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ABSTRACT
Transformer models have achieved state-of-the-art performance on
various domains of applications and gradually becomes the founda-
tions of the advanced large deep learning (DL) models. However,
how to train these models over multiple GPUs efficiently is still
challenging due to a large number of parallelism choices. Exist-
ing DL systems either rely on manual efforts to make distributed
training plans or apply parallelism combinations within a very lim-
ited search space. In this approach, we propose Galvatron, a new
system framework that incorporates multiple popular parallelism
dimensions and automatically finds the most efficient hybrid paral-
lelism strategy. To better explore such a rarely huge search space,
we 1) involve a decision tree to make decomposition and pruning
based on some reasonable intuitions, and then 2) design a dynamic
programming search algorithm to generate the optimal plan. Eval-
uations on four representative Transformer workloads show that
Galvatron could perform automatically distributed training with
different GPU memory budgets. Among all evaluated scenarios,
Galvatron always achieves superior system throughput compared
to previous work with limited parallelism.
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1 INTRODUCTION
Transformer models have achieved great success in a wide range of
deep learning (DL) applications in recent years, such as computer
vision (CV) [11, 46], natural language processing (NLP) [6, 44, 47],
graph learning [33, 51] and recommendation systems [42]. For ex-
ample, many Transformer variants (e.g., BERT [10], GPT-2 [35],
T5 [36]) are leading the state-of-the-art performance in various
NLP tasks such as machine translation and question answering.
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Transformers are also applicable to image recognition (e.g, ViT [11],
Swin Transformer [21]) and multimodal tasks (e.g, CLIP [34], DALL-
E [38]). Due to their superior performance, Transformers are be-
coming increasingly important in modern web companies.

Empirical evidence indicates that scaling model parameters is
an effective path towards model performance improvements [17].
For instance, the original Transformer only has millions of model
parameters while GPT-2 has 1.5 billion model parameters with supe-
rior performance [35]. Such large amounts of model parameters also
incur high computational and memory costs. Transformers often
stack multiple Transformer layers on top of one another and each
of them mainly consists of the self-attention module and the feed-
forward module. Both of them are dense tensor algebras relying on
general-purpose graphical processing units (GPUs) for acceleration.
With the increasing model scales, building and designing Trans-
formers demand more system optimizations, and how to perform
efficient Transformers training is becoming more challenging.

Distributed DL systems adopt data and model parallelism to
improve the training efficiency by utilizing multiple GPU devices.
Data parallelism divides the large volume of input data into multiple
parts and each device is only responsible for partial data [9, 22, 53].
It requires each device to store a whole model replica, suffering
from large model scales. Model parallelism is a more promising
direction that partitions the model from different parallelism dimen-
sions and makes each device store a subset of model parameters,
such as tensor parallel [29] and pipeline parallel [13, 27, 28, 50].
Various choices of the parallelism strategies lead to distinct memory
consumption, communication overheads and execution efficiency.

However, directly applying these techniques to scaling Trans-
formers is facing crucial challenges in both system efficiency and
usability. Some recent advanced methods have been proposed to au-
tomatically find the parallelism strategies through the fine-grained
combination of data and model parallelism for individual opera-
tors in the model. For example, OptCNN [14], FlexFlow [15, 43],
Tofu [45], and TensorOpt [7] consider both data and tensor paral-
lelism and use different search algorithms to optimize the execution
plans. PipeDream [27] and DAPPLE [12] combine pipeline paral-
lelismwith data parallelism to improve the efficiency. Unfortunately,
existing approaches only support limited parallelism dimensions
(i.e., data parallelism and rare model parallelism dimensions) or rely
on strong model and hardware configurations (i.e., expert-designed
parallelism strategy) and result in sub-optimal performance in prac-
tice. To the best of our knowledge, there is few prior work consid-
ering the automatic parallelism for large-scale Transformers with a
complex search space including multiple parallelism dimensions.
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In this approach, we propose Galvatron, a novel automatic paral-
lel training system for Transformer models over multiple GPUs. Our
target is to integrate data parallelism with a variety of model paral-
lelism dimensions, provide a rarely larger search space (compared
with previous approaches), and find the optimal hybrid parallelism
strategies in an efficient manner. However, such an integration
brings an explosive growth of the search space and cannot be di-
rectly explored as usual. Therefore, we are interested in the follow-
ing question: How can we exploit as many parallelism dimensions as
possible and efficiently explore the search space in the meanwhile?

We study four popular parallelism paradigms in the distributed
training of Transformer models, including data parallelism (DP),
sharded data parallelism (SDP) [16, 37], tensor parallelism (TP) and
pipeline parallelism (PP). These paradigms have distinct memory
consumption and communication overheads and no single par-
adigm could beat the others on both sides. The search space of
automatic parallelism should include the arbitrary combinations of
these basic parallelism paradigms. Inspired by some key intuitions
from our observations and analysis, we first propose a decision-tree
structure to decompose the search space and perform pruning on
the tree to remove the inefficient combinations. To determine the fi-
nal strategy for each layer in the model, we then propose a dynamic
programming search algorithm to utilize the optimal substructure
property of this problem. It is worth mentioning that the cost es-
timation in Galvatron considers the GPU performance slowdown
from computation and communication overlapping, which has been
ignored for a long time in previous parallel training approaches. We
provide an implementation of Galvatron over PyTorch and commu-
nication primitives provided by NCCL. Unlike existing toolbox-like
systems (e.g., DeepSpeed [40], Megatron [29]) relying on users’
expertise and significant tuning efforts, Galvatron’s automatic par-
allelism only requires a few lines’ modifications on the original
training script. Our evaluation selects four representative Trans-
formers, including NLP models (i.e., BERT and T5) and CV models
(i.e., ViT, Swin Transformer). The experimental results show that
Galvatron could significantly outperform the four pure parallelisms
and existing automatic parallelisms with limited dimensions (i.e.,
DP+TP and DP+PP) under various device memory budgets.

