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Abstract

The work by Harrison, Ruzzo and Ullman (the HRU paper) on safety in the context of the access
matrix model is widely considered to be foundational work in access control. In this paper, we ad-
dress two errors we have discovered in the HRU paper. To our knowledge, these errors have not been
previously reported in the literature. The first error regards a proof that shows that safety analysis for
mono-operational HRU systems isIMiP. The error stems from a faulty assumption that such systems
are monotonic for the purpose of safety analysis. We present a corrected proof in this paper. The second
error regards a mapping from one version of the safety problem to another that is presented in the HRU
paper. We demonstrate that the mapping is not a reduction, and present a reduction that enables us to
infer that the second version of safety introduced in the HRU paper is also undecidable for the HRU
scheme. These errors lead us to ask whether the notion of safety as defined in the HRU paper is mean-
ingful. We introduce other notions of safety that we argue have more intuitive appeal, and present the
corresponding safety analysis results for the HRU scheme.

1 Introduction

Access control enables controlled sharing of resources (henceforth cbjeiy among principals (hence-
forth calledsubject}. It is one of the most important areas of research in computer security and has been
called the “traditional center of gravity of computer security” [5]. The work by Harrison, Ruzzo and UlI-
man [14] (henceforth callethe HRU papey on the access matrix model [12, 18] is generally considered
to be foundational work in access control. The results from the paper are included in popular textbooks in
computer security [4, 5, 6, 9, 10, 26], and the paper is considered required reading for researchers in access
control. Since its publication, the HRU paper has had considerable impact on research in access control. At
the time of submission, according to Google Scholar [11], the HRU paper had been cited 264 times in the
literature.

The HRU paper presents a rather general access control scheme (henceforttheaH&U scheme
and introducesafety analysif the context of the scheme. In the HRU scheme, an access control system is
perceived as a state-change system that consists of a start-state and a state-change rule. A state is an access
matrix [18], whose rows are subjects and columns are objects. A state-change rule is a set of commands,
each of which consists of a conjunction of conditions and a sequence of primitive operations. Each condition
tests for the presence of a right in a cell of the access matrix, and each operation is one of six types (see
Section 2). In the HRU paper, safety is defined with respect to whetleakaan occur. Informally, a leak
is the execution of an operation that causes a right to be entered into a cell in the access matrix where it does
not already exist. A system is considered to be safe if there exists no sequence of state-changes that leads to
a leak. In this paper, we call this version of safety (r)-leak-safety (see Table 1). Since its introduction in the



(n-leak-safety: whether a
particular right may leak.

(o,n-leak-safety: whether a
particular right may leak to
a cell associated with a
particular object.

(s,0,r)-leak-safety: whether a
particular right may leak to
the cell associated with a
particular subject and object.

(n-simple-safety: whether a
particular right may appear i
a cell, where it does not exis
in the start-state.

(o,r)-simple-safety: whether a
N particular right may appear in

(s,0,n)-simple-safety: whether a
aparticular right may appear in th

I cell associated with a particularcell associated with a particular

object, where it does not exist
in the start-state.

subject and object, where it doe
not exist in the start-state.

D

Table 1: The six versions of safety we consider in this paper. These versions either appear in the literature
on safety analysis, or are natural extensions.

HRU paper, safety analysis has been considered to be a fundamental problem in access control, and there
has been considerable work on safety in various contexts related to security [1, 2, 7, 15, 20, 21, 22, 23, 24,
27, 28, 29, 30, 31, 32, 33].

Apart from (r)-leak-safety, the HRU paper introduces what we call (o,r)-leak-safety (see Table 1). There
are three major results in the HRU paper. The first is that (r)-leak-safety is undecidable for the HRU scheme.
The second is that (o,r)-leak-unsafety can be “simulated” by (r)-leak-unsafety. (An unsafety problem is the
complement of a corresponding safety problem.) The third is that (r)-leak-unsafety for mono-operational
HRU systems iSNP-complete (a mono-operational HRU system is one in which there is only one primitive
operation in each command).

In this paper, we first address two errors we have discovered in the HRU paper. Our discussions are
constructive; for each error, we propose corrections. The first error we discuss is in the proof that shows that
the problem of determining whether a mono-operational HRU system is (r)-leak-unsaf®{ s iWe point
out that the erroneous proof from the HRU paper is reproduced in several popular textbooks in computer
security [6, 9, 26]. The error in the HRU paper stems from the assumption that mono-operational HRU
systems arenonotonidfrom the standpoint of (r)-leak-safety analysis. A monotonic system is one in which
rights cannot be deleted, and subjects and objects cannot be destroyed. We demonstrate that this assumption
is flawed. We then assert that the problem is indeed i and present a corrected proof.

The second error in the HRU paper that we address regards a mapping from (o,r)-leak-unsafety to
(nN-leak-unsafety that is presented to demonstrate that (o,r)-leak-unsafety can be “simulated” by (r)-leak-
unsafety. The HRU paper presents a brief argument in support of the validity of the mapping. It then
asserts that the problem of determining whether the (r)-leak-safety instance produced by the mapping is
false is equivalent to the problem of determining whether the (o,r)-leak-safety instance that is the input to
the mapping is false. We identify five flaws in the argument in the HRU paper; the mapping presented in
the HRU paper may lead us to make an erroneous inference that a particular (o,r)-leak-safety instance is
true when its corresponding (r)-leak-safety instance is false, and vice versa. We observe that what Harrison
et al. [14] intended was to demonstrate that (o,r)-leak-unsadelyceq8, 16, 17, 25] to (r)-leak-unsafety.

Our discovery of the flaws in the argument presented in the HRU paper demonstrates that the mapping that
is presented there is not a reduction. We argue that even if a reduction does exist from (o,r)-leak-unsafety
to (r)-leak-unsafety, given the assertion in the HRU paper that (r)-leak-unsafety is undecidable for the HRU
scheme, the reduction would tell us nothing about the decidability or computational complexity of (o,r)-leak-
unsafety. We argue, however, that the existence of a reduction from (r)-leak-unsafety to (o,r)-leak-unsafety
would allow us to infer that (o,r)-leak-unsafety is also undecidable for the HRU scheme. We present exactly



such a reduction in Section 4. The particular kind of reduction we use is a polynomial-time truth table
reduction [17, 25].

