81.5±1.2 96.6±0.1 51.1±0.1
GCN

∗
83.3±1.1 95.7±0.0 49.2±0.3

JK-Net
∗

84.2±0.8 96.4±0.1 51.9±0.1
ResGCN

∗
83.7±1.3 96.3±0.1 51.5±0.1

DenseGCN
∗

83.9±0.9 96.4±0.0 52.1±0.0
DeGNN(GCN)

∗
85.4±0.7 96.4±0.0 51.5±0.2

DeGNN(JK)
∗

86.1±0.6 96.6±0.0 52.5±0.0
DeGNN(Res)

∗
85.6±0.8 96.7±0.1 51.9±0.1

DeGNN(Dense)
∗

85.7±0.8 96.6±0.0 52.5±0.0

performed over the following search space: hidden size ([8, 16,

32, 64, 128, 256, 512]), learning rate ([1e-3, 3e-3, 5e-3, 8e-3, 1e-

2]), partition numbers 𝐾 ([2,3,4,5,6,7,8]), parameter 𝑝 in METIS

([40,80,100,150,180,200, 250,500,1000]), dropout rate ([0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.85, 0.9]), 𝐿2 regularization strength ([1e-4, 5e-4,

1e-3, 5e-3, 1e-2, 5e-2, 1e-1]).

4.1.3 Baselines. We compare our method with the representa-

tive methods in recent years, including shallow models such as

GCN [15], GPNN [20], NGCN [2], DGCN [46], STGCN [22], DGI [35],

GMI [27], GAT [34], LGCN [9], APPNP [16], GIN [39], and SGC [36];

and deepermodels such as JK-Net [40], ResGCN [15], DenseGCN [19],

DropEdge [29]. We also compare our method with the inductive

methods such as GraphSAGE [11], ClusterGCN [6], FastGCN [5]

and GraphSAINT [41] on two larger graph dataset including Flickr

and Reddit. Since we can apply the decomposition techniques

to a range of base models, we use DeGNN(GCN), DeGNN(JK),

DeGNN(Res), and DeGNN(Dense) to denote the method that applies

our decomposition algorithm to vanilla GCN, JK-Net, ResGCN, and

DenseGCN. These DeGNN models in our implementation are built

on top of standard GCN on both transductive and inductive settings.

Most of the other testing accuracy results are directly collected from

the corresponding original paper, except for 1) DropEdge on cita-

tion datasets reused from [1], 2) GraphSAGE and ClusterGCN on

Flickr reused from GraphSAINT [41], 3) GraphSAGE, ClusterGCN,

FastGCN and GraphSAINT on Cora (inductive) reused from [21].

4.2 Comparison with state-of-the-art

We compare DeGNN with large amounts of state-of-the-art base-

lines on 11 public graph-structured datasets for both transductive

and inductive settings, and 3 real-world production datasets.

Transductive. Table 3 summarizes the test accuracy of the base-

lines and our approaches on Cora, Citeseer, and Pubmed. Deep

architecture models relying on node embeddings from previous lay-

ers, including JK-Net, ResGCN, and DenseGCN, are indeed better

than vanilla GCN but are still weaker than some baseline mod-

els, such as GMI, GAT and APPNP. Surprisingly, simply adding

the decomposition step on GCN can lead to better performance

even better than more recent state-of-the-art models. DeGNN(GCN)

achieves significantly better performance over the original GCN by

a margin of 2.5%, 1.9%, and 0.8% on the three citation datasets re-

spectively. Moreover, with the help of deeper architectures, DeGNN

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1228

Table 5: Test accuracy (in %) on other transductive datasets.
∗
indicates that we ran our own implementation. We use AUC on the eBay

Small/Large because of class imbalance. We use bold font for methods with the highest average accuracy.

Models

eBay

Small

eBay

Large

Tencent

Amazon

Computer

Amazon

Photo

Coauthor

CS

Coauthor

Physics

Actor Chemeleon

GAT
∗

70.4±0.5 80.6±0.5 55.0±0.3 80.1±0.6 85.7±1.0 87.4±0.2 90.2±1.4 27.7±0.5 26.6±0.9
GCN

∗
73.1±0.6 80.5±0.4 55.7±0.2 82.4±0.4 85.9±0.6 90.7±0.2 92.7±1.1 27.0±0.8 25.4±1.1

JK-Net
∗

71.9±0.3 80.7±0.4 56.5±0.4 82.0±0.6 85.9±0.7 89.5±0.6 92.5±0.4 24.7±0.9 27.1±1.2
ResGCN

∗
73.0±0.5 80.2±0.4 56.2±0.3 81.1±0.7 85.3±0.9 87.9±0.6 92.2±1.5 27.0±1.2 26.1±1.3

DenseGCN
∗

73.5±0.3 80.9±0.2 56.9±0.4 81.3±0.9 84.9±1.1 88.4±0.8 91.9±1.4 26.2±0.8 22.1±1.7
DeGNN(GCN)

∗
71.6±0.3 81.1±0.2 58.6±0.2 82.8±0.6 86.3±0.4 89.5±0.5 92.4±0.5 29.2±0.5 26.1±0.8

DeGNN(JK)
∗

72.4±0.4 80.7±0.3 57.8±0.4 82.5±0.7 86.1±0.7 90.5±0.4 92.2±0.5 28.5±0.5 27.3±0.9
DeGNN(Res)

∗
74.0±0.4 81.1±0.4 57.2±0.5 82.5±0.5 85.8±0.9 90.1±0.2 92.9±0.6 28.6±0.8 27.1±0.9

DeGNN(Dense)
∗

73.7±0.6 81.2±0.3 58.4±0.4 83.1±0.5 86.2±0.8 90.2±0.1 92.1±1.7 28.8±0.9 26.3±0.8

Figure 2: Influence of model depth (number of layers) on classification performance. More details are in Table 6.

with more advanced base model can outperform current state-of-

the-art methods. Specifically, DeGNN(Dense) achieves a remarkable

84.3% testing accuracy with 5 layers on Cora.