We summarize our contributions as follows: First, we enlarge
the explored dimension of automatic parallelism for Transformer
training, and introduce a novel decision-tree abstraction to decom-
pose the large search space. Second, we design a novel parallelism
optimization method to automatically find the most efficient hy-
brid parallelism strategy based on the estimated costs. Finally, we
build Galvatron system that supports larger models’ training and
achieves up to 338% and 55% throughput speedups compared to
state-of-the-art pure and hybrid parallelism methods respectively.

2 PRELIMINARY
2.1 Transformer Models
Transformers are first proposed to solve sequence modeling and
transduction problems such as language modeling and machine
translation [44]. The self-attention and point-wise feed-forward
modules are the basic components in each Transformer layer. Most
operations are dense algebras like matrix multiplications, resulting
in huge computation costs and memory consumption.

Transformers in NLP. Different manners of using Transformer
layers in NLP incur three mainly Transformer architectures, includ-
ing encoder-only (for text classification, e.g., BERT and RoBERTa [20]),
decoder-only (for text generation, e.g., GPT-2 and Transformer-
XL [8]), and encoder-decoder (for sequence-to-sequence tasks, e.g.,
T5 and BART [18]). They have similar basic model components
and some slight differences on the structures. For example, the
decoder has an additional self-attention layer compared to the en-
coder. What’s more, the encoder-decoder architecture combines en-
coders and decoders symmetrically (i.e., the same number of layers)
together. These differences bring some distinct system workload
characteristics in both computation and memory.

Transformers in CV. Transformers are also becoming increas-
ingly attractive in computer vision areas. Vision Transformer (ViT)
first replaces the tokens in languages with patches in images and
the patches are fed to the encoder for the image classification task.
Standard ViTs have a fixed number of patches and the same hidden
dimension across different layers. Swin Transformer proposes a
multi-stage hierarchical architecture with a shifted window-based
attention to encode multi-scale patches. However, such multi-scale
architectures also uneven computation and memory across layers.

2.2 Parallelism in Distributed Training
Data parallelism. Data parallelism approaches are widely used

to scale up the distributed training for large input datasets. It refers
to distribute the data samples across multiple workers to compute
and synchronize the model updates (e.g., gradients). Each worker
should maintain a replica of the model which implies that the model
should be fit into the device memory. To alleviate the redundant
memory consumption, DeepSpeed ZeRO [37] (also named by FSDP
in FairScale [5]) has been proposed to partition the model states
instead of replicating them. It is similar to model parallelism but still
follows the data parallelism computation process except involving
additional communications to share the model states.

Model parallelism. Model parallelism divides the model into
multiple parts and each worker is only responsible for the computa-
tion of the partial model. Due to the complexity of DL model archi-
tectures, a variety of model parallelism approaches have been pro-
posed with different model partition techniques. There are mainly
two kinds of paradigms commonly used for large-scale Transform-
ers training, including distributed tensor parallelism (TP) and layer-
wise pipeline parallelism (PP). For example, Megatron-LM [29] uses
TP, partitions the feed-forward and self-attention modules in Trans-
formers to multiple devices and inserts communication operations
(e.g., All-Reduce) to guarantee consistent results. GPipe [13] first
proposes PP, treats each model as a sequence of layers and parti-
tions the model into multiple composite layers across the devices.
The workers are organized as a pipeline and transfer intermediate
results at the partition boundaries between neighboring partitions.

Automatic parallelism. Recent approaches propose to inte-
grate both data and model parallelism and search for better dis-
tributed training strategies. For example, FlexFlow, OptCNN, Tofu
and TensorOpt consider both tensor parallelism and data paral-
lelism. PipeDream and DAPPLE extend pipeline parallelism and
enable data parallelism to replicate each pipeline stage. However,
these approaches only explore the combination of data parallelism
and at most one single model parallelism dimension. Such limited
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Figure 1: Illustration of different basic parallelisms in Galva-
tron. We use the green and gray colors to denote the input
and output activations for both forward and backward com-
putation. The model parameters and gradients are in blue.

decision spaces cannot generate efficient enough parallelization
plan for many workloads. In fact, industrial companies have taken
great efforts to explore better parallelism combinations when train-
ing large Transformers on their clusters, such as Turing-NLG [41]
from Microsoft and GPT-3 [6] from OpenAI. These evidences sug-
gest that it is necessary to design an automatic parallelization sys-
tem covering as many parallelism decisions as possible, without
relying on strong system tuning experience from human experts.

Task parallelism. Some approaches involve multiple training
tasks simultaneously. For example, Cerebro [26] targets the model
selection problem in AutoML scenarios and each task has similar
model architecture with individual configurations (e.g, model size,
batch size, learning rate). Specifically, with the model hopper par-
allelism (MOP), Cerobo picks some configurations, each of them
is assigned to a worker and performs the training on a sub-epoch
of data. The assignment will be adjusted periodically based on the
evaluation results. This line of approaches is orthogonal to our
problem and they ignore the parallel training of single task.

3 GALVATRON DESIGN
The goal of Galvatron is to automatically search within the com-
posite parallelism space and generate the optimal parallelization
plan for the given Transformer model and the distributed envi-
ronment. The key challenge comes from the large search space
when considering multiple parallelism strategies and making fine-
grained decisions for the model parameters. In this section, we first
introduce the search space and then describe our detailed solutions.

3.1 Search Space Analysis
We first take an example environment with two GPUs to better
illustrate the large search space, optimization target and necessary
constraints. Then we extend the problem to multi-GPU cases.