The two errors we have identified in the HRU paper lead us to ask whether the way safety is defined in
the HRU paper is meaningful. Indeed, we ask whether (r)-leak-safety and (o,r)-leak-safety are what Harrison
et al. [14] intended at all. The informal characterization for unsafety from the HRU paper isiHether,
given some initial access matrix, there is some sequence of commands in which a particular generic right
is entered in some place in the matrix where it did not exist béfdie get different versions of safety
depending on how we interpret the word “before”. The versions adopted in the HRU paper, which we
call (r)-leak-safety and (o,r)-leak-safety, are based on the interpretation that “before” refers to the state that
immediately precedes a leak.

Based on the interpretation of “before” as “in the start-state”, we introduce a version of safety that we
call (n)-simple-safety (see Table 1). A close examination of the HRU paper suggests that what we call (r)-
simple-safety is most likely what was intended by Harrison et al. [14]. There are other justifications for
why (r)-simple-safety has more intuitive appeal than (r)-leak-safety, (see Section 5). Literature on safety
analysis subsequent to the HRU paper [1, 3, 19, 20, 21, 27, 30, 31, 32, 33] uses versions of safety that are
different from (r)-leak-safety. In this paper, apart from (r)-leak-safety and (o,r)-leak-safety, we consider the
following versions of safety that either have appeared in the literature, or are natural extensions: (s,o,r)-leak-
safety, (r)-simple-safety, (o,r)-simple-safety and (s,0,r)-simple-safety. We give an informal characterization
of each in Table 1, and formal definitions in Section 5. We point out that some literature on safety analysis
subsequent to the HRU paper [1, 3, 27, 30, 32, 33] asserts that (r)-simple-safety and (s,0,r)-simple-safety
are undecidable for the HRU scheme. To our knowledge, neither result has been shown previously. We
establish these results in this paper (see Section 5). We discuss the undecidability proof from the HRU paper
and point out that it can be used to show that (r)-simple-safety is undecidable for the HRU scheme. We also
observe that (r)-simple-safety reduces to (o,r)-simple-safety, and that (o,r)-simple-safety reduces to (s,0,r)-
simple-safety, thereby proving that both (o,r)-simple-safety and (s,o,r)-simple-safety are also undecidable
for the HRU scheme.

Related work This paper primarily addresses the work of Harrison et al. [14] on safety analysis in the
context of the access matrix model. Harrison and Ruzzo [13] address monotonic HRU systems. Subsequent
to the work by Harrison et al. [14], there has been considerable work on safety in various contexts related to
security [1, 2, 7, 15, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33]. In particular, Sandhu [27, 30] uses what
we call (r)-simple-safety as the notion of safety, while Ammann and Sandhu [1, 3], Soshi et al. [32, 33] and
Solworth and Sloan [31] use what we call (s,0,r)-simple-safety. Li et al. [19, 20, 21] have generalized safety
analysis to security analysis, and use the term simple safety to refer to what we call (s,0,r)-simple-safety,
and bounded safety to refer to a slightly modified version of what we call (o,r)-simple-safety.

Layout The remainder of the paper is organized as follows. In the next section, we describe the HRU
scheme and reproduce the definitions for a leak and for (r)-leak-safety from the HRU paper. We discuss
the first error in Section 3 and the second error in Section 4. We present our notions of simple-safety and
undecidability results for them in Section 5. We conclude with Section 6.

2 The HRU Scheme and Safety

An access control system is identified by a start (or current) sfatmd a state-change ruke, An access
control system is based on an access control scheme, which specifies a set of statdsa set of state-
change rulesy. In a system based on the HRU scheme, each statel" is associated with the tuple



(Sy,0~,M,[]), whereS, andO, are finite sets of subjects and objects, respectively, that existamd
M,[]: Sy x O, — 2 is an access matrix that maps @ubject, object) pair to a set of rights.R,, is
the finite set of all such rights in the system, and we 2/ée to denote the powerset ét,. We prefer to
associate the finite set of rightB,;, with the state-change rulg rather than the statg as the set is fixed
across all states for a system. We postulate that- S andO, C O are countable sets of all possible
subjects and objects respectively that can exist in a state. Every subject is also an objéct.i®.and
S, C O, in every statey.

A state-change in an HRU system is the successful execution of a command. The state-chahge rule
specified by a finite set of right%,,, and a finite set of commands, where each command is of the following
form.

commandName(z1, ..., xq)
if r € M[xil,le} N ATy € M[xib,mjb] then
primitive-operation

primitive-operation

In the above command; and ¢ are positive integers, andl is a non-negative integer. The string
commandName is the name of the command, and, ..., z, is a list of parameters. The “if ...then”
portion checks for the presence of rights in cells in the (current instance of the) access matrix, and each
check is of the formr;, € Mz, , ;] and is called a condition. When= 0, we have a command with no
conditions, wherh < 1, we have a mono-conditional command, and wheh 2, we have a bi-conditional
command. Wher = 1, we have a mono-operational command. A system that consists of only mono-
conditional commands is called a mono-conditional system, one that consists only of bi-conditional com-
mands is called a bi-conditional system, and one that consists of only mono-operational commands is called
a mono-operational system. The safety problem in mono-conditional, bi-conditional and mono-operational
HRU systems have been studied in the literature [13, 14]. We require that the paramgters z;, be
instantiated with subjects (otherwise, an attempt at executing the command fails). We also require that
{r1,...,m} C Ry (ther;'s do not have to be distinct from one another). If we assumeitigthe state in
which we attempt to execute the command, then the “if ... then” check succeeds if and only if the rights are
present in the corresponding cells of the access matrix in thestate
In the execution of a command, the “if . . .then” conditions are first evaluated. If any of them is not met,