To demonstrate the generality of DeGNN, we also have a system-

atical evaluation on other datasets in a variety of domains, such as

Coauthor CS, Coauthor Physics, Amazon Computers and Amazon

Photo. Table 5 demonstrates that, in general, DeGNN outperforms

GCN, JK-Net, ResGCN and DenseGCN and GAT, and the base mod-

els can benefit from DeGNN. We make a further evaluation on

industry production datasets: eBay Small, eBay Large and Tencent.

DeGNNs easily achieves great performance improvements over

existing GCN base models even on these real-world applications.

Inductive. Besides the transductive tasks, we also evaluate on

the inductive ones. For inductive settings, only the nodes in the

training set can be used during the training procedure, and the

validation set and testing set are only involved for evaluation pro-

cedure. As it is not consistent with the standard GCN setting, we

replace the baselines with some recent inductive models, includ-

ing GraphSAGE, ClusterGCN, FastGCN and GraphSAINT. These

models are naturally suitable for inductive tasks due to the node

sampling techniques. For DeGNN, we keep the full batch training

scheme as GCN and add an additional decomposition step when

involving the validation set and the testing set. It is excited to see

that DeGNN can still achieve competitive results in Table 4. We

think it is an interesting future work to design an end-to-end frame-

work that can automatically combine DeGNN with graph sampling

based methods for inductive scenarios.

4.3 Analysis

4.3.1 Analysis of model architecture depth. Here, we investigate
the influence of model depth (number of layers) on classification

Table 6: Testing accuracy (%) comparisons on different models

4 layers 6 layers 8 layers

Dataset Model Original DeGNN Original DeGNN Original DeGNN

Cora

GCN 80.2 82.8 74.3 80.5 59.4 75.4

ResGCN 81.2 83.7 80.7 83.4 80.5 82.4

JK-Net 81.2 83.6 81.8 83.9 81.6 83.7

DenseGCN 82.1 84.0 81.5 83.5 81.3 83.3

Citeseer

GCN 63.8 72.3 62.2 70.3 47.4 64.4

ResGCN 70.1 72.4 70.0 71.8 69.6 71.8

JK-Net 70.5 73.1 70.3 72.8 70.6 72.7

DenseGCN 71.1 72.5 70.7 72.5 70.6 72.8

Pubmed

GCN 74.4 79.1 72.7 77.4 68.1 76.1

ResGCN 78.3 79.5 78.0 79.6 77.9 79.4

JK-Net 78.8 80.0 78.6 79.8 78.5 79.6

DenseGCN 78.9 80.1 79.0 79.4 79.0 79.2

performance on the three citation datasets. We compare DeGNN

(GCN) and DeGNN (Dense) with ResGCN, JK-Net, and DenseGCN.

When the model depth is two, all baselines degenerate to the orig-

inal 2-layer GCN model. As shown in Figure 2, for the original

GCN, it gets the best results with a 2-layer model and its perfor-

mance decreases rapidly with the increase of layers. For ResGCN,

DenseGCN, and JK-Net, they can keep more information on the

original features compared with GCN and get a relatively good

performance, but perform much worse than DeGNN (Dense). Even

with 10 layers, DeGNN does not decrease in performance as the

other baselines do, and outperforms the best SOTA on all datasets.

Table 6 shows a detailed version of the influence of model depth

for different models on the three citation datasets.

4.3.2 Analysis of decomposition parameter 𝐾 . The number of de-

composed subgraphs𝐾 is an important parameter in our framework.

To analyze its influence, we conduct an experiment on three citation

networks, and the results are illustrated in Figure 3. Here we set the

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1229

Figure 3: Test accuracy for different parameter 𝐾 .

Figure 4: Test accuracy for parameter 𝑝 in METIS.

hyper-parameter in METIS 𝑝 = 100. As we can see, the best number

of decomposed subgraphs 𝐾 for Cora and Citeseer is 4 and it is 5

for Pubmed. As 𝐾 grows from 1, the test accuracy increases until

it reaches the maximum point and it decreases when 𝐾 is larger.

These results imply that with the proposed spanning-tree-based

sampling framework, the optimal graph decomposition parameter

𝐾 is around 4 or 5 to achieve the best performance.

4.3.3 Analysis of hyper-parameter 𝑝 . The proposed spanning forest
based graph decomposition can control the graph connectivity with

the METIS partition step 𝑝 . For simplicity, we evaluate on a stan-

dard two-layer GCN on Cora, and only the first layer is replace by a

decomposed GCN with 𝐾 = 4. Other hyperparameters are selected

by grid search on the validation set. We tune the hyper-parameter

𝑝 in METIS, which generates different connected components and

results in different sizes of spanning tree. Then we test its influence

on the final testing accuracy. As shown in Figure 4, as 𝑝 increases,

the testing accuracy improves at first, but drops down quickly at

last. This is because the METIS eliminate too many edges cuts and

result in a loss of graph connectivity. In the experiments above, we

show that graph decomposition does contribute to better perfor-

mance, while proper connectivity is also crucial for achieving good

performance. To conclude, there exists a trade-off between graph

decomposition and graph connectivity.