3.1.1 Two-GPU Example. A Transformer model can be treated as
a sequence of 𝐿 layers, and each layer 𝐿𝑖 contains a set of model pa-
rametersw𝑖 . Due to the back propagation, the forward computation
results (i.e., activations) f𝑖 should be kept inside the device memory
before it calculates the gradients g𝑖 in backward. The problem is
to select the optimal parallelism strategy for each layer individu-
ally from a large search space, which is a composition of DP, SDP,

PP, and TP. As illustrated in Figure 1, all these parallelism strate-
gies could split the computation workloads into multiple devices.
But they have distinct memory consumption and communication
overheads, finally leading to different system efficiency.

Data parallelism. In DP, each GPU has a model replica and half of
the input data samples. Since the size of activations is proportional
to the number of data samples, each GPU only needs to store half
of the forward activations. After the backward computation, the
GPUs should synchronize their gradients (i.e., all-reduce) before
updating the model, which has the sample size as model parameters.

Sharded Data parallelism. In SDP, each GPU has half of model
parameters and half of the input data samples. However, it requires
two times all-gather to collect the sharded model parameters for
forward and backward computation and once reduce-scatter to
update gradients. Since an all-reduce operation is equivalent to
the combination of once all-gather and once reduce-scatter,
the communication cost of SDP is 1.5× larger than DP.

Pipeline parallelism. In PP, the layer 𝐿𝑖 could be placed on either
GPU 0 or GPU 1, resulting in two possible memory costs: (1, 0) and
(0, 1). The communication cost is mainly determined by whether the
neighboring layers are on the same device. We select GPipe as the
default PP in this approach and the rest (e.g., PipeDream) are left as
future work. The efficiency is also affected by the pipeline bubbles
(i.e., idle time), which can be reduced by splitting micro-batches.

Tensor parallelism. In TP, each GPU also has half of model pa-
rameters. Unlike SDP, TP allows each device to perform the for-
ward computation (e.g., matrix multiplications and self-attentions)
with half model. It requires to synchronize the activations with
the all-reduce operations for both forward and backward com-
putation. Due to the intermediate synchronization, TP has some
additional replications of the activations.

3.1.2 Multi-GPU Extension. When extending to multi-GPU, the
problem becomes more complicated. For example, for two nodes
with 4 GPUs in total, it is easy to integrate 2-way TP within a node
and 2-way PP across nodes. Alternatively, using 2-way PP within a
node and 2-way DP across nodes is also possible. Moreover, there
exist hundreds of candidate strategies when scaling to 8 GPUs for
a single layer. For a given model, the entire search space is much
larger and exponentially growing with the number of layers.

3.2 Decision-tree-based Decomposition
Considering for such as large search space, it is impossible to brute-
force search all the combinations of the four parallelism paradigms
within a feasible time budget. Therefore, to explore the search space
more efficiently, we introduce the following key intuitions from
empirical observations or theoretical analysis.

Takeaway #1. PP prefers to be applied across device “islands”.
Each island is a set of devices with higher-bandwidth interconnects
(e.g., NVLink, PCIe) and should be in charge of a stage in the pipeline.
Compared to other parallelisms, PP has much less communication
overheads especially for large models. Because each stage typically
hasmultiple layers but only requires to communicate the activations
from the boundary layers. It is sensible to perform PP partition first
across slower inter-island links (e.g., QPI, Ethernet).

Takeaway #2. Suppose the devices are homogeneous, these paral-
lelism strategies prefer to divide the devices into groups with equal
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size. For example, a 2-way DP on 4 GPUs means two 2-GPU groups,
rather than a single GPU and one 3-GPU group. Consequently, the
optimal hybrid parallelism strategy on one group should be also
consistent with those of the other groups. Note that, it could fail
for PP since the model partitions may have different computation
operations, resulting in different optimal parallelism strategies.

Based on the above important intuitions, we design a decision-
tree to decompose the search space and represent the candidate
hybrid parallelism strategies. We next present the details.

Insights Underpinning Decision-tree. We find that most exist-
ing automatic parallelism approaches only involve two parallelism
dimensions (e.g., OptCNN and FlexFlow), which is easily to enu-
merate all possible parallelism configurations for a single layer.
After involving pipeline parallelism (e.g., PipeDream), they often
partition the model into different stages first and each stage is then
assigned to a subset of devices. Such kind of observation suggests us
to explore the hierarchical search space by utilizing a decision-tree.
Another motivation is that we need the tree structure to capture
the orders when applying parallelism even inside a stage. Due to
the device topology and hierarchical bandwidth, it is necessary to
consider the permutations of hybrid strategies since they may have
different communication efficiencies.

Decision-tree construction. Given a Transformer model, Gal-
vatron first applies PP to partition the model into multiple stages.
In the meanwhile, the devices are also divided into multiple groups
with the same size. As suggested by Takeaway #1, it prefers group-
ing between devices with higher bandwidth. For an 8-GPU scenario,
Galvatron will attempt 1/2/4/8-way PP respectively. Suppose the
model is partitioned evenly by PP, based on Takeaway #2, the size
of the corresponding device group should be 8/4/2/1 respectively
after applying PP, which directly determines the number of leaf
nodes in our decision-trees. As shown in Figure 2, given the number
of leaf nodes, there might exist multiple possible tree structures.
We define the decision-tree construction rules as follows:

• Each decision-tree denotes a sub-search-space and its height
is the number of available parallelism paradigms.

• Any one of the parallelisms cannot be applied repeatedly
in different levels of a decision-tree.