the command fails to execute. Otherwise, the primitive operations are executed in sequence. If the execution
of a primitive operation succeeds, then the access matrix is altered in a corresponding way, as we discuss
below for each kind of primitive operation. If the execution of a primitive operation fails, the access matrix
is unaltered. Each primitive operation is of one of the following forms. In each of the following/ét
be the access matrixg, the set of subjects and, the set of objects that exist in the state immediately
before the execution of the primitive operation, d\?fq/[ 1, S, andO., be the access matrix, set of subjects
and set of objects, respectively, immediately after the successful execution of the primitive operation (if the
execution is unsuccessfll//[ | = M,[], S, = S, andO., = O,).
enterr into M[z,y] : whenz is instantiated withs andy with o, this operation succeeds if and only if

s € Sy ando € O,. The resultisM.,[s, o] = M[s, 0] U {r}.
deleter from M [z, y] : whenz is instantiated withs andy with o, this operation succeeds if and only if

s € Sy ando € O,. The resultisM.[s, o] = M[s, 0] — {r}.
create subject : whenu is instantiated withs, this operation succeeds if and onlyiic S — 5,. S, =

S, U{s},andO, = O, U {s}. The resultis thai/, [ | has a row and column associated wittand

le [S, O] =(forallo e O,y/.



R, = {own, read} S., = {alice} O, = S, U {myFile}

M, [alice, alicé = () M, [alice, myFilé = {own}
createSubject(z,z’) destroySubject(x,’)

create subject =’ if own € M|z, 2]

enter own into M |[x, x'] destroy subject x’
createObject(x,y) destroyObject(z,y)

create object y if own € M|z, y]

enter own into Mz, y) destroy object y
transferOwn(z,z’,y) grantRead(x,2’,y)

if own € M|z, y] then if own € M|[xz,y] A read € M|z, y] then

enter own into M[z',y] enter read into M|z, y]

remove own from M|z, y]

Figure 1:An HRU system, whose current stateyisThe only subject that exists in the current state is alice, and the
only object that exists in the current state, apart from alice, is myFile. The state-change, redmsists of the six
commandsreateSubject,destroySubject, createObject,destroylbject, transferOwn andgrantRead.

create objecy : wheny is instantiated withv, this operation succeeds if and onlyitc O — O,. O, =
O, U {o}. The resultis thab/, [ | has a column associated withand/.[s, o] = @ for all s € S,

destroy subject : whenz is instantiated withs, this operation succeeds if and onlysife S,. S, =
S, — {s},andO, = O, — {s}. The result is thab/,[ | has no row or column associated with

destroy objecy : wheny is instantiated wittv, this operation succeeds if and onlyitE O,. The resultis
thatO!, = O, — {0}, andM.,[] has no column associated with

Figure 1 presents an example of an HRU system. The subject alice is the only subject that exists
in the statey. The object myFile is the only object, other than alice, that exists.inThere are two
rights associated with the systeawn andread. The state-change rul@, consists of the six commands,
createSubject,destroySubject, createObject,destroylObject, transferOwn andgrantRead.

Before we discuss safety analysis, we introduce some notation regarding state-changes. When a state
can be reached from a stagey the successful execution of the commandve denote this as —,, 1.
When necessary, we explicitly indicate the values with which each parameter to the command is to be
instantiated; for exampley — s, s,.0,) 71 We simply writey — ~; if the command whose execution

that can cause the state-change is either irrelevant, or clear from the context. Finally, we ﬁqyml,
when some sequence of successful executions of commands from the state-changamnuwause the state
~1 to be reached fromy. For example, for the system shown in Figure 1, consider the staie which
S,, = {alice}, O,, = S,,, andM,,, [alice, alicé = (). Theny —4estroyopject 71, and hencey i@ 1.

Given an HRU system, we can easily check whether a subject has a right to an object in the current state
by consulting the relevant cell in the access matrix. However, we may also want to ask questions regarding
states that are reachable from the current state. The HRU paper presents basic versions of such verification
problems for the HRU scheme. It calls such a problem safety analysis. A system is considered to be safe for
a given right if that right cannot Heakedto a cell, that is, be entered into a cell where it does not exist in the
current state. We now reproduce a definition for safety that is presented in the HRU paper. As the definition
for safety utilizes the notion of the leakage of a right, we first define what it means for the execution of a
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command to leak a right. We call this version of safety (r)-leak-safety. The “(r)” stands for “with respectto a
right”, as we fix a right and ask the safety question. The “leak” indicates that this is a definition based on the
notion of a leak. As we shall see, there are other versions of safety that arise as we continue our discussions
in this paper.

Definition 1 (Leak) Given a command in an HRU system and the current statef the system, we say
thata leaks the right from - if in the execution ofx for some instantiation of its parameters in the stagte
the execution of a primitive operation (presumably of the femterr into M s, o]) in « entersr into a cell

of the access matrix which did not contaitmmediately before the execution of the primitive operation.

Definition 2 ((r)-leak-safety) Given an HRU system with the start-starta state-change rulg, and a right
r € Ry, we say that the system is (r)-leak-unsafe:féfrand only if there is a statg,, and a command in
the state-change rute for the system such that:

*
i ’y Hw ’Yna and’
e « leaksr from ~,.

Consider the HRU system shown in Figure 1. The commamdtcObject leaks the righbwn from
the statey, as the primitive operation that addan to a cell in which it did not previous exist can be
successfully executed by the execution caused by the invocatiareObject (alice, newFilg. Therefore,
the statey and the system are (r)-leak-unsafe for the right. However, the system is (r)-leak-safe for the
right read, as there exists no state that is reachable fsdnom whichread can be leaked by any command
in ¢». The reason is that the only command that can leak is grantRead, which requires that a subject
already possess thead right. No subject possesses the right in the statand therefore no subject can
possess the right in any state that is reachable from

3 The NP Proof for Mono-Operational HRU Systems

Given the definition for the (r)-leak-safety problem from the HRU paper that we reproduce in the previ-
ous section, the HRU paper considers the question of how efficiently one can determine whether a mono-
operational HRU system is (r)-leak-unsafe. It is asserted in the HRU paper that, for such systems, the
problem isNP-complete. We have discovered an error in the proof presented in the HRU paper, that shows
that the problem is ilNP. We first discuss the error, and then its implications. The problem is indeed in
NP as claimed, and we provide a corrected proof in this section.

