
The Foundational work of Harrison-Ruzzo-Ullman Revisited

Mahesh V. Tripunitara Ninghui Li
Department of Computer Sciences and CERIAS,

Purdue University, West Lafayette, IN, USA 47907.
{tripunit,ninghui}@cerias.purdue.edu

Abstract

The work by Harrison, Ruzzo and Ullman (the HRU paper) on safety in the context of the access
matrix model is widely considered to be foundational work in access control. In this paper, we ad-
dress two errors we have discovered in the HRU paper. To our knowledge, these errors have not been
previously reported in the literature. The first error regards a proof that shows that safety analysis for
mono-operational HRU systems is inNP. The error stems from a faulty assumption that such systems
are monotonic for the purpose of safety analysis. We present a corrected proof in this paper. The second
error regards a mapping from one version of the safety problem to another that is presented in the HRU
paper. We demonstrate that the mapping is not a reduction, and present a reduction that enables us to
infer that the second version of safety introduced in the HRU paper is also undecidable for the HRU
scheme. These errors lead us to ask whether the notion of safety as defined in the HRU paper is mean-
ingful. We introduce other notions of safety that we argue have more intuitive appeal, and present the
corresponding safety analysis results for the HRU scheme.

1 Introduction

Access control enables controlled sharing of resources (henceforth calledobjects) among principals (hence-
forth calledsubjects). It is one of the most important areas of research in computer security and has been
called the “traditional center of gravity of computer security” [5]. The work by Harrison, Ruzzo and Ull-
man [14] (henceforth calledthe HRU paper) on the access matrix model [12, 18] is generally considered
to be foundational work in access control. The results from the paper are included in popular textbooks in
computer security [4, 5, 6, 9, 10, 26], and the paper is considered required reading for researchers in access
control. Since its publication, the HRU paper has had considerable impact on research in access control. At
the time of submission, according to Google Scholar [11], the HRU paper had been cited 264 times in the
literature.

The HRU paper presents a rather general access control scheme (henceforth calledthe HRU scheme)
and introducessafety analysisin the context of the scheme. In the HRU scheme, an access control system is
perceived as a state-change system that consists of a start-state and a state-change rule. A state is an access
matrix [18], whose rows are subjects and columns are objects. A state-change rule is a set of commands,
each of which consists of a conjunction of conditions and a sequence of primitive operations. Each condition
tests for the presence of a right in a cell of the access matrix, and each operation is one of six types (see
Section 2). In the HRU paper, safety is defined with respect to whether aleakcan occur. Informally, a leak
is the execution of an operation that causes a right to be entered into a cell in the access matrix where it does
not already exist. A system is considered to be safe if there exists no sequence of state-changes that leads to
a leak. In this paper, we call this version of safety (r)-leak-safety (see Table 1). Since its introduction in the

1

(r)-leak-safety: whether a (o,r)-leak-safety: whether a (s,o,r)-leak-safety: whether a
particular right may leak. particular right may leak to particular right may leak to

a cell associated with a the cell associated with a
particular object. particular subject and object.

(r)-simple-safety: whether a (o,r)-simple-safety: whether a (s,o,r)-simple-safety: whether a
particular right may appear in particular right may appear in aparticular right may appear in the
a cell, where it does not exist cell associated with a particularcell associated with a particular
in the start-state. object, where it does not exist subject and object, where it does

in the start-state. not exist in the start-state.

Table 1: The six versions of safety we consider in this paper. These versions either appear in the literature
on safety analysis, or are natural extensions.

HRU paper, safety analysis has been considered to be a fundamental problem in access control, and there
has been considerable work on safety in various contexts related to security [1, 2, 7, 15, 20, 21, 22, 23, 24,
27, 28, 29, 30, 31, 32, 33].

Apart from (r)-leak-safety, the HRU paper introduces what we call (o,r)-leak-safety (see Table 1). There
are three major results in the HRU paper. The first is that (r)-leak-safety is undecidable for the HRU scheme.
The second is that (o,r)-leak-unsafety can be “simulated” by (r)-leak-unsafety. (An unsafety problem is the
complement of a corresponding safety problem.) The third is that (r)-leak-unsafety for mono-operational
HRU systems isNP-complete (a mono-operational HRU system is one in which there is only one primitive
operation in each command).

In this paper, we first address two errors we have discovered in the HRU paper. Our discussions are
constructive; for each error, we propose corrections. The first error we discuss is in the proof that shows that
the problem of determining whether a mono-operational HRU system is (r)-leak-unsafe, is inNP. We point
out that the erroneous proof from the HRU paper is reproduced in several popular textbooks in computer
security [6, 9, 26]. The error in the HRU paper stems from the assumption that mono-operational HRU
systems aremonotonicfrom the standpoint of (r)-leak-safety analysis. A monotonic system is one in which
rights cannot be deleted, and subjects and objects cannot be destroyed. We demonstrate that this assumption
is flawed. We then assert that the problem is indeed inNP, and present a corrected proof.

The second error in the HRU paper that we address regards a mapping from (o,r)-leak-unsafety to
(r)-leak-unsafety that is presented to demonstrate that (o,r)-leak-unsafety can be “simulated” by (r)-leak-
unsafety. The HRU paper presents a brief argument in support of the validity of the mapping. It then
asserts that the problem of determining whether the (r)-leak-safety instance produced by the mapping is
false is equivalent to the problem of determining whether the (o,r)-leak-safety instance that is the input to
the mapping is false. We identify five flaws in the argument in the HRU paper; the mapping presented in
the HRU paper may lead us to make an erroneous inference that a particular (o,r)-leak-safety instance is
true when its corresponding (r)-leak-safety instance is false, and vice versa. We observe that what Harrison
et al. [14] intended was to demonstrate that (o,r)-leak-unsafetyreduces[8, 16, 17, 25] to (r)-leak-unsafety.
Our discovery of the flaws in the argument presented in the HRU paper demonstrates that the mapping that
is presented there is not a reduction. We argue that even if a reduction does exist from (o,r)-leak-unsafety
to (r)-leak-unsafety, given the assertion in the HRU paper that (r)-leak-unsafety is undecidable for the HRU
scheme, the reduction would tell us nothing about the decidability or computational complexity of (o,r)-leak-
unsafety. We argue, however, that the existence of a reduction from (r)-leak-unsafety to (o,r)-leak-unsafety
would allow us to infer that (o,r)-leak-unsafety is also undecidable for the HRU scheme. We present exactly

2

such a reduction in Section 4. The particular kind of reduction we use is a polynomial-time truth table
reduction [17, 25].

The two errors we have identified in the HRU paper lead us to ask whether the way safety is defined in
the HRU paper is meaningful. Indeed, we ask whether (r)-leak-safety and (o,r)-leak-safety are what Harrison
et al. [14] intended at all. The informal characterization for unsafety from the HRU paper is: “. . .whether,
given some initial access matrix, there is some sequence of commands in which a particular generic right
is entered in some place in the matrix where it did not exist before.” We get different versions of safety
depending on how we interpret the word “before”. The versions adopted in the HRU paper, which we
call (r)-leak-safety and (o,r)-leak-safety, are based on the interpretation that “before” refers to the state that
immediately precedes a leak.