5 RELATEDWORK

GCN and its variants. GCNs have achieved promising results on

various graph applications, while one limitation of GCN is that

its performance would not improve with the increase of network

depths. For instance, [15] show that a two-layer GCNwould achieve

the best performance on a classic graph dataset while stacking more

layers cannot help to improve the performance. Several studies have

been conducted [38] trying to figure out the reasons behind the

depth limitation and provide workarounds. DropEdge [29] aims to

address the oversmoothing problem by randomly removing some

edges from the graph. There is also a rising interest in deepening

GCN by utilizing some techniques that are used to build deeper

CNN architectures (e.g., ResGCN [15], DenseGCN [18], JK-Net [40]).

However, these lacks of evidence showing whether these tech-

niques are helpful to improve the performance of general GNNs.

[19] shows that GCN is a special form of Laplacian smoothing,

and they prove that, under certain conditions, by repeatedly ap-

plying Laplacian smoothing many times, the features of vertices

within each connected component of the graph will converge to

the same value. Therefore, the oversmoothing property of GCN

will make the features indistinguishable and thus hurt the classifi-

cation accuracy. [25] conducts more engaged theoretical analysis.

Compared with these work, we aim to go beyond the analysis of

oversmoothing. Instead, we theoretically show that the decompo-

sition in DeGNN can help to slow down such information loss,

which in turn inspires practical graph decomposition algorithm for

general graph-structured data.

Graph decomposition methods. Existing graph decomposi-

tion approaches can be mainly divided into two categories, namely

edge-oriented algorithms (i.e., edge-cut or 1D partition) or vertex-

oriented algorithms (i.e., vertex-cut or 2D block partition). The first

category algorithms are proposed to partition a graph by dividing

it by vertices and minimize the number of crossing edges whose

endpoints are in different partitions [28]. The most representative

algorithm is METIS [14], which has been applied extensively in

many areas so far. It approximates the graph partition process with

a novel multilevel scheme and significantly reduces the partitioning

time cost. Recently, some GNN algorithms (e.g., ClusterGCN [6])

and distributed GNN training systems (e.g., AliGraph [45]) have

been proposed to adapt METIS to obtain memory/communication

reduction due to the neighborhood explosion. Another category

studies are based on vertex-cut algorithms that directly assign the

edges to different partitions, where part of graph vertices are repli-

cated between other partitions. For “edge-centric” graph processing

models (e.g., PowerGraph [10], cuWide [24]), vertex-cut algorithms

are easy to keep the workload balanced. They use a sequential

greedy heuristic, which distributes the next edge 𝑒 to a partition

that minimizes the conditional expected replication factor.

6 CONCLUSION

In this paper, we investigated the importance of graph decomposi-

tion in graph neural networks. We theoretically verified that graph

decomposition can help avoid the information loss problem caused

by increasing networks depth. To utilize the information preserving

ability of the decomposition in general graph-structured data , we

introduce a novel connectivity-aware graph decomposition to bal-

ance the trade-off between information loss and model performance

of GNNs. We conducted extensive experiments on ten datasets and

analyzed the property of our model. Our model achieves state-of-

the-art performances and could better preserve information with

deeper architectures.

7 ACKNOWLEDGEMENT

This work is supported by the National Key Research and Devel-

opment Program of China (No. 2018YFB1004403), the National

Natural Science Foundation of China (No. 61832001, U1936104),

PKU-Tencent joint research Lab, Beijing Academy of Artificial Intel-

ligence (BAAI), CAAI Huawei MindSpore Open Fund, and The Fun-

damental Research Funds for the Central Universities 2020RC25. Ce

Zhang and the DS3Lab gratefully acknowledge the support from the

Swiss National Science Foundation (Project Number 200021_184628),

Innosuisse/SNF BRIDGEDiscovery (Project Number 40B2-0_187132),

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1230

European Union Horizon 2020 Research and Innovation Programme

(DAPHNE, 957407), Botnar Research Centre for Child Health, Swiss

Data Science Center, Alibaba, Cisco, eBay, Google Focused Research

Awards, Oracle Labs, Swisscom, Zurich Insurance, Chinese Schol-

arship Council, and the Department of Computer Science at ETH

Zurich.

REFERENCES

[1] 2020. DropEdge openreview. https://openreview.net/forum?id=Hkx1qkrKPr.

[2] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2019. N-GCN:

Multi-scale Graph Convolution for Semi-supervised Node Classification. In UAI.
[3] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[4] Shaosheng Cao, Xinxing Yang, Cen Chen, Jun Zhou, Xiaolong Li, and Yuan Qi.

2019. TitAnt: Online Real-time Transaction Fraud Detection in Ant Financial.

PVLDB 12, 12 (2019), 2082–2093.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling. In ICLR.
[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In SIGKDD. 257–266.
[7] Yodsawalai Chodpathumwan, Amirhossein Aleyasen, Arash Termehchy, and

Yizhou Sun. 2015. Universal-DB: Towards Representation Independent Graph

Analytics. VLDB 8, 12 (2015), 2016–2019.

[8] Wenfei Fan, Kun He, Qian Li, and Yue Wang. 2020. Graph algorithms: paralleliza-

tion and scalability. Sci. China Inf. Sci. 63, 10 (2020), 1–21.
[9] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable

graph convolutional networks. In SIGKDD. 1416–1424.
[10] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In OSDI. 17–30.
[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[12] Louis Jachiet, Pierre Genevès, Nils Gesbert, and Nabil Layaïda. 2020. On the

Optimization of Recursive Relational Queries: Application to Graph Queries. In

SIGMOD. 681–697.
[13] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and

Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In SIGMOD.
1695–1698.

