
A Nonmonotonic Delegation Logic with Prioritized Conflict

Handling

Ninghui Li

Computer Science Department

New York University

251 Mercer Street

New York, NY 10012

ninghui@cs.nyu.edu

Benjamin N. Grosof

IBM T.J. Watson Research Center

P.O.Box 704

Yorktown Heights, NY 10598

grosof@us.ibm.com

http://www.research.ibm.com/people/g/grosof

Joan Feigenbaum

AT&T Labs – Research

Room C203

180 Park Avenue

Florham Park, NJ 07932

jf@research.att.com

Abstract

We extend previous work on Delegation Logic (DL) [11, 12], a tractable and practically im-
plementable logic-based language for authorization in large-scale, open, distributed systems. We
expressively generalize the previous version of DL (called D1LP) to have nonmonotonic expres-
sive features, including negation-as-failure, classical negation, and prioritized conflict handling.
The resulting formalism is called D2LP.

We discuss the motivations and usefulness of prioritized conflict handling and some subtleties
and challenges in extending DL to have it. Partly because of these subtleties, in this paper we
restrict D2LP by prohibiting queries about delegation statements. Our technical approach
to defining D2LP is based on tractably compiling a D2LP into a Generalized Courteous LP
(GCLP) [7, 8], which is in turn tractably compiled into an Ordinary LP (OLP). We show that
D2LP is thus tractable and practically implementable on top of existing technologies for OLP,
e.g., Prolog, SQL databases, and other rule-based systems.

1 Introduction

We address the problem of authorization in large-scale, open, distributed systems. Authorization
decisions are needed in electronic commerce, mobile-code execution, remote resource sharing, con-
tent advising, privacy protection, and other applications. In distributed authorization, often an
authorizer does not know the requester directly; therefore, it needs to use information from third
parties who know the requester better; normally, the authorizer trusts these third parties only for
certain things and to a certain degree. This multi-agent aspect makes distributed authorization
different from traditional access control. We adopt the “trust-management” view of distributed
authorization [3]: A “requester” submits a request, possibly supported by a set of “credentials”

1

issued by other parties, to an “authorizer,” who controls the requested resources. The authorizer
then decides whether the credentials prove that the request complies with its local policies.

“Delegation Logic” (DL) [11, 12] is a logic-based approach to representing policies, credentials,
and requests in distributed authorization. DL extends logic programming languages with a delega-
tion construct that features delegation depth and a wide variety of complex principals (including
but not limited to k-out-of-n thresholds). Delegation allows a party to use other parties’ information
in a controllable way.

In [11, 12], D1LP, a monotonic version of DL, is defined. D1LP is based on Datalog Definite
LP.1 In this paper, we expressively generalize D1LP to have nonmonotonic expressive features,
including negation-as-failure, classical negation, and prioritized conflict handling. The resulting
generalization is called D2LP.

Many security policies are (logically) nonmonotonic or at least are more easily specified in a
nonmonotonic formalism. In many applications, a natural policy is to make a decision in one
direction, e.g., in favor of authorizing H, if there is no information/evidence to the contrary, e.g.,
no known revocation. Using negation-as-failure (a.k.a. default negation or weak negation) is often
an easy and intuitive way to do this. Also useful in representation of many policies is classical
negation (a.k.a. explicit negation or strong negation), which allows policies that explicitly forbid
something. As argued in [9, 10], this allows more flexible security policies. Introducing classical
negation leads to the potential for conflict. Conflict handling mechanisms are thus needed.

Nonmonotonic reasoning has been extensively studied. Existing work on logic-based language
for authorization often uses formalisms and results from nonmonotonic reasoning, e.g., [1, 9, 10,
19]. The main difference between D2LP and this previous work is that D2LP has a delegation
construct that deals with the multi-agent aspect of distributed authorization. In defining D2LP,
we have to deal with the interaction between delegation and nonmonotonic expressive features.
This interaction results in some subtleties. Partly because of these subtleties, in this paper we
restrict D2LP by prohibiting queries about delegation statements. D2LP is also different from the
languages in [1, 9, 10, 19] in that it has prioritized conflict handling. This is especially useful in
resolving conflicting advice from different, but apparently both trustworthy, sources.