The incorrect proof proceeds as follows [14].

The proof hinges on two simple observations. First, commands can test for the presence of
rights, but not the absence of rights or objects. This allows delete and destroy commands to
be removed from computations leading to a leak (since the system is mono-operational, we
can identify the command by the type of primitive operation). Second, a command can only
identify objects by the rights in their row and column of the access matrix. No mono-operational
command can both create an object and enter rights, so multiple creates can be removed from
computations, leaving the creation of only one subject. This allows the length of the shortest
‘leaky’ computation to be bounded.

Harrison et al. [14] use the phrase “shortest leaky computation” to refer to the shortest sequence of state-
changes that results in a state from which there is a command that leaks the right, and we use this phrase as
well in the remainder of this section. The proof proceeds to show, based on the two observations made above,
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that an upper-bound on the length of the shortest leaky computati@ipfig|.S,| + 1) (|O4| + 1)+1, where

~ is the start-state ang is the state-change rule, which is polynomial in the size of the system. Therefore,

if the system is (r)-leak-unsafe, then there is an evidence whose size is polynomially-bounded, and that can
be verified in polynomial-time, thereby demonstrating that the problemN&Ein

The error in the proof in the HRU paper is with the first observation reproduced above. What the
first observation asserts is that mono-operational HRU systems are monotonic from the standpoint of (r)-
leak-safety analysis. That isieleteand destroycommands are inconsequential from the standpoint of
determining whether a particular mono-operational HRU system is (r)-leak-safe or not, and therefore can be
ignored. While monotonic systems seem to have little practical utility, the observation that realistic (non-
monotonic) systems can be “approximated” by monotonic systems from the standpoint of safety analysis
has since been used to establish the decidability of safety in various contexts (for example, by Ammann and
Sandhu [1]).

We assert that we cannot ignadeleteor destroycommands in the (r)-leak-safety analysis of mono-
operational HRU systems. The reason is that the definition for (r)-leak-unsafety asks only whether there
is a state-change sequence in which the final state-change is a leak (we do not have to consider “partial”
executions of commands as our focus here is on mono-operational systems). Consequently, a system in
which a subject has a right in the start-state, loses that right (owing to the executiatelgteor destroy
command) and re-acquires that right is a system that is (r)-leak-unsafe. For example, consider a system
whose start-state ig and state-change ruleds andS,, = {s}, O, = S,, Ry, = {r}, M,[s,s] = {r}, and
1 consists of the following two commands.

enterRight(p) removeRight (p)
enter r into M [p, p] delete r from M [p, p]

The above mono-operational HRU system is (r)-leak-unsafe for therighhe following is the shortest
leaky computationsy +— emoveright(s) 71- THis results inVL,, [s, s] = (). Fromryy, the commandnterRight
leaksr. We cannot remove the execution @fmoveRight from the above leaky computation (thereby
resulting in a shortest leaky computation of len@ffas then, there is no command that leaksom ~. The
example demonstrates that we cannot igri@ieteanddestroycommands in considering the shortest leaky
computation in a mono-operational HRU system.

We now present the corrected proof to show that deciding whether a mono-operational HRU system is
(n-leak-unsafe is iINP. The correction we have incorporated to our proof is to deal with the cases that a
delete or destroy command is part of the shortest leaky computation.

Theorem 1 The problem of determining whether a mono-operational HRU system is (r)-leak-unsafe is in
NP.

Proof. We seek to show that if a mono-operational HRU system is (r)-leak-unsafe for a given,righh
there exists an evidence whose size is polynomially-bounded in the size of the components of the system
(given the start-state and state-change rulg, the components of the system &g O, M, [ | andRy),
and that this evidence can be verified in polynomial time. The evidence is the shortest leaky computation,
and as in the proof provided in the HRU paper, we provide an upper-bound for its length. As the system is
mono-operational, each command is identified by the primitive operation in it.

LetC =~y — --- — 7, Whereyy = ~, be the shortest leaky computation, 464 denote its length.
Assume that aentercommand leaks the rightinto the cellM[s;, o] for s; € S,, ando; € O,,. We look
at the firstcreatecommand inC'. There are the following cases.



1. Such a command does not exist. Thémloes not have angestroycommands either, as any such
commands can be removed without affecting the leak. Observe that the subjects/objects being de-
stroyed are not re-created . Furthermore, there can be at most aleetecommand, which is
“deleter from M[s;, o;]”. Any other deletecommand can be removed from the sequence without
affecting the leak. Consequently, in this cage), < |Ry| (|Sy,| + 1) (|O5| + 1) + 1.

2. The command exists anddseate subject, ands is notinS,. ThenC does not have any othdestroy
or createcommands. Otherwise, one can remove all these commands and replace each subject created
later with s, and the resulting sequence would be a shorter leaky computation. Observesti{at if
07) is destroyed and re-created, then the new incarnation @ o;) is no different froms, and a leak
would still occur. Furthermore, there can be at most deletecommand, which isdeleter from
M]s;, 07]". Any otherdeletecommand can be removed from the sequence without affecting the leak.
ConsequenthyC'| < [Ry| (|Sy| + 1) (|O5| +1) + 2.

3. The command exists anddseate subject, ands € S,. Then there is ondestroy subject command
before this command. Furthermoremust be one of; or o;; otherwise, removing thdestroyand
thecreatecommands gives us a shorter leaky computation. Alstoes not have any othdestroyor
createcommands. Otherwise, we can remove all these commands, and replace each subject created
later with s, and the resulting sequence would be a shorter leaky computation. Finally, there is no
deletecommand. Observe that déleter from M|s;, o;]” before the create command is not needed,
as all rights related te are cleared when it is destroyed and re-created. Observe also theletet
from Ms;, o;]” after the create command is not needed either, as therrigluist not exist inV/[s;, o]
at that point; otherwise, a leak has already occurred beforgele¢eecommand. Consequently, in this
case|C| < [Ry| (S| +1) (105] +1) +2+ Ryl (1S50] + 0] +1).