Based on the interpretation of “before” as “in the start-state”, we introduce a version of safety that we
call (r)-simple-safety (see Table 1). A close examination of the HRU paper suggests that what we call (r)-
simple-safety is most likely what was intended by Harrison et al. [14]. There are other justifications for
why (r)-simple-safety has more intuitive appeal than (r)-leak-safety, (see Section 5). Literature on safety
analysis subsequent to the HRU paper [1, 3, 19, 20, 21, 27, 30, 31, 32, 33] uses versions of safety that are
different from (r)-leak-safety. In this paper, apart from (r)-leak-safety and (o,r)-leak-safety, we consider the
following versions of safety that either have appeared in the literature, or are natural extensions: (s,o,r)-leak-
safety, (r)-simple-safety, (o,r)-simple-safety and (s,o,r)-simple-safety. We give an informal characterization
of each in Table 1, and formal definitions in Section 5. We point out that some literature on safety analysis
subsequent to the HRU paper [1, 3, 27, 30, 32, 33] asserts that (r)-simple-safety and (s,o,r)-simple-safety
are undecidable for the HRU scheme. To our knowledge, neither result has been shown previously. We
establish these results in this paper (see Section 5). We discuss the undecidability proof from the HRU paper
and point out that it can be used to show that (r)-simple-safety is undecidable for the HRU scheme. We also
observe that (r)-simple-safety reduces to (o,r)-simple-safety, and that (o,r)-simple-safety reduces to (s,o,r)-
simple-safety, thereby proving that both (o,r)-simple-safety and (s,o,r)-simple-safety are also undecidable
for the HRU scheme.

Related work This paper primarily addresses the work of Harrison et al. [14] on safety analysis in the
context of the access matrix model. Harrison and Ruzzo [13] address monotonic HRU systems. Subsequent
to the work by Harrison et al. [14], there has been considerable work on safety in various contexts related to
security [1, 2, 7, 15, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33]. In particular, Sandhu [27, 30] uses what
we call (r)-simple-safety as the notion of safety, while Ammann and Sandhu [1, 3], Soshi et al. [32, 33] and
Solworth and Sloan [31] use what we call (s,o,r)-simple-safety. Li et al. [19, 20, 21] have generalized safety
analysis to security analysis, and use the term simple safety to refer to what we call (s,o,r)-simple-safety,
and bounded safety to refer to a slightly modified version of what we call (o,r)-simple-safety.

Layout The remainder of the paper is organized as follows. In the next section, we describe the HRU
scheme and reproduce the definitions for a leak and for (r)-leak-safety from the HRU paper. We discuss
the first error in Section 3 and the second error in Section 4. We present our notions of simple-safety and
undecidability results for them in Section 5. We conclude with Section 6.

2 The HRU Scheme and Safety

An access control system is identified by a start (or current) state,γ, and a state-change rule,ψ. An access
control system is based on an access control scheme, which specifies a set of states,Γ, and a set of state-
change rules,Ψ. In a system based on the HRU scheme, each stateγ ∈ Γ is associated with the tuple

3

〈Sγ , Oγ ,Mγ []〉, whereSγ andOγ are finite sets of subjects and objects, respectively, that exist inγ, and
Mγ [] : Sγ × Oγ → 2Rψ is an access matrix that maps a〈subject , object〉 pair to a set of rights.Rψ is
the finite set of all such rights in the system, and we use2Rψ to denote the powerset ofRψ. We prefer to
associate the finite set of rights,Rψ, with the state-change ruleψ rather than the stateγ as the set is fixed
across all states for a system. We postulate thatSγ ⊂ S andOγ ⊂ O are countable sets of all possible
subjects and objects respectively that can exist in a state. Every subject is also an object, i.e.,S ⊆ O and
Sγ ⊆ Oγ in every stateγ.

A state-change in an HRU system is the successful execution of a command. The state-change ruleψ is
specified by a finite set of rights,Rψ, and a finite set of commands, where each command is of the following
form.

commandName(x1, . . . , xa)
if r1 ∈M [xi1 , xj1] ∧ · · · ∧ rb ∈M [xib , xjb] then

primitive-operation1
...

primitive-operationc

In the above command,a and c are positive integers, andb is a non-negative integer. The string
commandName is the name of the command, andx1, . . . , xa is a list of parameters. The “if . . . then”
portion checks for the presence of rights in cells in the (current instance of the) access matrix, and each
check is of the formrk ∈ M [xik , xjk] and is called a condition. Whenb = 0, we have a command with no
conditions, whenb ≤ 1, we have a mono-conditional command, and whenb ≤ 2, we have a bi-conditional
command. Whenc = 1, we have a mono-operational command. A system that consists of only mono-
conditional commands is called a mono-conditional system, one that consists only of bi-conditional com-
mands is called a bi-conditional system, and one that consists of only mono-operational commands is called
a mono-operational system. The safety problem in mono-conditional, bi-conditional and mono-operational
HRU systems have been studied in the literature [13, 14]. We require that the parametersxi1 , . . . , xib be
instantiated with subjects (otherwise, an attempt at executing the command fails). We also require that
{r1, . . . , rb} ⊆ Rψ (theri’s do not have to be distinct from one another). If we assume thatγ is the state in
which we attempt to execute the command, then the “if . . . then” check succeeds if and only if the rights are
present in the corresponding cells of the access matrix in the stateγ.

In the execution of a command, the “if . . . then” conditions are first evaluated. If any of them is not met,
the command fails to execute. Otherwise, the primitive operations are executed in sequence. If the execution
of a primitive operation succeeds, then the access matrix is altered in a corresponding way, as we discuss
below for each kind of primitive operation. If the execution of a primitive operation fails, the access matrix
is unaltered. Each primitive operation is of one of the following forms. In each of the following, letMγ []
be the access matrix,Sγ the set of subjects andOγ the set of objects that exist in the state immediately
before the execution of the primitive operation, andMγ′ [], Sγ′ andOγ′ be the access matrix, set of subjects
and set of objects, respectively, immediately after the successful execution of the primitive operation (if the
execution is unsuccessful,Mγ′ [] = Mγ [], Sγ′ = Sγ andOγ′ = Oγ).
enterr intoM [x, y] : whenx is instantiated withs andy with o, this operation succeeds if and only if

s ∈ Sγ ando ∈ Oγ . The result isMγ′ [s, o] = Mγ [s, o] ∪ {r}.
deleter fromM [x, y] : whenx is instantiated withs andy with o, this operation succeeds if and only if

s ∈ Sγ ando ∈ Oγ . The result isMγ′ [s, o] = Mγ [s, o]− {r}.
create subjectx : whenx is instantiated withs, this operation succeeds if and only ifs ∈ S − Sγ . Sγ′ =

Sγ ∪ {s}, andOγ′ = Oγ ∪ {s}. The result is thatMγ′ [] has a row and column associated withs, and
Mγ′ [s, o] = ∅ for all o ∈ Oγ′ .