[14] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1

(1998), 359–392.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[16] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR.
[17] Boris Knyazev, Xiao Lin, Mohamed R Amer, and GrahamWTaylor. 2018. Spectral

Multigraph Networks for Discovering and Fusing Relationships in Molecules.

arXiv preprint arXiv:1811.09595 (2018).
[18] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. 2019. Can GCNs

Go as Deep as CNNs? arXiv preprint arXiv:1904.03751 (2019).
[19] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In AAAI.
[20] Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel

Urtasun, and Richard S. Zemel. 2018. Graph Partition Neural Networks for

Semi-Supervised Classification. In ICLR.
[21] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and

Yuan Qi. 2020. Bandit Samplers for Training Graph Neural Networks. In NeurIPS.
[22] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. 2019. Break the

Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks. In NeurIPS.
[23] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled

Graph Convolutional Networks. In ICML, Vol. 97. 4212–4221.
[24] X. Miao, L. Ma, Z. Yang, Y. Shao, B. Cui, L. Yu, and J. Jiang. 2020. CuWide: Towards

Efficient Flow-based Training for Sparse Wide Models on GPUs. TKDE (2020),

1–1. https://doi.org/10.1109/TKDE.2020.3038109

[25] Kenta Oono and Taiji Suzuki. 2019. On Asymptotic Behaviors of Graph CNNs

from Dynamical Systems Perspective. arXiv preprint arXiv:1905.10947 (2019).

[26] Chanyoung Park, Carl Yang, Qi Zhu, Donghyun Kim, Hwanjo Yu, and Jiawei

Han. 2020. Unsupervised Differentiable Multi-aspect Network Embedding. In

SIGKDD. 1435–1445.
[27] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical

Mutual Information Maximization. InWWW. 259–270.

[28] Hannu Reittu, Ilkka Norros, Tomi Räty, Marianna Bolla, and Fülöp Bazsó. 2019.

Regular Decomposition of Large Graphs: Foundation of a Sampling Approach to

Stochastic Block Model Fitting. Data Sci. Eng. 4, 1 (2019), 44–60.
[29] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
[30] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,

Brendan D Tracey, and David D Cox. 2019. On the information bottleneck theory

of deep learning. Journal of Statistical Mechanics: Theory and Experiment 2019,
12 (2019), 124020.

[31] Ohad Shamir, Sivan Sabato, and Naftali Tishby. 2010. Learning and generalization

with the information bottleneck. Theoretical Computer Science 411, 29-30 (2010).
[32] Felipe Petroski Such, Shagan Sah, Miguel Alexander Dominguez, Suhas Pillai,

Chao Zhang, Andrew Michael, Nathan D Cahill, and Raymond Ptucha. 2017.

Robust spatial filtering with graph convolutional neural networks. IEEE Journal
of Selected Topics in Signal Processing 11, 6 (2017), 884–896.

[33] Emre Telatar. 1999. Capacity of multi-antenna Gaussian channels. European
transactions on telecommunications 10 (1999), 585–595. Issue 6.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

[35] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.
[36] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

ICML.
[37] Shiwen Wu, Yuanxing Zhang, Chengliang Gao, Kaigui Bian, and Bin Cui. 2020.

GARG: Anonymous Recommendation of Point-of-Interest in Mobile Networks

by Graph Convolution Network. Data Sci. Eng. 5, 4 (2020), 433–447.
[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In ICLR.
[40] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In ICML. 5449–5458.
[41] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning

Method. In ICLR.
[42] Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas,

and Bin Cui. 2020. Reliable Data Distillation on Graph Convolutional Network.

In SIGMOD. 1399–1414.
[43] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. 2020.

Scalable Graph Neural Networks with Deep Graph Library. In SIGKDD. 3521–
3522.

[44] Hao Zhong and Hong Mei. 2020. Learning a graph-based classifier for fault

localization. Sci. China Inf. Sci. 63, 6 (2020).
[45] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,

and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network

Platform. VLDB 12, 12 (2019), 2094–2105.

[46] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for

graph-based semi-supervised classification. InWWW. 499–508.

A PROOFS

We begin by introducing our notation. Hereafter, scalars will be

written in italics, vectors in bold lower-case and matrices in bold

upper-case letters. For an𝑚 × 𝑛 real matrix A, the matrix element

in the 𝑖th row and 𝑗th column is denoted as (A)𝑖 𝑗 , and 𝑖th entry of

a vector a ∈ R𝑚 by (a)𝑖 . Also, 𝑗th column of A is denoted by (A) 𝑗 ,
or (A) [𝑖=1,2,...,𝑚], 𝑗 . Similarly, we denote 𝑖th row by (A)𝑖, [𝑗=1,2,...,𝑛] .
The inner product between two vectors (A)𝑖 and (A)𝑖′ is denoted
by ⟨(A)𝑖 , (A)𝑖′⟩.

We vectorize a matrix A by concatenating its columns such that

vec(A) =

(A)1
(A)2
.
.
.

(A)𝑛

and denote it by vec(A). For matrices A ∈ R𝑚×𝑛 and B ∈ R𝑘×𝑙 , we
denote the kronecker product of A and B by A ⊗ B such that

A ⊗ B =

(A)11B . . . (A)1𝑛B
.
.
.

. . .
.
.
.

(A)𝑚1B . . . (A)𝑚𝑛B

 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1231

https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1109/TKDE.2020.3038109

Note that A ⊗ B is of size𝑚𝑘 × 𝑛𝑙 .
Next, we list some existing results which we require repeatedly

throughout this section.