4. The command exists anddeeate objecb, ando is not inO,. ThenC does not have any othdestroy
objector create objectommands, as these can be removed to give a shorter leaky computation. (Note
that we cannot replace this command witbraate subjectommand, as such a command may not
exist.) We then look for the nextreatecommand. One of the preceding three cases would apply,
as if it is found, it must be areate subject Therefore,|C| < |Ry| (|Sy,| + 1) (|O1| +2) + 3 +
[Ry| (1550 + |00l +2).

5. The command exists anddgeate objecb, ando € O,. Then there is ondestroy object command
before this command. Furthermorenust bev;; otherwise, removing theestroyand thecreatecom-
mands, we have a shorter leaky computation. Alsdoes not have any othdestroy objecbr create
objectcommands. Otherwise, one can remove all these commands, and replace each object created
later with o, the resulting sequence would be a shorter leaky computation. We then look for the next
createcommand. One of the preceding three cases would apply, as if it is found, it musteata
subject Therefore, in this casé’| < |Ry| (|Syo| + 1) (O] +2) +4 + |Ry| (2[S4| + (O] + 2).

We have demonstrated that if a mono-operational HRU system is (r)-leak-unsafe, then there exists an
evidence (the shortest leaky computation) whose size is polynomially bounded, and that can be verified in
polynomial time. |

4 The Reduction from One Safety Problem to Another

As we mention in Section 1, the HRU paper discusses two versions of safety: (r)-leak-safety and (o,r)-leak-
safety. In this section, we first define (o,r)-leak-safety. In the HRU paper, (o,r)-leak-safety is characterized



only informally as: ‘Another common notion of the term ‘safety’ is that one be assured it is impossible
to leak rightr to a particular objecto;.” Consequently, our definition for (o,r)-leak-safety is similar to

the definition for (r)-leak-safety, but captures the above intuition intended by Harrison et al. [14]. After
presenting the definition for (o,r)-leak-safety, we reproduce a mapping from (o,r)-leak-unsafety to (r)-leak-
unsafety that is presented in the HRU paper. In presenting the mapping, the HRU paper adf&edan “

use our more general definition of safety to simulate this’oRee “general definition of safety” is (r)-leak-
safety, and “this one” is (o,r)-leak-safety. The second error we have discovered in the HRU paper regards
this mapping, and we discuss this and related issues in this section.

The HRU paper does not precisely characterize the properties the mapping presented there possesses. We
argue that as safety is what is emphasized, it is reasonable to expect that the mapping medidieoa[8,

16, 17, 25]. A reduction from a decision proble#rito a decision problen® is a computable mapping that
enables us to decide an instancedoprovided that we can decide corresponding instance3.of his is
precisely what the HRU paper seeks; the ability to answer (o,r)-leak-safety instances for a system provided
that (r)-leak-safety instances can be answered for that system.

After reproducing the mapping from (o,r)-leak-unsafety to (r)-leak-unsafety that is presented in the
HRU paper, we present five flaws we have identified in the mapping that preclude it from being a reduction.
Therefore, the mapping cannot be used to infer any meaningful relationship between (r)-leak-safety and
(o,r)-leak-safety.

Definition 3 ((o,r)-leak-safety) Given an HRU system with the start-statea state-change rulg, a right
r € Ry, and an objeck € O, we say that the system is (o,r)-leak-unsafe(tor-) if and only if there exists
a statey,, and a command: in 1), such that both of the following are true.

%
L4 ’Y H’L/J Wna anda
e « leaksr from ~, into one of the cells in the column corresponding ia the access matrix.

Given the above definition, we are able to immediately establish the following two lemmas. The first
lemma relates (r)-leak-safety and (o,r)-leak-safety via implication. The second establishes that (o,r)-leak-
safety for two objects that do not exist in the start-state are equivalent. These results are used in Section 4.2
to demonstrate that (r)-leak-safety reduces to (o,r)-leak-safety.

Lemma 2 Given an HRU systen(y, 1)) wherey is the start-state), is the state-change rule and: R, is a
right. If the system is (r)-leak-unsafe forthen there exists € O such that the system is (o,r)-leak-unsafe
for (o, r).

Lemma 3 Given an HRU system with the start-statethe state-change rule, a rightr; € Ry, and the
subjectss; andsy such thats; # s, and{s1,s2} C S — 5,. The system is (o,r)-leak-safe f¢s1, 1) if
and only if it is (o,r)-leak-safe fofsy, r1).

The proofs for both the above lemmas is straightforward. For Lemma 2, if the system is (r)-leak-unsafe
for r, then there is a state-change sequence that leads to a command that leakte leaky command
leak r to the column corresponding to the object Then, the system is (o,r)-leak-unsafe forr). For
Lemma 3, we recall that every subject is also an object. If the system is (0,r)-leak-unséfe fo, then
there is a corresponding state-change sequence that leads to a command thatéeak=ll in the column
corresponding ta; . In the state-change sequence, we replace every occurreaceivh so, and this gives
us a state-change sequence that leads to a command that{daks cell in the column corresponding to
S9.



4.1 The mapping from one safety problem to another from the HRU paper

The HRU paper presents the following mapping from (o,r)-leak-unsafety to (r)-leak-unsafety that we call
Mpygry. Given a system with start-stateand state-change rukg, we consider the (o,r)-leak-unsafety
problem for(o1,71). Myry produces as output a staté a state-change ruleg and a rightr} that is

the specification for the corresponding (r)-leak-unsafety problem. The state-changg isilsuch that

Ry = Ry U {r},ry}, where{r}, 75} N Ry, = 0. Every command that is it# is also iny’. In addition,’

has the following command.

dummy(s, o)
if 11 € M[s,0] Arh € Mo, 0] then
enter 1 into M|o, o]

The start-state’ is the same as, except thai’, € M./[o1,01]. The HRU paper then makes the claim that
“...leakingr} to anybody is equivalent to leaking to objecto; specifically’ We assert that the claim is
false for the following reasons.

