Introduction to Cryptography CS 355

Lecture 10

Linear Feedback Shift Register

Linear Feedback Shift Register (LFSR)

• Example:

- Starting with 1000, the output stream is
 1000 1001 1010 1111 000
- Repeat every 2⁴ 1 bit
- The seed is the key

Linear Feedback Shift Register (LFSR)

• Example:

• $z_i = z_{i-4} + z_{i-3} \mod 2$ = $0 \cdot z_{i-1} + 0 \cdot z_{i-2} + 1 \cdot z_{i-3} + 1 \cdot z_{i-4} \mod 2$

• I.e., stages 0 & 1 are selected.

Properties of LFSR

- Fact: given an L-stage LFSR, every output sequence is periodic if and only if stage 0 is selected
- Definition: An L-stage LFSR is maximum-length if some initial state will results a sequence that repeats every 2^L – 1 bit
- Whether an LFSR is maximum-length or not depends on which stages are selected.

Maximum-length LFSR

- Fact: Given an L-stage maximum-length LFSR, any non-zero initial state produces an output sequence with period equal to 2^L-1, this is called a m-sequence.
- Fact: The distribution of patterns having fixed length is almost uniform in a m-sequence.

Cryptanalysis of LFSR

• Vulnerable to know-plaintext attack

- A LFSR can be described as $z_{m+i} = \sum_{i=0}^{m-1} c_i z_{i+i} \mod 2$

- Knowing 2*m* output bits, one can
 - construct *m* linear equations with *m* unknown variables
 c₀, ..., c_{m-1}
 - recover c₀, ..., c_{m-1}

Cryptanalysis of LFSR

- Given a 4-stage LFSR, we know
 - $z_4 = z_3 c_3 + z_2 c_2 + z_1 c_1 + z_0 c_0 \mod 2$
 - $z_5 = z_4 c_3 + z_3 c_2 + z_2 c_1 + z_1 c_0 \mod 2$
 - $z_6 = z_5 c_3 + z_4 c_2 + z_3 c_1 + z_2 c_0 \mod 2$
 - $z_7 = z_6 c_3 + z_5 c_2 + z_4 c_1 + z_3 c_0 \mod 2$
- Knowing z₀, z₁,..., z₇, one can compute C₀, C₁, C₂, C₄.
- In general, knowing 2n output bits, one can solve an n-stage LFSR

Usage of LFSR

- Easy to implement in hardware
- Multiple LFSR's are often combined to achieve better security

Content Scrambling System (CSS)

- Designed by Matsushita and Toshiba, and used for encrypting DVD videos
- There is a set of 409 player keys
- Each DVD player has one player key
- Each disk has a key data block
 - the disk key encrypted under the disk key (hash)
 - disk key encrypted with player key 1
 - ...

- disk key encrypted with player key 409

• Knowing the disk key, one can decrypt the DVD

Attacking CSS

- Knowing a disk key, by attacking the CSS cipher, one can recover all player keys
 - takes about 2²⁵ time
 - breaks the revocation model of CSS
- It is possible to attack the hash to recover the disk key
 - takes about 2²⁵ time

CSS Stream Cipher

- brute-force attack is possible
- more efficient attacks exist

$$1 \parallel \text{first 2 bytes of key} \implies 17\text{-bit LFSR} \implies 256$$

$$(17\text{-bit LFSR} \implies 256)$$

$$(17\text{-bit LFSR} \implies 256)$$

Given 6 output bytes, a trivial 2¹⁶ attack exists

A similar attack with 5 output bytes exists

Coming Attractions ...

- Modular Exponentiation
- Fermat's Little theorem
- Euler's Theorem
- Recommended reading for next lecture:

- Trappe & Washington: 3.5, 3.6