4

Rψ = {own, read} Sγ = {alice} Oγ = Sγ ∪ {myFile}

Mγ [alice, alice] = ∅ Mγ [alice, myFile] = {own}

createSubject(x, x′) destroySubject(x, x′)
create subject x′ if own ∈M [x, x′]
enter own into M [x, x′] destroy subject x′

createObject(x, y) destroyObject(x, y)
create object y if own ∈M [x, y]
enter own into M [x, y] destroy object y

transferOwn(x, x′, y) grantRead(x, x′, y)
if own ∈M [x, y] then if own ∈M [x, y] ∧ read ∈M [x, y] then

enter own into M [x′, y] enter read into M [x′, y]
remove own from M [x, y]

Figure 1:An HRU system, whose current state isγ. The only subject that exists in the current state is alice, and the
only object that exists in the current state, apart from alice, is myFile. The state-change rule,ψ, consists of the six
commandscreateSubject, destroySubject, createObject, destroyObject, transferOwn andgrantRead.

create objecty : wheny is instantiated witho, this operation succeeds if and only ifo ∈ O − Oγ . Oγ′ =
Oγ ∪ {o}. The result is thatMγ′ [] has a column associated witho, andMγ′ [s, o] = ∅ for all s ∈ Sγ′ .

destroy subjectx : whenx is instantiated withs, this operation succeeds if and only ifs ∈ Sγ . Sγ′ =
Sγ − {s}, andOγ′ = Oγ − {s}. The result is thatMγ′ [] has no row or column associated withs.

destroy objecty : wheny is instantiated witho, this operation succeeds if and only ifo ∈ Oγ . The result is
thatO′

γ = Oγ − {o}, andMγ′ [] has no column associated witho.

Figure 1 presents an example of an HRU system. The subject alice is the only subject that exists
in the stateγ. The object myFile is the only object, other than alice, that exists inγ. There are two
rights associated with the system,own andread. The state-change rule,ψ, consists of the six commands,
createSubject, destroySubject, createObject, destroyObject, transferOwn andgrantRead.

Before we discuss safety analysis, we introduce some notation regarding state-changes. When a stateγ1

can be reached from a stateγ by the successful execution of the commandα, we denote this asγ 7→α γ1.
When necessary, we explicitly indicate the values with which each parameter to the command is to be
instantiated; for example,γ 7→α(s1,s2,o1) γ1. We simply writeγ 7→ γ1 if the command whose execution

that can cause the state-change is either irrelevant, or clear from the context. Finally, we writeγ
∗7→ψ γ1,

when some sequence of successful executions of commands from the state-change ruleψ can cause the state
γ1 to be reached fromγ. For example, for the system shown in Figure 1, consider the stateγ1, in which
Sγ1 = {alice},Oγ1 = Sγ1 , andMγ1 [alice, alice] = ∅. Thenγ 7→destroyObject γ1, and hence,γ

∗7→ψ γ1.
Given an HRU system, we can easily check whether a subject has a right to an object in the current state

by consulting the relevant cell in the access matrix. However, we may also want to ask questions regarding
states that are reachable from the current state. The HRU paper presents basic versions of such verification
problems for the HRU scheme. It calls such a problem safety analysis. A system is considered to be safe for
a given right if that right cannot beleakedto a cell, that is, be entered into a cell where it does not exist in the
current state. We now reproduce a definition for safety that is presented in the HRU paper. As the definition
for safety utilizes the notion of the leakage of a right, we first define what it means for the execution of a

5

command to leak a right. We call this version of safety (r)-leak-safety. The “(r)” stands for “with respect to a
right”, as we fix a right and ask the safety question. The “leak” indicates that this is a definition based on the
notion of a leak. As we shall see, there are other versions of safety that arise as we continue our discussions
in this paper.

Definition 1 (Leak) Given a commandα in an HRU system and the current stateγ of the system, we say
thatα leaks the rightr from γ if in the execution ofα for some instantiation of its parameters in the stateγ,
the execution of a primitive operation (presumably of the formenterr intoM [s, o]) in α entersr into a cell
of the access matrix which did not containr immediately before the execution of the primitive operation.

Definition 2 ((r)-leak-safety) Given an HRU system with the start-startγ, a state-change ruleψ, and a right
r ∈ Rψ, we say that the system is (r)-leak-unsafe forr if and only if there is a stateγn and a commandα in
the state-change ruleψ for the system such that:

• γ
∗7→ψ γn, and,

• α leaksr from γn.

Consider the HRU system shown in Figure 1. The commandcreateObject leaks the rightown from
the stateγ, as the primitive operation that addsown to a cell in which it did not previous exist can be
successfully executed by the execution caused by the invocationcreateObject (alice, newFile). Therefore,
the stateγ and the system are (r)-leak-unsafe for the rightown. However, the system is (r)-leak-safe for the
right read, as there exists no state that is reachable fromγ from whichread can be leaked by any command
in ψ. The reason is that the only command that can leakread is grantRead, which requires that a subject
already possess theread right. No subject possesses the right in the stateγ, and therefore no subject can
possess the right in any state that is reachable fromγ.

3 TheNP Proof for Mono-Operational HRU Systems

Given the definition for the (r)-leak-safety problem from the HRU paper that we reproduce in the previ-
ous section, the HRU paper considers the question of how efficiently one can determine whether a mono-
operational HRU system is (r)-leak-unsafe. It is asserted in the HRU paper that, for such systems, the
problem isNP-complete. We have discovered an error in the proof presented in the HRU paper, that shows
that the problem is inNP. We first discuss the error, and then its implications. The problem is indeed in
NP as claimed, and we provide a corrected proof in this section.

The incorrect proof proceeds as follows [14].

The proof hinges on two simple observations. First, commands can test for the presence of
rights, but not the absence of rights or objects. This allows delete and destroy commands to
be removed from computations leading to a leak (since the system is mono-operational, we
can identify the command by the type of primitive operation). Second, a command can only
identify objects by the rights in their row and column of the access matrix. No mono-operational
command can both create an object and enter rights, so multiple creates can be removed from
computations, leaving the creation of only one subject. This allows the length of the shortest
‘leaky’ computation to be bounded.

Harrison et al. [14] use the phrase “shortest leaky computation” to refer to the shortest sequence of state-
changes that results in a state from which there is a command that leaks the right, and we use this phrase as
well in the remainder of this section. The proof proceeds to show, based on the two observations made above,

6

that an upper-bound on the length of the shortest leaky computation is|Rψ| (|Sγ |+ 1) (|Oγ |+ 1)+1, where
γ is the start-state andψ is the state-change rule, which is polynomial in the size of the system. Therefore,
if the system is (r)-leak-unsafe, then there is an evidence whose size is polynomially-bounded, and that can
be verified in polynomial-time, thereby demonstrating that the problem is inNP.