1. Under the mapping, we enter the rightinto the cellM |01, 01] in the start-state. However,df is an
object that is not a subject, then there is no such cell in the access matrix.

2. It is assumed that the objeet in the (o,r)-leak-safety instance already exists. The mapping does
not address the case that € O, but does not exist in the start-state. It is possible that the system
is (o,r)-leak-unsafe, ag may be created by the execution of some command. A practical situation
in which this case is interesting regards configuration files. Such files are often identified by name
and are used by application programs such as web browsers. Furthermore, many programs create a
configuration file if one does not already exist. Therefore, even if the objget configuration file)
does not exist in the start-state, we may want to ask a corresponding (o,r)-leak-safety question.

3. The case that; may be destroyed is not addressed. If there is a command in the system that can
destroyos, then even ifo; is subsequently re-created, the rightthat the mapping includes in the
cell MJo1,01] is no longer present. Therefore, we may incorrectly infer that the system is (o,r)-leak-
safe, if the (r)-leak-safety property is true for the system produced unggs,. This case is also
of practical interest for reasons similar to the previous casanay be a configuration file that is
destroyed and re-created.

4. The case that,; is leaked to some cell in the column corresponding tin a “transient state” (that
is, the partial execution of a command) is not addressed. It is possible tisantered into some cell
in the column corresponding @, and then removed in the same command. This would make the
system(~, 1) (o,r)-leak-unsafe fofo;, r1). However, the conditions for the commaddmmy would
never be satisfied, and the systém ') would be (r)-leak-safe for| leading us to infer incorrectly
that the systenty, ¢) is (0,r)-leak-safe fofo;, 1 ).

5. Suppose that some subjegthas the right-; to oy in the start-state, that; can never be deleted
from the cell corresponding to ando;, and that neitheg; noro; can be destroyed. Then, we may
incorrectly infer that the system is (o,r)-leak-unsafe, because the conditions for the comwnang
are satisfied. For the mapping to be correct, we need to assume that no subject has thevight
o1 in the start-state.

We do not attempt to directly correct these flaws in the mapping. The reason is that even if there does
exist a reduction from (o,r)-leak-safety to (r)-leak-safety, we cannot infer anything meaningful about the
decidability or computational complexity of (o,r)-leak-safety in the HRU scheme. As it is shown in the
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1 Mo ({y,9),m)

2 | * Inputs:

3 - An HRU system, (v,%)

4 - A right, r1 € Ry

5 Output:

6 - true, if the system (v,v) is (r)-leak-safe for 1

7 - false, otherwise */

8 For each o0€O,

9 query the oracle L,.s whether (vy,v) is (o,r)-leak-safe for (0,71)
10 if false, return false

11 For some sec& -5,

12 query the oracle L,.s whether (v,v) is (o,r)-leak-safe for (s,r1)
13 if false, then return false

14 return true

Figure 2: M* s is an oracle Turing machine that decideg,. The above algorithm returns true if the
system(v, ) is (r)-leak-safe for the right;, and false otherwiseM “oris issues|O,| + 1 non-adaptive
gueries to the oraclé .

HRU paper that (r)-leak-safety is undecidable for the HRU scheme, a reduction from (o,r)-leak-safety to
(n-leak-safety tells us nothing about how efficiently we can solve (o,r)-leak-safety for the HRU scheme.
Indeed, we cannot even infer whether (o,r)-leak-safety is decidable or not for the scheme. A reduction in the
other direction, if one exists, would be more meaningful, as we could then infer that (o,r)-leak-safety is also
undecidable for the HRU scheme. In the next section, we provide exactly such a reduction.

4.2 Areduction from (r)-leak-safety to (o,r)-leak-safety

In this section, we present a reduction from the (r)-leak-safety to the (o,r)-leak-safety for the HRU scheme.
The particular kind of reduction we present is a polynomial-time truth table reduction [17, 25]. It is
known [17] that if there exists such a reduction from probléio B, thenB is a upper-bound foA, within

a polynomial factor, from the perspective of computational complexity. Of courgeisiindecidable, then

SO isB.

A polynomial-time truth table reduction is a special case of a polynomial-time Turing reduction, which is
also called a Cook reduction [8]. These reductions are based on the notion of an oracle Turing machine [25].
An oracle Turing machine, with oraclg, is denoted ad/”. L is a language, that is, a set of stringg” is
a two-tape deterministic Turing machine. The extra tape is called the oracleM&péas three additional
states:g- (the query state), ang,.; andgy, (the answer states). The computatiomét proceeds like in
any ordinary Turing machine, except for transitions frgm When M’ entersg-, it checks whether the
contents of the oracle tape arefinIf so, M* moves t0gyes - Otherwise M * moves tag,,,. In other words,

MU is given the ability to “instantaneously” determine whether a particular stringfisdnnot. To show

that there is a polynomial-time truth table reduction from a language L, we need to show that there
exists an oracle Turing maching” that decided./, and that asks only polynomially many non-adaptive
queries of the form¢ € L”. By non-adaptive queries we mean that the choice of a query does not depend
on the answer to any other query; that is, all queries are specified before any of them is answered.

In our case, we leL,;; be the language that contains all tuples of the fdem), whereo = (v, ) is
an HRU system; € Ry, is a right in the system, andis (r)-leak-safe for the right. Also, we letL,,;; be
the language that contains all tuples of the fdem(o, )) whereo = (v, ¥) is (0,r)-leak-safe fofo, r).

11



Theorem 4 There exists a polynomial-time truth table reduction from, to L.