Preliminaries.
(1) Suppose A ∈ R𝑚×𝑛 , B ∈ R𝑛×𝑘 and C ∈ R𝑘×𝑝 . We have

vec(ABC) = (C𝑇 ⊗ A) vec(B) . (4)

(2) Let A ∈ R𝑚×𝑛 , B ∈ R𝑛×𝑘 and C ∈ R𝑚′×𝑛′ , D ∈ R𝑛′×𝑘′

(AB ⊗ CD) = (A ⊗ C) (B ⊗ D) . (5)

(3) For A ∈ R𝑚×𝑚 and B ∈ R𝑛×𝑛 , singular values of A ⊗ B is

given by 𝜆𝑖 (A)𝜆 𝑗 (B), 𝑖 = 1, 2, . . . ,𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

(4) Let x and y be an 𝑛-dimensional random vector defined over

finite alphabets X𝑛 and Ω𝑛 , respectively. We denote entropy

of x byH(x) and mutual information between x and y by

I(x; y). We list the followings:

H(𝑓 (x))
(𝑎)
≤ H(x), I(x; 𝑓 (y))

(𝑏)
≤ I(x; y) (6)

such that 𝑓 : R → R is some deterministic function, and

equality holds for both inequalities iff 𝑓 is bijective.

Proof of Lemma 1. Applying vectorization to the layer-wise

propagation rule introduced in (1), we have

y(𝑖+1)= vec

(
𝜎 (AY(𝑖)W(𝑖+1))

)
y(𝑖+1)

(𝑎)
= 𝜎

(
vec(AY(𝑖)W(𝑖+1))

)
y(𝑖+1)

(𝑏)
= 𝜎

(
((W(𝑖+1))𝑇 ⊗ A)y(𝑖)

)
y(𝑖+1)

(𝑐)
= P(𝑖+1) ((W(𝑖+1))𝑇 ⊗ A)y(𝑖)

(7)

where (a) follows from the element-wise application of 𝜎 , (b) follows

from (4), and (c) results from introducing a diagonal matrix P(𝑖+1)

with diagonal entries in {𝑎, 1} such that (P(𝑖+1)) 𝑗, 𝑗 = 1 if

(
(W(𝑖+1)⊗

A)y(𝑖)
)
𝑗 ≥ 0, and (P(𝑖+1)) 𝑗, 𝑗 = 𝑎 elsewhere.

By a recursive application of (7c), we have

y(𝑙) = P(𝑙) (W(𝑙) ⊗ A) . . . P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)x.

□

We drop the transpose from W(𝑖+1) in order to avoid cumber-

some notation. The singular values of W(𝑖+1) are our primary in-

terest thereof our results still hold.

Following Lemma 1, the next key step in our proving is as follows.

Lemma 2. Consider the singular value decomposition UΛV𝑇 =

P(𝑙) (W(𝑙) ⊗ A) ...P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A) such that (Λ) 𝑗,𝑗 =

𝜆𝑗 (P(𝑙) (W(𝑙) ⊗ A) ...P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)) , and let x̃ = V𝑇 x.
We have

I(x; y(𝑙)) (1)= I(x̃;Λx̃)
(2)
≤ H(x̃) (3)= H(x) (8)

where (1, 3) results from that U and V are invertible, and equality

holds in (2) iff Λ is invertible, i.e., singular values of P(𝑙) (W(𝑙) ⊗
A) ...P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A) are nonzero.

Theorem 1, 2, 3 and 4 can easily be inferred from Lemma 2. That

is, I(x; y(𝑙)) = 0 iff max𝑗 (Λ𝑙) 𝑗, 𝑗 = 0 in the asymptotic regime.

Similarly, iff min𝑗 (Λ𝑙) 𝑗, 𝑗 > 0, I(x; y(𝑙)) is maximized and given

byH(x), hence L(y(𝑙)) = 0.

In particular Theorem 1, 3 and Corollary 2, i.e., exponential decay

to zero, also hold for traditional ReLU with 𝑓 : 𝑥 → 𝑥+ = max(0, 𝑥).

Proof of Lemma 2. Let Σ be a𝑛×𝑛matrix with singular value

decomposition Σ = UΛV𝑇 . Inspired by the derivation for the ca-

pacity of deterministic channels introduced by [33], we derive the

following

I(x;Σx) = I(x;UΛV𝑇 x) (𝑎)= I(x;ΛV𝑇 x)

I (x;Σx) (𝑏)= I(V𝑇 x;ΛV𝑇 x) (𝑐)= I(x̃;Λx̃) .
(9)

(a) and (b) are a result of (6b) and that U and V are unitary hence

invertible (bijective) transformations. (c) follows from the change

of variables x̃ = V𝑇 x.
Note thatI(x̃;Λx̃) ≤ H (Λx̃). Using (6a), we further haveH(Λỹ)

≤ H (x̃) = H(x) which completes the proof. □

We recall that we are interested in regimes where I(x; y(𝑙)) = 0

andL(y(𝑙)) = 0. Lemma 2 shows thatI(x; y(𝑙)) = 0 ifmax𝑗 𝜆 𝑗 (P(𝑙)
(W(𝑙) ⊗ A) · · · P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)) = 0, and maxi-

mized (and given byH(x)) when P(𝑙) (W(𝑙) ⊗ A) · · · P(2) (W(2) ⊗
A)P(1) (W(1) ⊗A) is invertible. Therefore, maximum and minimum

singular values of P(𝑙) (W(𝑙) ⊗A) · · · P(2) (W(2) ⊗A)P(1) (W(1) ⊗A)
are of our interest.