• The degree of non-leaf nodes should be selected from {2, 4, 8, · · · }.
With the above rules, the constructed trees could represent the

arbitrary combinations of these parallelisms in a non-overlap man-
ner. The guidance from Takeaway #1 and #2 significantly helps

Galvatron to avoid the unnecessary and inefficient parallelism com-
binations. For a single layer with 8-GPUs, it produces 34 different
candidate hybrid parallelism strategies, which reduces the original
combinational search space including hundreds of strategies by one
order of magnitude. It could be further optimized as follows:

Takeaway #3. Using SDP is always better than integrating DP
and SDP. We make a comparison with 𝑁 -way DP, 𝑁 -way SDP and
the combination of 𝑁1-way DP and 𝑁2-way SDP (𝑁1 × 𝑁2 = 𝑁 ).
First, SDP always has fewer model parameters than DP+SDP since
𝑁2 ≤ 𝑁 . Second, integrating DP and SDP will lead to two rounds
of communication including 2(𝑁1 − 1)/𝑁1 for 𝑁1-way DP and
3(𝑁2 − 1)/𝑁2 for 𝑁2-way SDP. Given 𝑁1 × 𝑁2 = 𝑁 , we can prove
that the minimum value of its cost is still larger than that of pure
SDP. Therefore, we exclude such combinations from our search
space. After applying Takeaway #3, we could further reduce the
number of candidate strategies to 22 for a single layer with 8-GPUs.

3.3 Parallelism Optimization
The target of Galvatron is to generate the optimal hybrid paral-
lelism strategy for the input DL model with the given devices. More
specifically, the generated parallelism strategy should have higher
system training throughput than the others.

Problem Formulation. We define the optimization problem
as follows. Given model 𝑀 (with 𝐿 layers) and 𝑁 devices (with
memory capacity of 𝐸), the object is to find the largest throughput
𝑇𝑝𝑡 and return the corresponding parallelism strategy, which is
made up of the fine-grained layer-level parallelism strategies.

OptimizationWorkflow.Basically, the system throughput equals
to the ratio between the batch size and the iteration time (i.e., per-
batch execution time). Tuning the batch size could lead to distinct
memory consumption, computation costs and communication over-
heads. Scaling the model training with hybrid parallelism strategies
could reduce the memory consumption and enlarge the batch size.
But it could also bring significant communication overheads. In
other words, the highest training throughput does not have to come
with the largest batch size. Therefore, we design the optimization
workflow of Galvatron as illustrated in Algorithm 1. It gradually
increases the explored batch size (line 2) until exceeding the device
memory for all possible parallelism strategies.

Given a candidate batch size 𝐵, Galvatron then utilizes Takeaway
#1 to apply PP at first. We suppose the total number of devices 𝑁 is
the power of two (e.g., 4, 8, 16), which is common in dedicated GPU
training clusters. So we only explore the 2-th powered PP degrees



Algorithm 1: Galvatron Optimization
Input: model:𝑀 , #devices: 𝑁 , device memory: 𝐸
Output: maximum system throughput 𝑇𝑝𝑡

1 𝑇𝑝𝑡 ← 0;
2 for Batch size 𝐵 ← 1, 2, ... do
3 Time costs set 𝐶 ← {};
4 for PP degree 𝑃 ∈ {1, 2, 4, 8, ..., 𝑁 ) do
5 Time cost 𝐶𝑃 ← 0;
6 Model stages

{𝑀𝑖 }𝑃𝑖=1 ← Pipeline_Partition(𝑀, 𝑃);
7 Strategies set

𝑆 ← Construct_Decision_Tree(𝑁 /𝑃);
8 for 𝑖 ∈ {1, 2, ..., 𝑃} do
9 𝐶𝑃 += Dynamic_Programming(𝐸,𝑀𝑖 , 𝐵, 𝑆);

10 end
11 𝐶.append(𝐶𝑃 );
12 end
13 𝐶𝑜𝑝𝑡 ← min(𝐶);
14 if 𝐶𝑜𝑝𝑡 is not∞ then
15 𝑇𝑝𝑡 ← max(𝐵/𝐶𝑜𝑝𝑡 ,𝑇𝑝𝑡);
16 else
17 return 𝑇𝑝𝑡 ; /* Out-Of-Memory */

18 end
19 end

(line 4). With a 𝑃-way PP, the model is evenly partitioned into 𝑃

stages (line 6). Note that, we support several load balancing guide-
lines for PP partitioning, such as the number of layers/parameters,
the maximum memory usage and the execution time. It is also pos-
sible to co-optimize by repeatedly interacting with the search inside
each stage like Unity [43] and Alpa [52]. All devices are also evenly
divided into 𝑃 groups. Then we can construct the corresponding
decision tree that represents the candidate hybrid parallelism strate-
gies composed of DP, SDP and TP. After obtaining the strategies
set 𝑆 , we make the dynamic programming search for each model
stage 𝑀𝑖 to determine how to parallelize each layer in 𝑀𝑖 while
minimizing the execution time under the limited device memory
budget 𝐸. The search algorithm returns the minimum time cost if
not exceeding the device memory, which is then accumulated for
all stages (line 9). Here we exclude the boundary layers’ activation
transferring costs in PP as they are usually quite small. By compar-
ing the results from all possible PP degrees (line 13) and batch sizes,
Galvatron obtains the maximum throughput (line 15).

Dynamic Programming Search. For a givenmodel stage includ-
ing 𝐿 layers, we suppose the function 𝐶 (𝐿, 𝐸) represents the total
execution time of these 𝐿 layers under the device memory budget
𝐸. We define 𝑐 (𝐿, 𝑆 𝑗 ) to denote the execution time of the 𝐿-th layer
applying 𝑆 𝑗 , one of the parallelism strategies from the candidates
𝑆 . Before applying the dynamic programming, we first prove that
the problem follows the optimal substructure property. To obtain
the minimum execution time 𝐶 (𝐿, 𝐸), we clarify that the solution
must contain the sub-problem solution 𝐶 (𝐿′ , 𝐸′ ), which represents
the minimum execution time for the sub-model, i.e., first 𝐿