Proof. In Figure 2, we specify an oracle Turing maching:-=, as an algorithm. We now show thafZorss
a polynomial-time truth table reduction frofy, to L ;. We first observe that/ “ors asks| O4|+1 queries,
which is certainly polynomial in the size of the input. Thdt“-= decidesL,; follows from Lemmas 2 and
3. |

The undecidability of (o,r)-leak-safety The HRU paper presents a proof to demonstrate that (r)-leak-
safety is undecidable. Given the above reduction from (r)-leak-safety to (o,r)-leak-safety, we infer that
(o,n-leak-safety is undecidable as well for the HRU scheme.

In this context, we point out a minor error in the proof for the assertion that (r)-leak-safety is unde-
cidable that is presented in the HRU paper. In the proof, a reduction from the halting problem for Turing
machines to (r)-leak-unsafety is presented; a Turing machine enters a finaj state halts if and only if
the corresponding HRU system leaks a right It is assumed in the reduction that the Turing machine’s
initial state is noty;. In the case that the Turing machine’s initial statgdsno state-changes would occur
in the corresponding HRU system, and therefore, no leak can occur. This error in the proof is easily fixed by
first checking whether a given Turing machine’s initial state is the gtatdf so, we know trivially that the
Turing machine halts in statg. Only if the Turing machine’s initial state is ngt do we encode its halting
problem as an (r)-leak-unsafety problem for an HRU system.

An interesting point is that Theorem 4 applies to special cases of the HRU scheme that have been
studied in the literature [13, 14] as well. That is, (r)-leak-safety for mono-conditional, bi-conditional and
mono-operational HRU systems reduces to (0,r)-leak-safety for mono-conditional, bi-conditional and mono-
operational HRU systems respectively. Consequently, we infer that (o,r)-leak-unsafety for mono-operational
HRU systems iNP-hard. We can in fact use a proof similar to the proof for Theorem 1 to demonstrate that
the problem is also ilNP, thereby making iNP-complete.

5 More Meaningful Definitions of Safety

Our discovery of the two errors we discuss in Sections 3 and 4 leads us to ask whether the way safety is
defined in the HRU paper is meaningful. We discuss this issue in this section.

5.1 Alternate definitions for safety

In this section, we consider alternate definitions for safety. These versions of safety are not based on the
notion of a leak, but on whether a right may appear where it does not exist in the start-state.

Definition 4 ((r)-simple-safety) Given an HRU system with the start-statea state-change rukg and a
right » in the system, we say that the system is (r)-simple-unsafe if and only if there is g,s&ieh that
all of the following are true.

e 7y ’i)w Tn
e there exists € S, ando € O,, suchthat € M,, [s, o], and,
e eithers ¢ S,,0ro ¢ O, orr & M,[s, o].

We recall from Section 1 that the HRU paper informally characterizes safety astether, given some
initial access matrix, there is some sequence of commands in which a particular generic right is entered in
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some place in the matrix where it did not exist beform the above definition for (r)-simple-safety, we
adopt the interpretation that “before” means “in the start-state.”

There are three important differences between (r)-leak-unsafety (see Definition 2) and (r)-simple-
unsafety.

1. If a system is (r)-simple-unsafe for then it is (r)-leak-unsafe for, but not vice versa. Intuitively,
what we mean is that for the system to reach a “bad” state (be (r)-simple-unsafe), a “bad” state-change
(leak) must occur. However, not every “bad” state-change leads to a “bad” state. In particular, if a
subjects has the right- over the object in the start-state, and there is a sequence of state-changes
by which s loses the right to o, and then re-acquires it, the system is (r)-leak-unsafe.fblowever,
this does not demonstrate that the system is (r)-simple-unsafe for

2. In (r)-leak-unsafety, the execution of a “leaky” command may fail. All Definition 2 requires is that
there is some operation in the “leaky” command that enters the right where it does not exist in the
access matrix immediately preceding the execution of the operation. Even if a subsequent operation
fails, we have a leak, and the system is (r)-leak-unsafe. In (r)-simple-safety, we require that every
command that results in the right being entered into the cell succeed.

3. In (r)-leak-unsafety, the “leaky” command may enter the right to a cell, and then delete it. This point
is made explicitly in the HRU paper- . note that (a command) leaks (the right)- from (the state)
Q even ifa deletesr after entering it! The rationale provided for this is that there may be “code”
in between the entering of the right and the deletion of the right that is not “directly modeled”. For a
system to be (r)-simple-unsafe, when the right is entered into a cell, that right must persist in the cell
across a state-change (execution of a command).

Definition 5 ((o,r)-simple-safety) Given an HRU system with the start-statestate-change rulg, a right
r € Ry, and an objecb € O, we say that the system is (0,r)-simple-unsafe(tor-) if and only if there
exists a state,, such that all of the following are true.

e ’i)w Tns

e 0 € O,, and there exists a subject S, such that- € A, [s, o], and,

e eithers ¢ S,,0ro ¢ O,, orr & M,]s, o).
Definition 6 ((s,0,r)-simple-safety) Given an HRU system with the start-statea state-change rukg, a

rightr € Ry, an objecto € O, and a subject € S, we say that the system is (s,0,r)-simple-unsafe for
(s,o0,r) if and only if there exists a statg, such that all of the following are true.

© 7y Yns
e 0cO0,,s€8,,andr € M, [s, o], and,
e eithers ¢ Sy, 0ro ¢ O,, orr & M,|[s, o).