Proof of Theorem 1. Let 𝜎A = max𝑗 𝜆 𝑗 (A) and 𝜎W = sup𝑖

max𝑗 𝜆 𝑗 (W(𝑖)). Given singular values of P(𝑖) is in {𝑎, 1}, sup𝑖 max𝑗

𝜆 𝑗 (P(𝑖) (W(𝑖)⊗A)) = 𝜎A𝜎W.We,moreover, havemax𝑗 𝜆 𝑗 (P(𝑙) (W(𝑙)
⊗ A) · · · P(2) (W(2) ⊗ A)P(1) (W(1) ⊗ A)) ≤ (𝜎A𝜎W)𝑙 . Therefore,
if 𝜎A𝜎W < 1, by Lemma 2 we have I(x; y(𝑙)) = O((𝜎A𝜎W)𝑙), and
lim𝑙→∞ I(x; y(𝑙)) = 0. □

Proof of Theorem 2. We now denote 𝛾A = min𝑗 𝜆 𝑗 (A)
and 𝛾W = inf𝑖 min𝑗 𝜆 𝑗 (W(𝑖)). Hence inf𝑖 min𝑗 𝜆 𝑗 (P(𝑖) (W(𝑖) ⊗
A)) = 𝑎𝛾A𝛾W. Moreover, min𝑗 𝜆 𝑗 (P(𝑙) (W(𝑙) ⊗ A) · · · P(2) (W(2) ⊗
A)P(1) (W(1) ⊗A)) ≥ (𝑎𝛾A𝛾W)𝑙 . If 𝑎𝛾A𝛾W ≥ 1,min𝑗 𝜆 𝑗 (P𝑙 (W(𝑙) ⊗
A) · · · P2 (W(2) ⊗A)P1 (W(1) ⊗A)) ≥ 1∀𝑙 ∈ N+, henceI(x; y(𝑙)) =
H(x) and L(y(𝑙)) = 0 results by Lemma 2. □

Proof of Corollary 1. Let D denote the degree matrix such

that (D) 𝑗, 𝑗 =
∑
𝑚 (A) 𝑗,𝑚 , and L be the associated normalized Lapla-

cian L = D−1/2AD−1/2. Due to the property of normalized Lapla-

cian such that max𝑗 𝜆 𝑗 (L) = 1, we have 𝜎A = 1. Inserting this into

Theorem 1, the corollary results. □

Similarly as in (7), y(𝑖+1) can be derived from (2) as follows:

y(𝑖+1)= vec

(
𝜎 (

∑
𝑘

A𝑘Y(𝑖)W(𝑖+1)
𝑘
)
) (𝑎)
= 𝜎 (

∑
𝑘

vec(A𝑘Y(𝑖)W(𝑖+1)
𝑘
)
)

y(𝑖+1)
(𝑏)
= 𝜎 (

∑
𝑘

(W(𝑖+1)
𝑘

⊗ A𝑘)y(𝑖)𝜎)
(𝑐)
= P(𝑖+1)

∑
𝑘

(W(𝑖+1)
𝑘

⊗ A𝑘)y(𝑖)

(10)

where P(𝑖+1) is a diagonal matrix with diagonal entries in {𝑎, 1}
with 𝑎 ∈ (0, 1) such that (P(𝑖)) 𝑗, 𝑗 = 1 if

(∑
𝑘 (W

(𝑖+1)
𝑘
⊗A)y(𝑖)

)
𝑗 ≥ 0,

and (P(𝑖)) 𝑗, 𝑗 = 𝑎 otherwise.
Therefore, y(𝑙) is given by y(𝑙) =

P(𝑙)
∑
𝑘𝑙

(W(𝑙)
𝑘𝑙
⊗ A𝑘𝑙) · · · P

(2)
∑
𝑘2

(W(2)
𝑘2
⊗ A𝑘2)P

(1)
∑
𝑘1

(W(1)
𝑘1
⊗ A𝑘1)x.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1232

Consider (9) whereΣ is replacedwith P(𝑙)
∑
𝑘𝑙
(W(𝑙)

𝑘𝑙
⊗A𝑘𝑙) · · · P

(2)∑
𝑘2 (W

(2)
𝑘2
⊗ A𝑘2)P(1)

∑
𝑘1 (W

(1)
𝑘1
⊗ A𝑘1).

We deduce the followings:

Proof of Theorem 3. Suppose 𝜎 (𝑖) denotes the largest singu-
lar value of P(𝑖)

∑𝐾
𝑘𝑖=1
(W(𝑖)

𝑘𝑖
⊗A𝑘𝑖) such that𝜎 (𝑖) = max𝑗 𝜆 𝑗

(
P(𝑖)

∑
𝑘𝑖

(W(𝑖)
𝑘𝑖
⊗ A𝑘𝑖)

)
. Following the same argument as in the proofs of

Theorem 1 and 2, Lemma 2 implies that if sup𝑖 𝜎
(𝑖) < 1, then

I(x; y(𝑙)) = O
(
(sup𝑖 𝜎 (𝑖))𝑙

)
, and hence lim𝑙→∞ I(x; y(𝑙)) = 0 re-

sults. □

Proof of Theorem 4. We now 𝛾 (𝑖) denote the minimum sin-

gular value of P(𝑖)
∑𝐾
𝑘𝑖=1
(W(𝑖)

𝑘𝑖
⊗A𝑘𝑖). By Lemma 2, it immediately

follows that if inf𝑖 𝜎
(𝑖) ≥ 1, then ∀𝑙 ∈ N+ we have L(y(𝑙)) = 0. □

Before we move on to the proofs of Corollary 2 and 3, we state

the following lemma.