′
layers

(𝐿
′ ≤ 𝐿), within a smaller device memory budget 𝐸

′
(𝐸
′ ≤ 𝐸). This

clarification holds because if the optimal solution 𝐶 (𝐿, 𝐸) does not
contain a specific 𝐶 (𝐿′ , 𝐸′ ), we can always reduce the total execu-
tion time by replacing the sub-problem solution to 𝐶 (𝐿′ , 𝐸′ ). Due
to the linear sequence model structure, the parallelization plan of
the first 𝐿

′
layers will not affect the rest 𝐿 − 𝐿

′
layers given the

same memory budget 𝐸 − 𝐸′ . Therefore, the problem satisfies the
optimal substructure property for dynamic programming. During
the search process, we start with 𝐶 (0, ·) = 0 and 𝐶 (·, 0) = ∞, then
we can derive the following state transition formula:

𝐶 (𝐿, 𝐸 ) = min
𝑆 𝑗 ∈𝑆
{𝐶 (𝐿 − 1, 𝐸 −𝑂 (𝐿, 𝑆 𝑗 ) ) + 𝑐 (𝐿, 𝑆 𝑗 ) + 𝑅 (𝐿, 𝑆𝑖 , 𝑆 𝑗 ) }, (1)

where𝑂 (𝐿, 𝑆 𝑗 ) is the memory consumption of the 𝐿-th layer apply-
ing 𝑆 𝑗 and 𝑅(𝐿, 𝑆𝑖 , 𝑆 𝑗 ) is the transformation cost between the 𝐿-th
layer applying 𝑆𝑖 and its former layer applying 𝑆 𝑗 . If two neighbor-
ing layers have different parallelism strategies, the former layer’s
output should be transformed to the required data layout to facili-
tate the next layer’s parallelism. For example, if the former layer
uses the combination between 2-way DP and 2-way TP and the
current layer attempts to use 4-way DP, a transformation step is
necessary to prepare the full model replica and the 1/4 forward
activation at each device for the current layer. During the state
transition process, if the memory usage exceeds the budget 𝐸, the
cost function 𝐶 should return infinity.

Complexity Analysis. The proposed dynamic programming
search formula in E.q. (1) has a computation complexity ofO(𝐿𝐸 |𝑆 |).
As we can see, the size of the single layer’s decision space is crucial
for the entire complexity and our proposed decision-tree signifi-
cantly reduces the space and makes it feasible. The number of layers
𝐿 and the memory budget 𝐸 also affect the complexity. For extreme
cases with thousands of layers or hugememory capacity, we can fur-
ther reduce the complexity by taking coarse-grained explorations,
e.g., fusing multiple layers, using large memory granularity.

3.4 Cost Estimation
Galvatron provides a cost estimator to estimate the computation
and communication costs and memory consumption during the
optimization process. Existing approaches mainly adopt two tech-
niques for the estimation, including profiling and simulating. In
Galvatron, we take advantages from both sides and design a cost
model to make the estimations cheap, efficient and accurate. Specif-
ically, for the memory consumption, we use the shape of a tensor
and its data type to calculate its memory. For the computation time,
we suppose it could be estimated by the product of the batch size
and the per-sample computation time. The latter could be measured
by profiling real layer execution time on a single device. Note that,
the Transformers are mainly composed by matrix multiplication
operations, so the backward computation is usually twice of the for-
ward computation. For the communication time, we can obtain the
approximate communication time by using the amount of tensor to
be transferred divided by the inter-device connection’s bandwidth.

With the above computation and communication cost estima-
tions, 𝑐 (𝑙, 𝑠) (i.e., the cost of a given layer 𝑙 using a specific paral-
lelism strategy 𝑠 ∈ 𝑆) could be calculated by simulating the execu-
tion process. It consists of two steps, e.g., forward and backward
computation. The simulation for the forward computation is simple
and directly sums up the computation and communication costs



Table 1: Comparison with 8 GPUs under different memory constraints. The maximum throughput (samples/s) of each strategy
is given, along with the corresponding batch size in the bracket, and OOM denotes Out-Of-Memory.

Memory Strategy BERT-Huge-32 BERT-Huge-48 ViT-Huge-32 ViT-Huge-48 T5-Large-32 T5-Large-48 Swin-Huge-32 Swin-Huge-48

8G PyTorch DDP (DP) OOM OOM OOM OOM OOM OOM OOM OOM
Megatron (TP) OOM OOM 16.16 (24) 10.65 (16) OOM OOM 13.47 (24) 8.41 (8)

PyTorch GPipe (PP) OOM OOM 20.57 (56) 16.59 (32) OOM OOM 23.61 (40) 16.42 (24)
FSDP/ZeRO-3 (SDP) 4.65 (8) OOM 33.25 (64) 15.71 (40) 5.97 (8) OOM 24.86 (48) 11.92 (32)

DeepSpeed 3D 7.79 (8) OOM 30.56 (40) 14.59 (16) 8.12 (8) OOM 26.22 (32) 14.27 (16)
Galvatron (DP+TP) OOM OOM 29.4 (32) 15.76 (16) OOM OOM 26.18 (24) 14.76 (16)
Galvatron (DP+PP) OOM OOM 31.79 (48) 20.93 (24) 9.37 (8) OOM 27.18 (40) 17.71 (24)
Galvatron (ours) 8.16 (8) OOM 36.58 (56) 20.93 (24) 9.37 (8) OOM 31.33 (48) 21.64 (32)

12G PyTorch DDP (DP) OOM OOM 14.22 (16) OOM OOM OOM OOM OOM
Megatron (TP) 5.72 (8) OOM 16.71 (48) 10.99 (32) 5.14 (8) OOM 13.68 (40) 9.62 (24)

PyTorch GPipe (PP) 9.22 (8) 6.2 (8) 25.13 (104) 16.62 (64) 9.09 (8) 6.83 (8) 26.07 (72) 19.82 (48)
FSDP/ZeRO-3 (SDP) 8.91 (16) 3.15 (8) 47.41 (112) 24.24 (72) 11.26 (16) 4.11 (8) 37.38 (88) 21.98 (64)