The error in the proof in the HRU paper is with the first observation reproduced above. What the
first observation asserts is that mono-operational HRU systems are monotonic from the standpoint of (r)-
leak-safety analysis. That is,deleteand destroycommands are inconsequential from the standpoint of
determining whether a particular mono-operational HRU system is (r)-leak-safe or not, and therefore can be
ignored. While monotonic systems seem to have little practical utility, the observation that realistic (non-
monotonic) systems can be “approximated” by monotonic systems from the standpoint of safety analysis
has since been used to establish the decidability of safety in various contexts (for example, by Ammann and
Sandhu [1]).

We assert that we cannot ignoredeleteor destroycommands in the (r)-leak-safety analysis of mono-
operational HRU systems. The reason is that the definition for (r)-leak-unsafety asks only whether there
is a state-change sequence in which the final state-change is a leak (we do not have to consider “partial”
executions of commands as our focus here is on mono-operational systems). Consequently, a system in
which a subject has a right in the start-state, loses that right (owing to the execution of adeleteor destroy
command) and re-acquires that right is a system that is (r)-leak-unsafe. For example, consider a system
whose start-state isγ and state-change rule isψ, andSγ = {s}, Oγ = Sγ , Rψ = {r}, Mγ [s, s] = {r}, and
ψ consists of the following two commands.

enterRight(p) removeRight(p)
enter r into M [p, p] delete r from M [p, p]

The above mono-operational HRU system is (r)-leak-unsafe for the rightr. The following is the shortest
leaky computation:γ 7→removeRight(s) γ1. This results inMγ1 [s, s] = ∅. Fromγ1, the commandenterRight
leaksr. We cannot remove the execution ofremoveRight from the above leaky computation (thereby
resulting in a shortest leaky computation of length0) as then, there is no command that leaksr from γ. The
example demonstrates that we cannot ignoredeleteanddestroycommands in considering the shortest leaky
computation in a mono-operational HRU system.

We now present the corrected proof to show that deciding whether a mono-operational HRU system is
(r)-leak-unsafe is inNP. The correction we have incorporated to our proof is to deal with the cases that a
delete or destroy command is part of the shortest leaky computation.

Theorem 1 The problem of determining whether a mono-operational HRU system is (r)-leak-unsafe is in
NP.

Proof. We seek to show that if a mono-operational HRU system is (r)-leak-unsafe for a given rightr, then
there exists an evidence whose size is polynomially-bounded in the size of the components of the system
(given the start-stateγ and state-change ruleψ, the components of the system areSγ , Oγ ,Mγ [] andRψ),
and that this evidence can be verified in polynomial time. The evidence is the shortest leaky computation,
and as in the proof provided in the HRU paper, we provide an upper-bound for its length. As the system is
mono-operational, each command is identified by the primitive operation in it.

Let C = γ0 7→ · · · 7→ γn, whereγ0 = γ, be the shortest leaky computation, and|C| denote its length.
Assume that anentercommand leaks the rightr into the cellM [sl, ol] for sl ∈ Sγn andol ∈ Oγn . We look
at the firstcreatecommand inC. There are the following cases.

7

1. Such a command does not exist. ThenC does not have anydestroycommands either, as any such
commands can be removed without affecting the leak. Observe that the subjects/objects being de-
stroyed are not re-created inC. Furthermore, there can be at most onedeletecommand, which is
“deleter from M [sl, ol]”. Any other deletecommand can be removed from the sequence without
affecting the leak. Consequently, in this case,|C| ≤ |Rψ| (|Sγ0 |+ 1) (|Oγ0 |+ 1) + 1.

2. The command exists and iscreate subjects, ands is not inSγ . ThenC does not have any otherdestroy
or createcommands. Otherwise, one can remove all these commands and replace each subject created
later withs, and the resulting sequence would be a shorter leaky computation. Observe that ifsl (or
ol) is destroyed and re-created, then the new incarnation ofs1 (or o1) is no different froms, and a leak
would still occur. Furthermore, there can be at most onedeletecommand, which is “deleter from
M [sl, ol]”. Any otherdeletecommand can be removed from the sequence without affecting the leak.
Consequently,|C| ≤ |Rψ| (|Sγ0 |+ 1) (|Oγ0 |+ 1) + 2.

3. The command exists and iscreate subjects, ands ∈ Sγ . Then there is onedestroy subjects command
before this command. Furthermore,s must be one ofsl or ol; otherwise, removing thedestroyand
thecreatecommands gives us a shorter leaky computation. AlsoC does not have any otherdestroyor
createcommands. Otherwise, we can remove all these commands, and replace each subject created
later with s, and the resulting sequence would be a shorter leaky computation. Finally, there is no
deletecommand. Observe that a “deleter fromM [sl, ol]” before the create command is not needed,
as all rights related tos are cleared when it is destroyed and re-created. Observe also that a “deleter
fromM [sl, ol]” after the create command is not needed either, as the rightr must not exist inM [sl, ol]
at that point; otherwise, a leak has already occurred before thedeletecommand. Consequently, in this
case,|C| ≤ |Rψ| (|Sγ0 |+ 1) (|Oγ0 |+ 1) + 2 + |Rψ| (|Sγ0 |+ |Oγ0 |+ 1).

4. The command exists and iscreate objecto, ando is not inOγ . ThenC does not have any otherdestroy
objector create objectcommands, as these can be removed to give a shorter leaky computation. (Note
that we cannot replace this command with acreate subjectcommand, as such a command may not
exist.) We then look for the nextcreatecommand. One of the preceding three cases would apply,
as if it is found, it must be acreate subject. Therefore,|C| ≤ |Rψ| (|Sγ0 |+ 1) (|Oγ0 |+ 2) + 3 +
|Rψ| (|Sγ0 |+ |Oγ0 |+ 2).

5. The command exists and iscreate objecto, ando ∈ Oγ . Then there is onedestroy objecto command
before this command. Furthermore,omust beol; otherwise, removing thedestroyand thecreatecom-
mands, we have a shorter leaky computation. AlsoC does not have any otherdestroy objector create
objectcommands. Otherwise, one can remove all these commands, and replace each object created
later witho, the resulting sequence would be a shorter leaky computation. We then look for the next
createcommand. One of the preceding three cases would apply, as if it is found, it must be acreate
subject. Therefore, in this case,|C| ≤ |Rψ| (|Sγ0 |+ 1) (|Oγ0 |+ 2) + 4 + |Rψ| (2|Sγ0 |+ |Oγ0 |+ 2).

We have demonstrated that if a mono-operational HRU system is (r)-leak-unsafe, then there exists an
evidence (the shortest leaky computation) whose size is polynomially bounded, and that can be verified in
polynomial time.

4 The Reduction from One Safety Problem to Another

As we mention in Section 1, the HRU paper discusses two versions of safety: (r)-leak-safety and (o,r)-leak-
safety. In this section, we first define (o,r)-leak-safety. In the HRU paper, (o,r)-leak-safety is characterized

8

only informally as: “Another common notion of the term ‘safety’ is that one be assured it is impossible
to leak rightr to a particular objecto1.” Consequently, our definition for (o,r)-leak-safety is similar to
the definition for (r)-leak-safety, but captures the above intuition intended by Harrison et al. [14]. After
presenting the definition for (o,r)-leak-safety, we reproduce a mapping from (o,r)-leak-unsafety to (r)-leak-
unsafety that is presented in the HRU paper. In presenting the mapping, the HRU paper asserts: “We can
use our more general definition of safety to simulate this one.” The “general definition of safety” is (r)-leak-
safety, and “this one” is (o,r)-leak-safety. The second error we have discovered in the HRU paper regards
this mapping, and we discuss this and related issues in this section.