Lemma 3. Let the singular value decomposition of A ∈ R𝑛×𝑛 is
given by A = UASV𝑇A and we set each A𝑘 to A𝑘 = UAS𝑘V𝑇A with
(S𝑘)𝑚,𝑚 = 𝜆𝑚 (A) if 𝑘 = 𝑚 and (S𝑘)𝑚,𝑚 = 0 elsewhere. For such
specific composition, we argue that singular values of

∑
𝑘 W𝑘 ⊗ A𝑘

for W𝑘 ∈ R𝑑×𝑑 is given by 𝜆𝑘 (A)𝜆 𝑗 (W𝑘) for 𝑘 = 1, 2, . . . , 𝑛 and
𝑗 = 1, 2, . . . , 𝑑 .

Proof of Lemma 3. Let the singular value decomposition of

W𝑘 be W𝑘 = UW𝑘
SW𝑘

V𝑇W𝑘
. By the property of kronecker product,

we have∑
𝑘

W𝑘 ⊗ A𝑘 =
∑
𝑘

(UW𝑘
⊗ UA) (SW𝑘

⊗ S𝑘) (V𝑇W𝑘
⊗ V𝑇A) .

Next, we define a set of 𝑛𝑑 × 𝑛𝑑 mask matrices M𝑘 such that

(M𝑘)𝑖,𝑖′ = 1 if 𝑖 = 𝑖 ′ and 𝑖 (hence 𝑖 ′) is of the form 𝑖 = 𝑘 + (𝑗 − 1)𝑛
for 𝑗 = 1, 2, . . . , 𝑑 , and (M𝑘)𝑖,𝑖′ = 0 otherwise. Reminding that

(S𝑘)𝑚,𝑚 = 𝜆𝑚 (A) if 𝑘 = 𝑚 and (S𝑘)𝑚,𝑚 = 0 elsewhere, above

equation can be rewritten as∑
𝑘

W𝑘 ⊗ A𝑘 =
∑
𝑘

(UW𝑘
⊗ UA)M𝑘 (SW𝑘

⊗ S𝑘)M𝑘 (V𝑇W𝑘
⊗ V𝑇A) .

In other words, the mask matrix M𝑘 applies on the columns (rows)

of UW𝑘
⊗ UA (V𝑇W𝑘

⊗ V𝑇A) where the respective diagonal entries
of (SW𝑘

⊗ S𝑘) are nonzero.
Next, we note that if 𝑘 = 𝑘 ′, M𝑘M𝑘′ = M𝑘 , and M𝑘 and M𝑘′ are

orthogonal for 𝑘 ≠ 𝑘 ′. This leads us to

(UW𝑘
⊗ UA)M𝑘 (SW𝑘

⊗ S𝑘)M𝑘 (V𝑇W𝑘
⊗ V𝑇A)

=
∑
𝑘′
(UW𝑘′ ⊗ UA)M𝑘′ (SW𝑘

⊗ S𝑘)
∑
𝑘′′
(V𝑇W𝑘′′

⊗ V𝑇A)M𝑘′′ .

By defining Ũ =
∑
𝑘 (UW𝑘

⊗ UA)M𝑘 and Ṽ =
∑
𝑘 M𝑘 (V𝑇W𝑘

⊗ V𝑇A)
and using the above equation, we resume

∑
𝑘 W𝑘 ⊗ A𝑘 as∑

𝑘

W𝑘 ⊗ A𝑘 = Ũ
∑
𝑘

(SW𝑘
⊗ S𝑘)Ṽ𝑇 . (11)

Next, we will show that Ũ and Ṽ are unitary matrices through

proving that ŨŨ𝑇 = Ũ𝑇 Ũ = I and Ṽ𝑇 Ṽ = ṼṼ𝑇 = I. To avoid

repeating the same procedure, we will only show it for Ũ, but the
same result also holds for Ṽ.

First, we show that (A.1) ŨŨ𝑇 = I, and then (A.2) Ũ𝑇 Ũ = I to
argue that Ũ (and Ṽ) is unitary.

(A.1) We can simplify ŨŨ𝑇 as

ŨŨ𝑇 =
∑
𝑘

(
(UW𝑘

⊗ UA)M𝑘

) ∑
𝑘′

(
(UW𝑘′ ⊗ UA)M𝑘′

)𝑇
ŨŨ𝑇 =

∑
𝑘,𝑘′

(
(UW𝑘

⊗ UA)M𝑘

) (
(UW𝑘′ ⊗ UA)M𝑘′

)𝑇
ŨŨ𝑇

(𝑎)
=

∑
𝑘

(
(UW𝑘

⊗ UA)M𝑘

) (
(UW𝑘

⊗ UA)M𝑘

)𝑇 (12)

where (a) follows from the orthogonality of M𝑘 and M𝑘′ for 𝑘 ≠ 𝑘 ′.
We will now take a closer look at

∑
𝑘

(
(UW𝑘

⊗UA)M𝑘

) (
(UW𝑘

⊗
UA)M𝑘

)𝑇
. The entries of summands,

(
(UW𝑘

⊗ UA)M𝑘

) (
(UW𝑘

⊗
UA)M𝑘

)𝑇
, are equivalent to inner product between the rows of

(UW𝑘
⊗ UA)M𝑘 for a fixed 𝑘 . Recall that for a fixed 𝑘 , the mask

matrix satisfies (M𝑘)𝑖,𝑖 = 1 if 𝑘 is of the form 𝑖 = 𝑘 + (𝑗 − 1)𝑛 for

𝑗 = 1, 2, · · · , 𝑑 , and (M𝑘)𝑖,𝑖 = 0 elsewhere. We now define 𝑖𝜔 and

𝑖𝛼 as indices such that 𝑖𝜔 = ⌊𝑖/𝑛⌋ + 1 and 𝑖𝛼 = mod (𝑖, ⌊𝑖/𝑛⌋).
Similarly, let 𝑖 ′𝜔 = ⌊𝑖 ′/𝑛⌋ + 1 and 𝑖 ′𝛼 = mod (𝑖 ′, ⌊𝑖 ′/𝑛⌋).