DeepSpeed 3D 7.79 (8) 5.35 (8) 37.88 (80) 22.68 (48) 8.12 (8) 5.76 (8) 34.14 (72) 20.07 (40)
Galvatron (DP+TP) 8.92 (8) 5.35 (8) 42.21 (64) 17.2 (32) 9.53 (8) OOM 37.26 (56) 20.18 (32)
Galvatron (DP+PP) 9.22 (8) 6.2 (8) 50.69 (72) 24.01 (56) 11.95 (16) 6.83 (8) 35.87 (56) 21.69 (48)
Galvatron (ours) 11.39 (16) 6.2 (8) 50.69 (72) 26.63 (72) 14.49 (16) 6.83 (8) 41.69 (64) 25.42 (64)

16G PyTorch DDP (DP) 6.39 (8) OOM 44.40 (64) OOM 7.79 (8) OOM 28.61 (40) OOM
Megatron (TP) 6.06 (16) 3.88 (8) 16.81 (72) 11.02 (40) 5.14 (8) OOM 13.83 (56) 9.71 (40)

PyTorch GPipe (PP) 12.96 (16) 6.2 (8) 25.26 (144) 17.24 (96) 9.09 (8) 6.83 (8) 28.23 (104) 20.11 (64)
FSDP/ZeRO-3 (SDP) 12.47 (24) 6.06 (16) 59.93 (160) 32.15 (104) 14.95 (24) 7.16 (16) 49.68 (136) 26.46 (88)

DeepSpeed 3D 8.50 (16) 5.35 (8) 41.67 (128) 25.45 (72) 11.52 (16) 5.76 (8) 37.13 (104) 24.12 (64)
Galvatron (DP+TP) 12.59 (16) 6.19 (8) 46.02 (88) 23.97 (48) 14.52 (16) 6.84 (8) 44.65 (80) 26.51 (48)
Galvatron (DP+PP) 13.00 (16) 6.2 (8) 54.05 (120) 28.01 (56) 14.64 (16) 6.83 (8) 44.15 (96) 25.82 (56)
Galvatron (ours) 15.05 (24) 7.46 (16) 63.25 (160) 35.74 (104) 16.50 (24) 8.36 (16) 54.06 (136) 29.21 (72)

20G PyTorch DDP (DP) 11.57 (16) OOM 61.54 (112) 17.02 (32) 14.3 (16) 5.43 (8) 42.82 (80) 11.8 (24)
Megatron (TP) 6.06 (16) 3.88 (8) 16.11 (88) 11.02 (56) 5.47 (16) 3.55 (8) 13.84 (72) 9.79 (48)

PyTorch GPipe (PP) 13.52 (24) 7.05 (16) 28.64 (192) 17.96 (128) 9.53 (16) 8.13 (16) 29.75 (128) 20.73 (88)
FSDP/ZeRO-3 (SDP) 17.06 (40) 7.8 (24) 63.75 (216) 38.29 (136) 17.93 (32) 7.16 (16) 55.22 (176) 32.63 (120)

DeepSpeed 3D 8.50 (16) 5.35 (8) 43.36 (168) 27.82 (104) 13.14 (24) 7.96 (16) 40.60 (136) 26.09 (96)
Galvatron (DP+TP) 14.65 (24) 8.05 (16) 61.54 (112) 28.69 (72) 15.35 (24) 6.84 (8) 54.87 (104) 30.59 (72)
Galvatron (DP+PP) 15.52 (24) 8.11 (16) 61.54 (112) 34.88 (96) 17.27 (24) 10.33 (16) 50.19 (136) 31.62 (80)
Galvatron (ours) 18.21 (40) 8.95 (24) 70.5 (152) 41.2 (136) 18.64 (32) 10.33 (16) 60.06 (144) 37.75 (120)

(i.e., all-gather in SDP and all-reduce in TP). However, during
the backward process, DP and SDP enable the computation and
communication overlapping, which may bring estimation errors. A
typical choice is to take the maximum value from the computation
and communication costs (e.g., PipeDream [27]). Existing automatic
parallelism approaches barely notice that modern GPUs simultane-
ously performing compute kernels and communication primitives
(e.g., NCCL [2]) lead to slowdown for both sides. The performance
degradation is mainly from the resource contention of thread warps
in GPU streaming multiprocessors. We find that such contention
could slow down the computation and communication by 1.3×
in our evaluations, which is consistent with some recent observa-
tions [39]. By considering the overlapping slowdown, Galvatron
makes more accurate estimations and better optimizations.

4 IMPLEMENTATION
Galvatron is an automatic parallel training framework especially
for Transformer models (open sourced at [4]), as a part of a novel
distributed DL system Hetu [23–25, 31]. We provide a simple and
efficient interface to Galvatron users by making a few lines’ modifi-
cations on the PyTorch training programs [19, 32].

Communication group. We implement all communication
primitives with PyTorch NCCL functions. As Galvatron supports
complex hybrid parallelism strategies, there could exist many com-
munication groups among the GPUs in the generated parallelization

plan. To avoid the expensive NCCL groups construction overheads,
Galvatron maintains a global communication group pool which
contains all groups that might be used. The communication group
pool is created in advance and shared by all the layers.

Transformation optimization.We propose an efficient Slice-
Gather step to perform the transformations automatically between
two neighboring layers with different parallelism strategies. Given
the previous layer with strategy A and the current layer with strat-
egy B, themain idea of Slice-Gather is to ensure the input activations
for the current layer are placed on the devices according to the re-
quirement of strategy B, which has been extensively studied [49, 52].
There exists some special cases that the Slice-Gather step brings no
communication costs (e.g., strategy A is 4-way TP and strategy is
4-way DP). Galvatron will automatically recognize such cases and
finish the transformation without any overheads.

