Introduction to Cryptography CS 355

Lecture 31

Identification Schemes

Lecture Outline

- Identification schemes
 - passwords
 - one-time
 passwords
 - challenge-response
 - zero knowledge
 proof protocols

Authentication

- Data source authentication (message authentication): a message is generated by a specific party.
- Entity authentication (identification): the process whereby one party (the verifier) is assured of the identity of a second party (prover) involved in a protocol

Requirements of Identification Protocols

- Requirements of identification protocols
 - for honest prover A and verifier B, A is able to convince B
 - no other party can convince B
 - in particular, B cannot convince C that it is A
- Kinds of attackers
 - passive and replay
 - active, man in the middle
 - the verifier

Properties of Identification Protocols

- Computational efficiency
- Communication efficiency
- Security requirement of communication channels
- Trust in verifier
- Storage of secrets
- Involvement of a third party
- Nature of trust in the third party
- Nature of security: provable security

Authentication Using Fixed Passwords

- Prover authenticates to a verifier using a password.
- Require secure communication channels
- Total trust in verifier
- Passwords must be kept in encrypted form or just digests of passwords are kept.
- Attacks:
 - Replay of fixed passwords
 - Online exhaustive password search
 - Offline password-guessing and dictionary attacks

Unix crypt Algorithm

- Used to store Unix passwords
- Information stored is /etc/passwd is:
 - Iterated DES encryption of 0 (64 bits), using the password as key
 - 12 bit random salt taken from the system clock time at the password creation
- Unix use salting to change the expansion function in DES
 - to make dictionary attacks more difficult.
 - also to prevent use of off-the-shelf DES chips

One-time passwords

- Each password is used only once
 - Defend against passive adversaries who eavesdrop and later attempt to impersonate
- Variations
 - shared lists of one-time passwords
 - challenge-response table
 - sequentially updated one-time passwords
 - one-time password sequences based on a one-way function

Lamport's One-Time Password

Stronger authentication than password-based

- One-time setup:
 - A selects a value w, a hash function H(), and an integer t, computes $w_0 = H^t(w)$ and sends w_0 to B
 - B stores w₀
- Protocol: to identify to B for the ith time, $1 \le i \le t$
 - A sends to B: A, i, $w_i = H^{t-i}(w)$
 - B checks $i = i_A$, $H(w_i) = w_{i-1}$
 - if both holds, $i_A = i_A + 1$

Challenge-Response Protocols

- Goal: one entity authenticates to other entity proving the knowledge of a secret, 'challenge'
- Time-variant parameters used to prevent replay, interleaving attacks, provide uniqueness and timeliness : nounce (used only once)
- Three types:
 - Random numbers
 - Sequences
 - Timestamp

Challenge-Response Protocols

- Random numbers:
 - pseudo-random numbers that are unpredictable to an adversary;
 - need strong pseudo-random strings;
 - must maintain state;
- Sequences:
 - serial number or counters;
 - long-term state information must be maintained by both parties+ synchronization
- Timestamp:
 - provides timeliness and detects forced delays;
 - requires synchronized clocks.

Challenge-response based on symmetric-key encryption

- Unilateral authentication, timestamp-based A to B: $E_{\kappa}(t_A, B)$
- Unilateral authentication, random-number-based
 - B to A: r_{B}
 - A to B: $E_{K}(r_{B}, B)$
- Mutual authentication, using random numbers
 - B to A: r_{B}
 - A to B: $E_{K}(r_{A}, r_{B}, B)$
 - B to A: $E_{K}(r_{B}, r_{A})$

Challenge-Response Protocols Using Digital Signatures

• unilateral authentication with timestamp

 $A \rightarrow B: cert_A, t_A, B, S_A(t_A, B)$

- unilateral authentication with random numbers
 - $A \leftarrow B: r_B$

$$A \rightarrow B: cert_A, r_A, B, S_A(r_A, r_B, B)$$

- mutual authentication with random numbers

Zero-Knowledge Protocols

• Motivation:

- Password-based protocols: when Alice authenticates to a server, she gives her password, so the server can then impersonate her.
- Challenge-response improves on this, but still reveals partial information.
- Zero-knowledge protocols: allows a prover to prove that is posses a secret without revealing any information of use to the verifier.

Fiat-Shamir ID protocol (ZK Proof of knowledge of square root modulo n)

- System parameter: n=pq,
- Public identity: $v = s^2 \mod n$
- Private authenticator: s
- Protocol (repeat t times)
 - 1. A: picks random r in Z_n^* , sends $x=r^2 \mod n$ to B
 - 2. B checks $x\neq 0$ and sends random c in {0,1} to A
 - 3. A sends y to B, where If c=0, y=r, else $y=rs \mod n$.
 - 4. B accept if y²≡xv^cmod n

Observations on the Protocol

- Multiple rounds
- Each round consists of 3 steps
 - commit
 - challenge
 - respond
- If challenge can be predicted, then cheating is possible.
 - cannot convince a third party (even if the party is online)
- If respond to more than one challenge with one commit, then the secret is revealed.

Coming Attractions ...

 More on Zero Knowledge Proof protocols