Our technical approach to defining D2LP is based on tractably compiling a D2LP into a Gen-
eralized Courteous LP (GCLP) [7, 8], which is in turn tractably compiled into an Ordinary LP
(OLP).2 We show that D2LP is thus tractable and practically implementable on top of existing
technologies for OLP, e.g., Prolog, SQL databases, and other rule-based systems.

GCLP is based on Courteous LP (CLP) [5, 6]. CLP features negation-as-failure, classical
negation, and prioritized conflict handling. In CLP, each rule can optionally have a label; con-
flicts between rules are resolved by priority relationships among labels defined through a reserved
predicate overrides. GCLP extends CLP to have mutual exclusion constraints (mutex’s) and (pri-
oritized) reasoning of the predicate overrides. In this paper, we further generalize GCLP from the
version in [7, 8] to allow rule-labels to be terms rather than constants.

The rest of this paper is organized as follows. In section 2, we discuss the motivations and
usefulness of prioritized conflict handling and give the syntax and semantics of GCLP. We argue
that GCLP is a useful language for expressing authorization policies. In section 3, we discuss some
subtleties in extending DL to have prioritized conflict handling, define the syntax and semantics of
D2LP, and show that it is tractable. We conclude in section 4.

1Datalog means all functions have zero arities, i.e., they are constants. Definite means negation-free.
2OLP is also known as “normal” (or, sometimes, “general”) LP; it is definite LP plus negation-as-failure.

2

2 GCLP

Recently, there has been a lot of interest in language-based approach to security policies, e.g.,
[1, 9, 10, 14, 19]. The goal is to provide a unified framework that can support multiple access control
policies and achieve separation of policies from mechanisms. Most work uses Logic Programming
(LP) languages; some other work [18, 20] uses languages that can be easily translated to LP
languages.

Many policy languages have negative authorizations, i.e., policies that explicitly forbid some-
thing. When both positive and negative authorizations can be specified, conflicts may arise. Ex-
isting authorization languages deal with conflict handling in one or more of the following ways:
(1) Do not resolve conflicts; only define semantics for conflict-free policy programs, e.g., [19]. (2)
Use totally ordered rules to resolve conflicts, e.g., [20]. (3) Define a fixed conflict resolving policy
based on relative authority and/or specificity, e.g., [1, 2]. (4) Add a paraconsistent layer, and
use negation-as-failure to resolve conflicts. For example, in [9, 10], one can write “do(file2, s, +a)
← dercando(file2, s, +a) & ¬dercando(file2, s, -a).” This specifies that this particular negative
authorization wins over a positive one. However, one can only specify the relative priority between
a pair of mutually-conflicting conclusions, not between the rules used to derive these conclusions.

We argue that these approaches are undesirably limited. In many cases, there isn’t a mean-
ingful total ordering. Relative authority and specificity are important sources of conflict-resolving
information, but they are not the only sources. Other sources may also be useful, e.g., recency and
relative importance of rules even from a single source. GCLP has a conflict-resolving mechanism
that can be used to flexibly specify conflict-resolving policies.

2.1 Syntax of GCLP

In GCLP, a classical literal takes the form at or ¬ at, where at is an atom. A literal takes the form
L or ∼ L, where ∼ stands for negation-as-failure and L is a classical literal. A GCLP rule takes
the form “〈lab〉 L0 ← BodyFormula.”
Here, lab is a term; L0 is a classical literal; and BodyFormula is a formula built from literals using
“,” (conjunction) and “;” (disjunction). “lab,” “L0,” and “BodyFormula” are called the label, the
head, and the body, respectively, of this rule. The label of a rule can be empty, so can the body
of a rule. A variable starts with a question mark. All variables in a rule’s label must also appear
either in the rule’s head or in its body. We say that a rule is label-range-restricted if all variables
in a rule’s label also appear in the rule’s head.