Following above definitions, a moment of thought reveals that

the nonzero entries of 𝑖th row of

(
(UW𝑘

⊗ UA)M𝑘

)
is given by

(UW𝑘
)𝑖𝜔 , [𝑚=1,2,...,𝑑] (UA)𝑖𝛼 ,𝑘 . We therefore investigate (ŨŨ𝑇)𝑖,𝑖′

i.e., the inner product between 𝑖th and 𝑖 ′th rows of
(
(UW𝑘

⊗UA)M𝑘

)
summed over all 𝑘 = 1, 2, . . . , 𝑛. To start, the inner product between

𝑖th and 𝑖 ′th rows of

(
(UW𝑘

⊗ UA)M𝑘

)
is as follows

⟨[(UW𝑘
)𝑖𝜔 ,[𝑚=1,2,...,𝑑] (UA)𝑖𝛼 ,𝑘], [(UW𝑘

)𝑖′𝜔 ,[𝑚=1,2,...,𝑑] (UA)𝑖′𝛼 ,𝑘] ⟩

=
∑
𝑚

(UW𝑘
)𝑖𝜔 ,𝑚 (UA)𝑖𝛼 ,𝑘 (UW𝑘

)𝑖′𝜔 ,𝑚 (UA)𝑖′𝛼 ,𝑘

=
∑
𝑚

(UW𝑘
)𝑖𝜔 ,𝑚 (UW𝑘

)𝑖′𝜔 ,𝑚 (UA)𝑖𝛼 ,𝑘 (UA)𝑖′𝛼 ,𝑘

= (UA)𝑖𝛼 ,𝑘 (UA)𝑖′𝛼 ,𝑘
∑
𝑚

(UW𝑘
)𝑖𝜔 ,𝑚 (UW𝑘

)𝑖′𝜔 ,𝑚 .

(13)

Then we could complete the proof of (A.1) by analyzing the cases

when (1) 𝑖 ≠ 𝑖 ′, and (2) 𝑖 = 𝑖 ′ respectively. Within the space limita-

tion, we hide the details as well as the similar proofs of (A.2).

□

For the decomposition of A such that A𝑘 = UAS𝑘V𝑇A where the

singular value decomposition of A is given by A = UASV𝑇A, we
recall Theorem 3 and 4 to conclude Corollary 2 and 3 as follows.

Proof of Corollary 2. Let 𝜎A𝑘 = 𝜆𝑘 (A) and 𝜎W𝑘
=

sup𝑖 max𝑗 𝜆 𝑗 (W(𝑖)𝑘). By Lemma 3, we have max𝑗 𝜆 𝑗 (
∑
𝑘 (W

(𝑖)
𝑘
⊗

A𝑘)) ≤ max𝑘 𝜎A𝑘𝜎W𝑘
. Noting that P(𝑖) is diagonal with entries at

most 1, we havemax𝑗 𝜆 𝑗
(
P(𝑙)

∑
𝑘𝑙
(W(𝑙)

𝑘𝑙
⊗A𝑘𝑙) · · · P

(2) ∑
𝑘2 (W

(2)
𝑘2
⊗

A𝑘2)P(1)
∑
𝑘1 (W

(1)
𝑘1
⊗ A𝑘1)

)
≤ (max𝑘 𝜎A𝑘𝜎W𝑘

)𝑙 . Therefore, if
∀𝑘 = {1, 2, . . . , 𝑛} 𝜎A𝑘𝜎W𝑘

< 1, then lim𝑙→∞max𝑗 𝜆 𝑗
(∑

𝑘 (W
(𝑖)
𝑘
⊗

A𝑘)
)
= 0. Hence lim𝑙→∞ I(x; y(𝑙)) = 0 results by Lemma 2. □

Proof of Corollary 3. Let 𝛾W𝑘
= inf𝑖 min𝑗 𝜆 𝑗 (W(𝑖)𝑘). Note

thatmin𝑗 𝜆 𝑗
(
P(𝑖)

∑
𝑘 W(𝑖)

𝑘
⊗A𝑘

)
≥ 𝑎min𝑘 𝜆𝑘 (A)𝛾W𝑘

by Lemma 3

and that min𝑗 𝜆 𝑗 (P𝑖) = 𝑎. Moreover, min𝑗 𝜆 𝑗
(
P(𝑙)

∑
𝑘𝑙
(W(𝑙)

𝑘𝑙
⊗

A𝑘𝑙) · · · P
(2) ∑

𝑘2 (W
(2)
𝑘2
⊗ A𝑘2)P(1)

∑
𝑘1 (W

(1)
𝑘1
⊗ A𝑘1)

)
≥

(𝑎min𝑘 𝜆𝑘 (A)𝛾W𝑘
)𝑙 . Therefore, if 𝑎𝜎A𝑘𝛾W𝑘

≥ 1, ∀𝑘 ∈ {1, 2, . . . , 𝑛},
then I(x; y(𝑙)) = H(x) ∀𝑙 ∈ N+ by Lemma 2, hence

L(y(𝑙)) = 0. □

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1233

	Abstract
	1 Introduction
	2 Methodology
	2.1 Notations
	2.2 Preliminary study
	2.3 DeGNN: Connectivity-aware graph decomposition

	3 Theoretical analysis
	3.1 Information loss in GCN
	3.2 Information loss in DeGNN

	4 Experiments
	4.1 Experiments setup
	4.2 Comparison with state-of-the-art
	4.3 Analysis

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References
	A Proofs