The HRU paper does not precisely characterize the properties the mapping presented there possesses. We
argue that as safety is what is emphasized, it is reasonable to expect that the mapping must be areduction[8,
16, 17, 25]. A reduction from a decision problemA to a decision problemB is a computable mapping that
enables us to decide an instance ofA provided that we can decide corresponding instances ofB. This is
precisely what the HRU paper seeks; the ability to answer (o,r)-leak-safety instances for a system provided
that (r)-leak-safety instances can be answered for that system.

After reproducing the mapping from (o,r)-leak-unsafety to (r)-leak-unsafety that is presented in the
HRU paper, we present five flaws we have identified in the mapping that preclude it from being a reduction.
Therefore, the mapping cannot be used to infer any meaningful relationship between (r)-leak-safety and
(o,r)-leak-safety.

Definition 3 ((o,r)-leak-safety) Given an HRU system with the start-stateγ, a state-change ruleψ, a right
r ∈ Rψ, and an objecto ∈ O, we say that the system is (o,r)-leak-unsafe for〈o, r〉 if and only if there exists
a stateγn and a commandα in ψ, such that both of the following are true.

• γ
∗7→ψ γn, and,

• α leaksr from γn into one of the cells in the column corresponding too in the access matrix.

Given the above definition, we are able to immediately establish the following two lemmas. The first
lemma relates (r)-leak-safety and (o,r)-leak-safety via implication. The second establishes that (o,r)-leak-
safety for two objects that do not exist in the start-state are equivalent. These results are used in Section 4.2
to demonstrate that (r)-leak-safety reduces to (o,r)-leak-safety.

Lemma 2 Given an HRU system〈γ, ψ〉 whereγ is the start-state,ψ is the state-change rule andr ∈ Rψ is a
right. If the system is (r)-leak-unsafe forr, then there existso ∈ O such that the system is (o,r)-leak-unsafe
for 〈o, r〉.

Lemma 3 Given an HRU system with the start-stateγ, the state-change ruleψ, a rightr1 ∈ Rψ, and the
subjectss1 ands2 such thats1 6= s2, and{s1, s2} ⊆ S − Sγ . The system is (o,r)-leak-safe for〈s1, r1〉 if
and only if it is (o,r)-leak-safe for〈s2, r1〉.

The proofs for both the above lemmas is straightforward. For Lemma 2, if the system is (r)-leak-unsafe
for r, then there is a state-change sequence that leads to a command that leaksr. Let the leaky command
leak r to the column corresponding to the objecto. Then, the system is (o,r)-leak-unsafe for〈o, r〉. For
Lemma 3, we recall that every subject is also an object. If the system is (o,r)-leak-unsafe for〈s1, r1〉, then
there is a corresponding state-change sequence that leads to a command that leaksr1 to a cell in the column
corresponding tos1. In the state-change sequence, we replace every occurrence ofs1 with s2, and this gives
us a state-change sequence that leads to a command that leaksr1 to a cell in the column corresponding to
s2.

9

4.1 The mapping from one safety problem to another from the HRU paper

The HRU paper presents the following mapping from (o,r)-leak-unsafety to (r)-leak-unsafety that we call
MHRU . Given a system with start-stateγ and state-change ruleψ, we consider the (o,r)-leak-unsafety
problem for〈o1, r1〉. MHRU produces as output a stateγ′, a state-change rulesψ′ and a rightr′1 that is
the specification for the corresponding (r)-leak-unsafety problem. The state-change ruleψ′ is such that
Rψ′ = Rψ ∪ {r′1, r′2}, where{r′1, r′2} ∩ Rψ = ∅. Every command that is inψ is also inψ′. In addition,ψ′

has the following command.

dummy(s, o)
if r1 ∈M [s, o] ∧ r′2 ∈M [o, o] then

enter r′1 into M [o, o]

The start-stateγ′ is the same asγ, except thatr′2 ∈ Mγ′ [o1, o1]. The HRU paper then makes the claim that
“. . . leakingr′1 to anybody is equivalent to leakingr1 to objecto1 specifically.” We assert that the claim is
false for the following reasons.

1. Under the mapping, we enter the rightr′2 into the cellM [o1, o1] in the start-state. However, ifo1 is an
object that is not a subject, then there is no such cell in the access matrix.

2. It is assumed that the objecto1 in the (o,r)-leak-safety instance already exists. The mapping does
not address the case thato1 ∈ O, but does not exist in the start-state. It is possible that the system
is (o,r)-leak-unsafe, aso1 may be created by the execution of some command. A practical situation
in which this case is interesting regards configuration files. Such files are often identified by name
and are used by application programs such as web browsers. Furthermore, many programs create a
configuration file if one does not already exist. Therefore, even if the objecto1 (a configuration file)
does not exist in the start-state, we may want to ask a corresponding (o,r)-leak-safety question.

3. The case thato1 may be destroyed is not addressed. If there is a command in the system that can
destroyo1, then even ifo1 is subsequently re-created, the rightr′2 that the mapping includes in the
cellM [o1, o1] is no longer present. Therefore, we may incorrectly infer that the system is (o,r)-leak-
safe, if the (r)-leak-safety property is true for the system produced underMHRU . This case is also
of practical interest for reasons similar to the previous case;o1 may be a configuration file that is
destroyed and re-created.

4. The case thatr1 is leaked to some cell in the column corresponding too1 in a “transient state” (that
is, the partial execution of a command) is not addressed. It is possible thatr1 is entered into some cell
in the column corresponding too1, and then removed in the same command. This would make the
system〈γ, ψ〉 (o,r)-leak-unsafe for〈o1, r1〉. However, the conditions for the commanddummy would
never be satisfied, and the system〈γ′, ψ′〉 would be (r)-leak-safe forr′1 leading us to infer incorrectly
that the system〈γ, ψ〉 is (o,r)-leak-safe for〈o1, r1〉.

5. Suppose that some subjects1 has the rightr1 to o1 in the start-state, thatr1 can never be deleted
from the cell corresponding tos1 ando1, and that neithers1 nor o1 can be destroyed. Then, we may
incorrectly infer that the system is (o,r)-leak-unsafe, because the conditions for the commanddummy
are satisfied. For the mapping to be correct, we need to assume that no subject has the rightr1 over
o1 in the start-state.