5 EXPERIMENTS
5.1 Experimental Setups
In this section, we compare Galvatron with 4 pure parallelism strate-
gies implemented by the state-of-the-art systems including PyTorch
DDP [19] for DP, Megatron [29] for TP, PyTorch GPipe [3] for PP,
and FairScale FSDP [48] (similar to DeepSpeed ZeRO Stage-3 [37])
for SDP. We also compare with DeepSpeed 3D which is an expert-
designed baseline [1] integrating DP, TP, and PP globally. Besides,



Table 2: Statistics of Models

Model Layer Num Hidden Size Param. Num Acti. Size/sample

BERT-Huge-32 32 1280 672M 3149.39MB
BERT-Huge-48 48 1280 987M 4657.51MB
BERT-xHuge 128 2560 10.2B 24210.05MB
ViT-Huge-32 32 1280 632M 646.5MB
ViT-Huge-48 48 1280 947M 968.59MB
ViT-xHuge 128 2560 10.1B 5313.9MB
T5-Large-32 16 Enc.+16 Dec. 1024 502M 4119.66MB
T5-Large-48 24 Enc.+24 Dec. 1024 737M 6107.75MB
Swin-Huge-32 2/2/26/2 320/640/1280/2560 701M 726.59MB
Swin-Huge-48 2/2/42/2 320/640/1280/2560 1016M 1016.8MB

we further provide two auxiliary versions of Galvatron to verify the
training efficiency of previous automatic parallelism approaches
with limited parallelism dimensions (i.e., DP+TP and DP+PP). To
focus on automatic parallelism, we disable some memory optimiza-
tions (e.g., recompute [30]) and leave them as our future work. We
select NLP models BERT, T5 as well as CV models ViT, Swin Trans-
former as our experimental models. The statistics of models are
listed in Table 2. We select the Adam optimizer and use the English
Wikipedia and ImageNet-1K as input datasets for them respectively.
Most experiments are evaluated on a single node equipped with 8
Nvidia RTX TITAN 24 GB GPUs using PCIe 3.0. For PP, we man-
ually tune the number of micro-batches to minimize the bubbles
and estimate its costs. All results are averaged over 100 iterations.

5.2 End-to-End Comparison
Table 1 shows the overall system throughput results of different
models under different strategies with differentmemory constraints,
along with the corresponding batch size. As we can see, under dif-
ferent model scales and memory budgets, Galvatron always outper-
forms all baselines in multiple regards. Surprisingly, on ViT models,
Galvatron promotes the overall system throughput by up to 338%,
and achieves a maximum of 55% acceleration compared with hy-
brid strategies. Similarly, on the other three models, Galvatron still
achieves a maximum of 200%-334% and 28%-52% compared with
single and hybrid strategies respectively.

We can also find that different models may have different pref-
erences on the parallelism strategies. For example, under different
memory budgets, BERT almost always prefers DP+PP among all
baselines. Similar observations could be also found on some cases of
T5. For ViT and Swin Transformer, the preferences change to SDP
when increasing the memory budgets. The reason mainly comes
from that NLP models have larger activation while CV models
have larger model parameters, thus the latter could benefit more
from sharding the model parameters across the GPUs. Here Deep-
Speed 3D uses an officially suggested strategy [1] combining 2-way
DP/TP/PP together. Such a fixed strategy outperforms three pure
parallelisms but fails to beat SDP in most cases.

Another interesting finding is that the hybrid parallelisms like
DP+TP and DP+PP may perform worse than pure SDP (e.g., ViT-
Huge-32 with 8G, Swin-Huge-32 with 16G). It further indicates
that existing automatic parallelism approaches focusing on limited
model parallelism dimensions are suffering from these limitations.

5.3 Estimation Performance
Figure 3 demonstrates the cost estimation errors with and without
considering the overlapping slowdown. It can be observed that
our estimation results are very close to the real execution costs

(a) w. overlapping slowdown (b) w.o. overlapping slowdown
Figure 3: Estimation errors with and without considering the
overlapping slowdown.
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Figure 4: Search time costs with different numbers of layers.
for all experimental models. The average prediction error is less
than 5%. However, when ignoring the slowdown, the estimations
become obviously lower, resulting in an average prediction error
of more than 15%, which compromises the promised efficiency of
the generated execution strategy.

5.4 Optimization Efficiency
The efficiency of our dynamic programming search algorithm varies
according to different number of model layers, overall strategies and
memory constraints. As shown in Figure 4 (a), when the number of
model layers and memory limit increase linearly, the search time
of our algorithm increases linearly as excepted, only hundreds of
seconds is required to generate the optimal execution plan, which
is acceptable and negligible relative to the extremely long model
training time. Figure 4 (b) demonstrates the impact of total par-
allelism dimensions on the search time, both DP+TP and DP+PP
have a total of 4 alternate strategies on 8 GPUs, while Galvatron
has 22 overall candidates. In this case, the search time of DP+TP
and DP+PP is consistent and much less than that of Galvatron.

5.5 Optimal Parallelism Plan
We list some examples of the optimal parallelism plans suggested
by Galvatron. We choose two models, BERT-Huge-32 and Swin-
Huge-32, and two memory constraints, 8 GB and 12 GB to analyze.

For BERT-Huge-32 with 8 GB memory, Galvatron provides an
optimal plan containing two strategies 𝑆𝐴1 , a combination of PP, TP
and DP, and 𝑆𝐴2 , a combination of PP, TP, DP. This optimal plan
combines all four basic parallelisms, making it possible to train
this model within 8 GB memory and achieves a 75% acceleration
compared to other strategies. Under the memory limitation of 12
GB, Galvatron gives a mixture of 𝑆𝐵1 , TP+DP, and 𝑆

𝐵
2 , TP+SDP. As

we can see, Galvatron incorporates SDP and thus reduces memory
costs and enlarges the batch size as well as the throughput.