5.2 Simple-safety versus leak-safety

We now argue that the notions of simple-safety have more intuitive appeal than the notions of leak-safety.
Indeed, we argue that simple-safety is most likely what Harrison et al. [14] intended. In support of our
argument, we make the following observations.
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e The proof presented in the HRU paper for the assertion that the unsafety problem for mono-operational
systems is ifNP is correct if we adopt (r)-simple-safety instead of (r)-leak-safety. That is, from the
standpoint of (r)-simple-safety analysis, mono-operational HRU systems are monotonic. The reason
is that if s possesses overo in the start-state, then an evidence that the system is (r)-simple-unsafe
cannot be the addition ofto M[s, o]. Therefore, we can ignomeleteanddestroycommands in our
consideration of the shortest leaky computation.

e Consider the five flaws in the mapping from (o,r)-leak-safety to (r)-leak-safety presented in the HRU
paper, that we discuss in Section 4.1. The flaws (3)-(5) are irrelevant if we assume that the mapping is
from (o,r)-simple-safety to (r)-simple-safety. Flaw (3) addresses deletion of the objddbwever,
we do not have to consider this case for (0,r)-simple-safety as a state-change sequence that involves
a command that deletes cannot be used to demonstrate that the system is (o,r)-simple-unsafe for
(01, 7) (for some right-). For flaw (4), we know that we do not have to consider “transient” state for
simple-safety. The argument for flaw (5) is similar to the argument for flaw (3).

e The notions of leak-safeties mandates a peculiar transactional behavior for commands. The HRU
paper does not explicitly specify, when a command contains several primitive operations, whether
these operations are executed in a transactional manner or not. One issue is that whether the state
in between the execution of two operations is visible to the subjects. The fact that even if a right is
entered in a transient state is considered to be a leak means that every such transient state is visible to
the subjects; that is, subjects can access objects using the rights they possess in such transient states.
(Otherwise, there is no reason to consider a right in a transient state leakage.) For example, a subject
may be able to write something to a file. An issue then is what happens when a primitive operation
fails at one of these transient states. Clearly, the system cannot stay at the transient state to allow other
commands to execute. Therefore, the access control system has to roll back to the state before the
command is executed. It is unclear whether the changes being made in the transient states are also
rolled back or not.

That every transient state is visible to the subjects and the command rolls back if one operation fails
seems to be the transactional behavior that follows from the notion of leak-safety. We find this trans-
actional behavior rather strange. First, we are not aware of any access control system that is actually
implemented in this way. Second, there is no way to make several changes to the access matrix in
an atomic way. Third, a user is able to exercise the right even though the command execution that
resulted in him being granted the right failed in its execution. On the other hand, simple safety im-
plies that each command is executed in an atomic fashion, which is a more reasonable transactional
behavior.

e Literature subsequent to the HRU paper has considered only what we call simple-safety, and assume
that the HRU paper addresses simple-safety. For instance, Sandhu [27, 30] considers what we call (r)-
simple-safety. while Ammann and Sandhu [1, 3], Li et al. [19, 20, 21], Solworth and Sloan [31] and
Soshi et al. [32, 33] consider what we call (s,0,r)-simple-safety. This further supports our argument
that simple-safety is more meaningful than leak-safety.

5.3 The undecidability of (r)-simple-safety and (s,0,r)-simple-safety for the HRU scheme

Some work subsequent to the HRU paper [1, 3, 19, 20, 21, 27, 30, 31, 32, 33] adopt what we call (r)-simple-
safety and (s,0,r)-simple-safety as the notion of safety, and assert that safety is undecidable for the HRU
scheme. To our knowledge, these results have not been established in the literature. We do so in this section.
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We first consider the undecidability of (r)-simple-safety and (s,0,r)-simple-safety for the HRU scheme.
We point out that the proof in the HRU paper for the undecidability of (r)-leak-safety (with the minor
correction we discuss in Section 4.2) applies to (r)-simple-safety as well. In that proof, the halting problem
for Turing machines is reduced to a safety problem for the HRU scheme. The Turing machine enters the
stateg if and only if a corresponding right; that does not exist in any cell in the start-state is entered into
some cell by the execution of commands. The proof does not use “transient” states, and theisigever
deleted and re-entered. Consequently, we are able to assert the following theorem.

Theorem 5 (r)-simple-safety is undecidable for the HRU scheme.

Our proof for Theorem 4 that demonstrates that (r)-leak-safety reduces to (o,r)-leak-safety can easily
be adapted to show that (r)-simple-safety reduces to (o,r)-simple-safety. \Wg.Jgis the language that
consists of all tuples of the forrw, (o, 7)) where the systera = (v, ¢) is (0,r)-simple-safe fofo, r), and
L,s be the language that consists of all tuples of the fdsmr), whereo is (r)-simple-safe for. Now,
we can build an oracle Turing machifé’es that decided. ;. M Lorss asks|O| + 1 queries of the form
“y € L,ss”, justas in the proof for Theorem 4. Lemmas 2 and 3 have their counterparts in (r)-simple-safety
and (o,r)-simple-safety as well. Therefore, we are able to assert the following corollary.

Corollary 6 There exists a polynomial-time truth table reduction from; t0 L ,-.

Suppose thak s is the language that contains all tuples of the fdemy(s, o, r)) where the systera
is (s,0,r)-simple-safe fofs, o, 7). Then, the proof for Theorem 4 can be adapted to show that there exists
an oracle Turing maching/Zsorss that decided. ,,.ss. M s works similar toM Lorss | except that it asks
|S,| + 1 queries of the form £ € L,.,". As Lemmas 2 and 3 have their counterparts in (0,r)-simple-safety
and (s,0,r)-simple-safety, we are able to assert the following corollary.

Corollary 7 There exists a polynomial-time truth table reduction froggs t0 Lsorss-
From Corollaries 6 and 7 we are able to assert the following theorem.

Theorem 8 (s,0,r)-simple-safety is undecidable for the HRU scheme.

6 Conclusions

We have discussed two errors we have discovered in the HRU paper. The first error is in a proof that shows

that the problem of determining whether a mono-operational HRU system is (r)-leak-unsal€Fks iWe

have demonstrated that an underlying assumption that mono-operational HRU systems are monotonic from
the standpoint of safety analysis is faulty, and subsequently presented a corrected proof. The second error
is in an argument in support of a mapping from one version of safety to another. We have demonstrated

that the mapping is not a reduction, and presented a reduction in a more meaningful direction. We have also
introduced the notions of simple-safety and argued that they have more intuitive appeal than leak-safety. We

have also established undecidability results for the notions of simple-safety that have been assumed in the
literature.
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