We do not attempt to directly correct these flaws in the mapping. The reason is that even if there does
exist a reduction from (o,r)-leak-safety to (r)-leak-safety, we cannot infer anything meaningful about the
decidability or computational complexity of (o,r)-leak-safety in the HRU scheme. As it is shown in the

10

1 MLorls (〈γ, ψ〉, r1)
2 / * Inputs:
3 - An HRU system, 〈γ, ψ〉
4 - A right, r1 ∈ Rψ
5 Output:
6 - true, if the system 〈γ, ψ〉 is (r)-leak-safe for r1
7 - false, otherwise * /
8 For each o ∈ Oγ
9 query the oracle Lorls whether 〈γ, ψ〉 is (o,r)-leak-safe for 〈o, r1〉

10 if false, return false
11 For some s ∈ S − Sγ
12 query the oracle Lorls whether 〈γ, ψ〉 is (o,r)-leak-safe for 〈s, r1〉
13 if false, then return false
14 return true

Figure 2:MLorls is an oracle Turing machine that decidesLrls . The above algorithm returns true if the
system〈γ, ψ〉 is (r)-leak-safe for the rightr1, and false otherwise.MLorls issues|Oγ | + 1 non-adaptive
queries to the oracleLorls .

HRU paper that (r)-leak-safety is undecidable for the HRU scheme, a reduction from (o,r)-leak-safety to
(r)-leak-safety tells us nothing about how efficiently we can solve (o,r)-leak-safety for the HRU scheme.
Indeed, we cannot even infer whether (o,r)-leak-safety is decidable or not for the scheme. A reduction in the
other direction, if one exists, would be more meaningful, as we could then infer that (o,r)-leak-safety is also
undecidable for the HRU scheme. In the next section, we provide exactly such a reduction.

4.2 A reduction from (r)-leak-safety to (o,r)-leak-safety

In this section, we present a reduction from the (r)-leak-safety to the (o,r)-leak-safety for the HRU scheme.
The particular kind of reduction we present is a polynomial-time truth table reduction [17, 25]. It is
known [17] that if there exists such a reduction from problemA toB, thenB is a upper-bound forA, within
a polynomial factor, from the perspective of computational complexity. Of course, ifA is undecidable, then
so isB.

A polynomial-time truth table reduction is a special case of a polynomial-time Turing reduction, which is
also called a Cook reduction [8]. These reductions are based on the notion of an oracle Turing machine [25].
An oracle Turing machine, with oracleL, is denoted asML. L is a language, that is, a set of strings.ML is
a two-tape deterministic Turing machine. The extra tape is called the oracle tape.ML has three additional
states:q? (the query state), andqyes andqno (the answer states). The computation ofML proceeds like in
any ordinary Turing machine, except for transitions fromq?. WhenML entersq?, it checks whether the
contents of the oracle tape are inL. If so,ML moves toqyes . Otherwise,ML moves toqno . In other words,
ML is given the ability to “instantaneously” determine whether a particular string is inL or not. To show
that there is a polynomial-time truth table reduction from a languageL′ to L, we need to show that there
exists an oracle Turing machineML that decidesL′, and that asks only polynomially many non-adaptive
queries of the form “y ∈ L”. By non-adaptive queries we mean that the choice of a query does not depend
on the answer to any other query; that is, all queries are specified before any of them is answered.

In our case, we letLrls be the language that contains all tuples of the form〈σ, r〉, whereσ = 〈γ, ψ〉 is
an HRU system,r ∈ Rψ is a right in the system, andσ is (r)-leak-safe for the rightr. Also, we letLorls be
the language that contains all tuples of the form〈σ, 〈o, r〉〉 whereσ = 〈γ, ψ〉 is (o,r)-leak-safe for〈o, r〉.

11

Theorem 4 There exists a polynomial-time truth table reduction fromLrls toLorls .

Proof. In Figure 2, we specify an oracle Turing machine,MLorls , as an algorithm. We now show thatMLorls

a polynomial-time truth table reduction fromLrls toLorls . We first observe thatMLorls asks|Oγ |+1 queries,
which is certainly polynomial in the size of the input. ThatMLorls decidesLrls follows from Lemmas 2 and
3.

The undecidability of (o,r)-leak-safety The HRU paper presents a proof to demonstrate that (r)-leak-
safety is undecidable. Given the above reduction from (r)-leak-safety to (o,r)-leak-safety, we infer that
(o,r)-leak-safety is undecidable as well for the HRU scheme.

In this context, we point out a minor error in the proof for the assertion that (r)-leak-safety is unde-
cidable that is presented in the HRU paper. In the proof, a reduction from the halting problem for Turing
machines to (r)-leak-unsafety is presented; a Turing machine enters a final stateqf and halts if and only if
the corresponding HRU system leaks a rightrf . It is assumed in the reduction that the Turing machine’s
initial state is notqf . In the case that the Turing machine’s initial state isqf , no state-changes would occur
in the corresponding HRU system, and therefore, no leak can occur. This error in the proof is easily fixed by
first checking whether a given Turing machine’s initial state is the stateqf . If so, we know trivially that the
Turing machine halts in stateqf . Only if the Turing machine’s initial state is notqf do we encode its halting
problem as an (r)-leak-unsafety problem for an HRU system.

An interesting point is that Theorem 4 applies to special cases of the HRU scheme that have been
studied in the literature [13, 14] as well. That is, (r)-leak-safety for mono-conditional, bi-conditional and
mono-operational HRU systems reduces to (o,r)-leak-safety for mono-conditional, bi-conditional and mono-
operational HRU systems respectively. Consequently, we infer that (o,r)-leak-unsafety for mono-operational
HRU systems isNP-hard. We can in fact use a proof similar to the proof for Theorem 1 to demonstrate that
the problem is also inNP, thereby making itNP-complete.

5 More Meaningful Definitions of Safety

Our discovery of the two errors we discuss in Sections 3 and 4 leads us to ask whether the way safety is
defined in the HRU paper is meaningful. We discuss this issue in this section.

5.1 Alternate definitions for safety

In this section, we consider alternate definitions for safety. These versions of safety are not based on the
notion of a leak, but on whether a right may appear where it does not exist in the start-state.

Definition 4 ((r)-simple-safety) Given an HRU system with the start-stateγ, a state-change ruleψ and a
right r in the system, we say that the system is (r)-simple-unsafe if and only if there is a stateγn such that
all of the following are true.

• γ
∗7→ψ γn,

• there exists ∈ Sγn ando ∈ Oγn such thatr ∈Mγn [s, o], and,

• eithers 6∈ Sγ , or o 6∈ Oγ or r 6∈Mγ [s, o].

We recall from Section 1 that the HRU paper informally characterizes safety as: “. . .whether, given some
initial access matrix, there is some sequence of commands in which a particular generic right is entered in

12

some place in the matrix where it did not exist before.” In the above definition for (r)-simple-safety, we
adopt the interpretation that “before” means “in the start-state.”

There are three important differences between (r)-leak-unsafety (see Definition 2) and (r)-simple-
unsafety.

1. If a system is (r)-simple-unsafe forr, then it is (r)-leak-unsafe forr, but not vice versa. Intuitively,
what we mean is that for the system to reach a “bad” state (be (r)-simple-unsafe), a “bad” state-change
(leak) must occur. However, not every “bad” state-change leads to a “bad” state. In particular, if a
subjects has the rightr over the objecto in the start-stateγ, and there is a sequence of state-changes
by whichs loses the rightr to o, and then re-acquires it, the system is (r)-leak-unsafe forr. However,
this does not demonstrate that the system is (r)-simple-unsafe forr.