For Swin-Huge-32, the optimal plans given by Galvatron is rather
complex, as it has four different layers which have different strat-
egy preference. In Swin Transformer, shallower layers have larger
activation size and smaller parameter size. To reduce memory con-
sumption and communication overhead, shallower layers prefer
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Table 3: Comparison with 16 GPUs.

Memory Strategy BERT-Huge-32 BERT-Huge-48 ViT-Huge-32 ViT-Huge-48

8G PyTorch DDP (DP) OOM OOM OOM OOM
Megatron (TP) OOM OOM 16.86 (32) 10.86 (16)

PyTorch GPipe (PP) 13.79 (16) 5.88 (8) 50.70 (128) 27.96 (80)
FSDP/ZeRO-3 (SDP) 8.95 (16) 6.12 (16) 69.48 (128) 34.92 (96)

DeepSpeed 3D 15.24 (16) 6.43 (8) 57.14 (64) 29.92 (40)
Galvatron (DP+TP) OOM OOM 54.43 (64) 24.56 (32)
Galvatron (DP+PP) 13.91 (16) 5.88 (8) 68.56 (128) 35.02 (72)
Galvatron (ours) 15.24 (16) 8.43 (16) 76.74 (128) 38.32 (88)

16G PyTorch DDP (DP) 12.14 (16) OOM 88.06 (128) OOM
Megatron (TP) 6.12 (16) 4.23 (16) 17.11 (64) 11.26 (48)

PyTorch GPipe (PP) 23.29 (40) 12.92 (24) 69.72 (320) 50.23 (208)
FSDP/ZeRO-3 (SDP) 30.37 (64) 11.74 (32) 123.95 (320) 61.49 (224)

DeepSpeed 3D 23.92 (48) 13.03 (24) 91.56 (256) 53.81 (152)
Galvatron (DP+TP) 23.01 (32) 10.50 (16) 99.22 (160) 49.82 (96)
Galvatron (DP+PP) 23.73 (40) 13.12 (40) 115.88 (224) 61.38 (208)
Galvatron (ours) 32.67 (64) 14.74 (40) 131.15 (320) 72.74 (208)

Table 4: Comparison with 64 GPUs.

Memory Strategy BERT-xHuge ViT-xHuge

16G PyTorch DDP (DP) OOM OOM
Megatron (TP) 0.68 (3) 1.94 (12)

PyTorch GPipe (PP) 9.74 (16) 61.95 (96)
FSDP/ZeRO-3 (SDP) OOM OOM

DeepSpeed 3D 8.44 (16) 64.91 (96)
Galvatron (DP+TP) 1.73 (4) 5.07 (2)
Galvatron (DP+PP) 9.74 (16) 64.83 (104)
Galvatron (ours) 13.77 (24) 68.35 (136)

32G PyTorch DDP (DP) OOM OOM
Megatron (TP) 0.77 (7) 2.11 (28)

PyTorch GPipe (PP) 21.38 (48) 94.84 (288)
FSDP/ZeRO-3 (SDP) OOM OOM

DeepSpeed 3D 21.28 (40) 91.19 (256)
Galvatron (DP+TP) 1.73 (4) 5.51 (68)
Galvatron (DP+PP) 23.64 (48) 110.98 (232)
Galvatron (ours) 27.49 (64) 114.55 (328)

data parallel which splits input activations and communicates pa-
rameter gradients, while deeper layers prefer tensor parallel which
splits model parameters and communicates activations.

5.6 Scalability Study
We conduct further comparisons on large clusters. We first extend
our experiments to 16 Nvidia RTX TITAN GPUs over two servers
connected by 100 Gb InfiniBand network. Each server has the same
hardware setting as the one we used in aforementioned experi-
ments. Table 3 illustrates the results on BERT and ViT models.
Not surprisingly, Galvatron achieves the best performance with
different memory budgets. Compared with the results on 8 GPUs,
Galvatron and the hybrid parallelism methods could obtain more
than 2× speedups for many cases. For example, Galvatron enlarges
the batch size from 160 to 320 for ViT-Huge-32 under 16 GPUs with
16 GB memory, and the throughput increases from 63.25 to 131.15
samples per second. The 2.07× speedup comes from the flexible
fine-grained layer-level parallelism strategy, which helps to reduce
the communication costs and improve the training efficiency. We
also manually search for the optimal DeepSpeed 3D parallelism con-
figurations but they are still unsatisfactory. We then extend to an
industrial GPU cluster including 64 Nvidia A100 GPUs, where each
server has 8 GPUs equipped with NVLink and the servers are con-
nected by 8 InfiniBand cards via 8*200 Gb bandwidth totally. Since
the environment scale is significantly larger than before, we also
increase the model sizes to 10 billion parameters (i.e., BERT-xHuge

and ViT-xHuge, details are in Table 2). As we can see in Table 4,
even on such a large GPUs cluster, Galvatron still outperforms these
baseline methods. Besides, based on our observations, the search
time costs do not exponentially grow (i.e., 2.2× and 9.2× for 16
GPUs and 64 GPUs respectively compared with 8 GPUs), which
is still tolerable. The above two scalability experiments further
demonstrate the effectiveness of Galvatron.

6 CONCLUSION
Large-scale Transformer training is becoming increasingly impor-
tant due to its expensive training costs. Existing data and model
parallelism approaches are suffering from the system efficiency
problem. To address the problem, we presented Galvatron, a novel
automatic parallel Transformer training system over multiple GPUs.
Through the carefully designed search space decomposition and ex-
ploration algorithm, Galvatron significantly outperforms the state-
of-the-art baselines on the training throughput. We hope the open
source release of Galvatron will facilitate the future research direc-
tions on more challenging scenarios, e.g., heterogeneous environ-
ments and large DL models with complex and dynamic structures.
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