2. In (r)-leak-unsafety, the execution of a “leaky” command may fail. All Definition 2 requires is that
there is some operation in the “leaky” command that enters the right where it does not exist in the
access matrix immediately preceding the execution of the operation. Even if a subsequent operation
fails, we have a leak, and the system is (r)-leak-unsafe. In (r)-simple-safety, we require that every
command that results in the right being entered into the cell succeed.

3. In (r)-leak-unsafety, the “leaky” command may enter the right to a cell, and then delete it. This point
is made explicitly in the HRU paper: “. . . note that (a command)α leaks (the right)r from (the state)
Q even ifα deletesr after entering it.” The rationale provided for this is that there may be “code”
in between the entering of the right and the deletion of the right that is not “directly modeled”. For a
system to be (r)-simple-unsafe, when the right is entered into a cell, that right must persist in the cell
across a state-change (execution of a command).

Definition 5 ((o,r)-simple-safety) Given an HRU system with the start-stateγ, state-change ruleψ, a right
r ∈ Rψ, and an objecto ∈ O, we say that the system is (o,r)-simple-unsafe for〈o, r〉 if and only if there
exists a stateγn such that all of the following are true.

• γ
∗7→ψ γn,

• o ∈ Oγn and there exists a subjects ∈ Sγn such thatr ∈Mγn [s, o], and,

• eithers 6∈ Sγ , or o 6∈ Oγ , or r 6∈Mγ [s, o].

Definition 6 ((s,o,r)-simple-safety)Given an HRU system with the start-stateγ, a state-change ruleψ, a
right r ∈ Rψ, an objecto ∈ O, and a subjects ∈ S, we say that the system is (s,o,r)-simple-unsafe for
〈s, o, r〉 if and only if there exists a stateγn such that all of the following are true.

• γ
∗7→ψ γn,

• o ∈ Oγn , s ∈ Sγn , andr ∈Mγn [s, o], and,

• eithers 6∈ Sγ , or o 6∈ Oγ , or r 6∈Mγ [s, o].

5.2 Simple-safety versus leak-safety

We now argue that the notions of simple-safety have more intuitive appeal than the notions of leak-safety.
Indeed, we argue that simple-safety is most likely what Harrison et al. [14] intended. In support of our
argument, we make the following observations.

13

• The proof presented in the HRU paper for the assertion that the unsafety problem for mono-operational
systems is inNP is correct if we adopt (r)-simple-safety instead of (r)-leak-safety. That is, from the
standpoint of (r)-simple-safety analysis, mono-operational HRU systems are monotonic. The reason
is that if s possessesr overo in the start-state, then an evidence that the system is (r)-simple-unsafe
cannot be the addition ofr toM [s, o]. Therefore, we can ignoredeleteanddestroycommands in our
consideration of the shortest leaky computation.

• Consider the five flaws in the mapping from (o,r)-leak-safety to (r)-leak-safety presented in the HRU
paper, that we discuss in Section 4.1. The flaws (3)-(5) are irrelevant if we assume that the mapping is
from (o,r)-simple-safety to (r)-simple-safety. Flaw (3) addresses deletion of the objecto1. However,
we do not have to consider this case for (o,r)-simple-safety as a state-change sequence that involves
a command that deleteso1 cannot be used to demonstrate that the system is (o,r)-simple-unsafe for
〈o1, r〉 (for some rightr). For flaw (4), we know that we do not have to consider “transient” state for
simple-safety. The argument for flaw (5) is similar to the argument for flaw (3).

• The notions of leak-safeties mandates a peculiar transactional behavior for commands. The HRU
paper does not explicitly specify, when a command contains several primitive operations, whether
these operations are executed in a transactional manner or not. One issue is that whether the state
in between the execution of two operations is visible to the subjects. The fact that even if a right is
entered in a transient state is considered to be a leak means that every such transient state is visible to
the subjects; that is, subjects can access objects using the rights they possess in such transient states.
(Otherwise, there is no reason to consider a right in a transient state leakage.) For example, a subject
may be able to write something to a file. An issue then is what happens when a primitive operation
fails at one of these transient states. Clearly, the system cannot stay at the transient state to allow other
commands to execute. Therefore, the access control system has to roll back to the state before the
command is executed. It is unclear whether the changes being made in the transient states are also
rolled back or not.

That every transient state is visible to the subjects and the command rolls back if one operation fails
seems to be the transactional behavior that follows from the notion of leak-safety. We find this trans-
actional behavior rather strange. First, we are not aware of any access control system that is actually
implemented in this way. Second, there is no way to make several changes to the access matrix in
an atomic way. Third, a user is able to exercise the right even though the command execution that
resulted in him being granted the right failed in its execution. On the other hand, simple safety im-
plies that each command is executed in an atomic fashion, which is a more reasonable transactional
behavior.

• Literature subsequent to the HRU paper has considered only what we call simple-safety, and assume
that the HRU paper addresses simple-safety. For instance, Sandhu [27, 30] considers what we call (r)-
simple-safety. while Ammann and Sandhu [1, 3], Li et al. [19, 20, 21], Solworth and Sloan [31] and
Soshi et al. [32, 33] consider what we call (s,o,r)-simple-safety. This further supports our argument
that simple-safety is more meaningful than leak-safety.

5.3 The undecidability of (r)-simple-safety and (s,o,r)-simple-safety for the HRU scheme

Some work subsequent to the HRU paper [1, 3, 19, 20, 21, 27, 30, 31, 32, 33] adopt what we call (r)-simple-
safety and (s,o,r)-simple-safety as the notion of safety, and assert that safety is undecidable for the HRU
scheme. To our knowledge, these results have not been established in the literature. We do so in this section.

14

We first consider the undecidability of (r)-simple-safety and (s,o,r)-simple-safety for the HRU scheme.
We point out that the proof in the HRU paper for the undecidability of (r)-leak-safety (with the minor
correction we discuss in Section 4.2) applies to (r)-simple-safety as well. In that proof, the halting problem
for Turing machines is reduced to a safety problem for the HRU scheme. The Turing machine enters the
stateqf if and only if a corresponding rightrf that does not exist in any cell in the start-state is entered into
some cell by the execution of commands. The proof does not use “transient” states, and the rightrf is never
deleted and re-entered. Consequently, we are able to assert the following theorem.

Theorem 5 (r)-simple-safety is undecidable for the HRU scheme.

Our proof for Theorem 4 that demonstrates that (r)-leak-safety reduces to (o,r)-leak-safety can easily
be adapted to show that (r)-simple-safety reduces to (o,r)-simple-safety. We letLorss is the language that
consists of all tuples of the form〈σ, 〈o, r〉〉 where the systemσ = 〈γ, ψ〉 is (o,r)-simple-safe for〈o, r〉, and
Lrss be the language that consists of all tuples of the form〈σ, r〉, whereσ is (r)-simple-safe forr. Now,
we can build an oracle Turing machineMLorss that decidesLrss . MLorss asks|Oγ |+ 1 queries of the form
“y ∈ Lorss ”, just as in the proof for Theorem 4. Lemmas 2 and 3 have their counterparts in (r)-simple-safety
and (o,r)-simple-safety as well. Therefore, we are able to assert the following corollary.

Corollary 6 There exists a polynomial-time truth table reduction fromLrss toLorss .

Suppose thatLsorss is the language that contains all tuples of the form〈σ, 〈s, o, r〉〉 where the systemσ
is (s,o,r)-simple-safe for〈s, o, r〉. Then, the proof for Theorem 4 can be adapted to show that there exists
an oracle Turing machineMLsorss that decidesLorss . MLsorss works similar toMLorss , except that it asks
|Sγ |+1 queries of the form “z ∈ Lsorss ”. As Lemmas 2 and 3 have their counterparts in (o,r)-simple-safety
and (s,o,r)-simple-safety, we are able to assert the following corollary.

Corollary 7 There exists a polynomial-time truth table reduction fromLorss toLsorss .

From Corollaries 6 and 7 we are able to assert the following theorem.

Theorem 8 (s,o,r)-simple-safety is undecidable for the HRU scheme.

6 Conclusions

We have discussed two errors we have discovered in the HRU paper. The first error is in a proof that shows
that the problem of determining whether a mono-operational HRU system is (r)-leak-unsafe is inNP. We
have demonstrated that an underlying assumption that mono-operational HRU systems are monotonic from
the standpoint of safety analysis is faulty, and subsequently presented a corrected proof. The second error
is in an argument in support of a mapping from one version of safety to another. We have demonstrated
that the mapping is not a reduction, and presented a reduction in a more meaningful direction. We have also
introduced the notions of simple-safety and argued that they have more intuitive appeal than leak-safety. We
have also established undecidability results for the notions of simple-safety that have been assumed in the
literature.

15

References

[1] Paul Ammann and Ravi S. Sandhu. Safety analysis for the extended schematic protection model. In
Proceedings of the 1991 IEEE Symposium on Security and Privacy, pages 87–97, May 1991.

[2] Paul Ammann and Ravi S. Sandhu. The extended schematic protection model.Journal of Computer
Security, 1(3-4):335–383, 1992.

[3] Paul Ammann and Ravi S. Sandhu. One-representative safety analysis in the non-monotonic transform
model. InProceedings of the 7th IEEE Computer Security Foundations Workshop, pages 138–149.
IEEE Computer Society Press, 1994.

[4] Edward Amoroso.Fundamentals of Computer Security Technology. Prentice Hall PTR, Upper Saddle
River, NJ 07458, 1994.

[5] Ross Anderson.Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley,
2001.

[6] Matt Bishop.Computer Security — Art and Science. Addison-Wesley, 2003.

[7] T. Budd. Safety in grammatical protection systems.International Journal of Computer and Informa-
tion Sciences, 12(6):413–430, 1983.

[8] Stephen A. Cook. The complexity of theorem-proving procedures. InProceedings of the 3rd IEEE
Symposium on Foundations of Computer Science, pages 151–158. IEEE Computer Society Press, 1971.

[9] Dorothy Denning.Cryptography and Data Security. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1 edition, 1982.

[10] Dieter Gollmann.Computer Security. John Wiley and Sons, Inc., New York, NY, 1999.

[11] Google, Inc. Google Scholar, May 2005. http://scholar.google.com/.

[12] G. Scott Graham and Peter J. Denning. Protection — principles and practice. InProceedings of the
AFIPS Spring Joint Computer Conference, volume 40, pages 417–429. AFIPS Press, May 16–18 1972.

[13] Michael A. Harrison and Walter L. Ruzzo. Monotonic protection systems. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors,Foundations of Secure Computation, pages 461–471.
Academic Press, Inc., 1978.

[14] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating systems.Com-
munications of the ACM, 19(8):461–471, August 1976.

[15] Anita K. Jones, Richard J. Lipton, and Lawrence Snyder. A linear time algorithm for deciding security.
In 17th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 33–41, October
1976.

[16] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[17] R.E. Ladner, N.A. Lynch, and A.L. Selman. A comparison of polynomial time reducibilities.Theoret-
ical Computer Science, 1:103–123, 1975.

16

[18] Butler W. Lampson. Protection. InProceedings of the 5th Princeton Conference on Information
Sciences and Systems, 1971. Reprinted in ACM Operating Systems Review, 8(1):18-24, Jan 1974.

[19] Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-compliance: Security
analysis in trust management, 2004. Accepted to appear inJournal of the ACM.

[20] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access control. InProceedings
of the Ninth ACM Symposium on Access Control Models and Technologies (SACMAT 2004), pages
126–135, June 2004.

[21] Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-compliance: Safety
and availability analysis in trust management. InProceedings of IEEE Symposium on Security and
Privacy, pages 123–139. IEEE Computer Society Press, May 2003.

[22] Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding subject security.Journal
of the ACM, 24(3):455–464, 1977.

[23] Naftaly H. Minsky. Selective and locally controlled transport of privileges.ACM Transactions on
Programming Languages and Systems, 6(4):573–602, October 1984.

[24] Rajeev Motwani, Rina Panigrahy, Vijay A. Saraswat, and Suresh Ventkatasubramanian. On the de-
cidability of accessibility problems (extended abstract). InProceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, pages 306–315. ACM Press, May 2000.

[25] Christos H. Papadimitriou.Computational Complexity. Addison Wesley Longman, 1994.

[26] Charles P. Pfleeger.Security in Computing. Prentice Hall PTR, Upper Saddle River, NJ, USA, 3
edition, 2003.

[27] Ravi S. Sandhu. The schematic protection model: Its definition and analysis for acyclic attenuating
systems.Journal of the ACM, 35(2):404–432, 1988.

[28] Ravi S. Sandhu. Expressive power of the schematic protection model.Journal of Computer Security,
1(1):59–98, 1992.

[29] Ravi S. Sandhu. The typed access matrix model. InProceedings of the 1992 IEEE Symposium on
Security and Privacy, pages 122–136. IEEE Computer Society Press, May 1992.

[30] Ravi S. Sandhu. Undecidability of the safety problem for the schematic protection model with cyclic
creates.Journal of Computer and System Sciences, 44(1):141–159, February 1992.

[31] Jon A. Solworth and Robert H. Sloan. A layered design of discretionary access controls with decidable
safety properties. InProceedings of IEEE Symposium on Research in Security and Privacy, May 2004.

[32] Masakazu Soshi. Safety analysis of the dynamic-typed access matrix model. InProceedings of
the Sixth European Symposium on Research in Computer Security (ESORICS 2000), pages 106–121.
Springer, October 2000.

[33] Masakazu Soshi, Mamoru Maekawa, and Eiji Okamoto. The dynamic-typed access matrix model and
decidability of the safety problem.IEICE Transactions on Fundamentals, E87-A(1):190–203, January
2004.

17