A special binary predicate overrides is used to specify prioritization among mutually conflicting
rules. The atom overrides(lab1, lab2) means that a rule that has lab1 as its label should take
precedence if it conflicts with a rule that has label lab2. Except for this pre-defined semantics, the
predicate overrides is no different from any other predicate.

A mutual exclusion constraint (mutex) takes the form:

⊥ ← L1, L2 | BodyFormula.

“L1, L2” is called the focus of the mutex and BodyFormula is called the body. When BodyFormula
is empty, the symbol “|” is omitted. Intuitively, this mutex specifies that L1 and L2 conflict with
each other if BodyFormula is true. An atom at always conflicts with ¬ at; this conflict does
not need to be specified explicitly. Note that mutex’s do not have labels, because labels are

3

only used to resolve conflicts and nothing conflicts with a mutex. We introduce mutex’s because
some conflicts can not be conveniently represented using classical negations. Examples include
classification of users into several mutually disjoint groups or roles and choices among some mutual
exclusive actions.

A GCLP program consists of a set of rules and mutex’s. A rule or a mutex with variables stands
for all of its ground instantiations.

2.2 An example of GCLP

Policies represented in GCLP can also be represented in OLP. Indeed, any GCLP can be compiled
into an OLP. However, GCLP’s mutex and prioritized conflict handling offers expressive convenience
and clarity.
Example 2.1 Consider the Database authorization model in [2]. An authorization may be specified
for a single user or a group. A group may contain users and other groups as members but may not
contain itself as a member, directly or indirectly. A user u has all the authorizations specified for
u and all the groups that u belongs to, directly or indirectly.

Authorizations can be either positive or negative and either strong or weak. Conflicts between
positive authorizations and negative ones are resolved as follows. Strong authorizations always
override conflicting weak authorizations. A conflict between two strong authorizations can not
be resolved; policies having such conflicts are inconsistent. In a conflict between two weak au-
thorizations, the more specific authorization wins; if neither is more specific, the conflict can not
be resolved. For example, if Alice is a member of the Scientist group, which is a member of the
Researcher group, which is in turn a member of the Employee group, then authorization for the
Researcher group should take precedence over a conflicting authorization for the Employee group.

This policy can be easily represented in GCLP. Giving the group Researcher the weak autho-
rization to do select on the table T5 can be represented as the rule:

〈auth(weak,Researcher)〉 authorizes(?A, sel, T5)← user(?A),member(?A, Researcher).

The conflict-resolving policies can be represented as follows:

overrides(auth(strong,?G1), auth(weak,?G2)).
overrides(auth(weak,?G1), auth(weak,?G2)) ← member(?G1, ?G2).

2.3 Semantics of GCLP

The intuitive meaning of GCLP’s conflict handling mechanism is as follows. When a rule’s body
is true, we say that this rule is ready and that it is a candidate for its head. A candidate R for
a classical literal L1 is refuted if there is a candidate Q for a literal L2 such that L2 conflicts
with L1 and overrides(Q′s label, R′s label) is true. A literal L is true if and only if there is an
unrefuted candidate for it and there is no unrefuted candidate for anything that conflicts with L.
This semantics never concludes both L and something that conflicts with L. For example, when
there are unrefuted candidates for both p and ¬ p, neither p nor ¬ p is concluded; they “skeptically
defeat” each other. This is a skeptical semantics. We can choose a paraconsistent semantics if so
desired, by dropping the requirement that L is true only when there is no unrefuted candidate for
anything that conflicts with L. This might be desirable for some applications.

GCLP’s semantics is formally defined by the following transformation to Ordinary LP. Given a
GCLP program P, we compile it into an OLP O through the following steps.

4

1. For each predicate pred/z in P (z is the arity of the predicate pred, i.e., the number of
arguments it takes), introduce a new predicate n pred/z to represent pred’s classical negation,
and add the mutex “⊥ ← pred(?x1, . . . , ?xz), n pred(?x1, . . . , ?xz).” Then, in P, replace each
literal ¬ pred(t1, . . . , tz) with n pred(t1, . . . , tz). Denote the result of the transformation P ′.
Let Pm be the set of all mutex’s in P ′; let P1 be the set of rules in P ′; and let O be an empty
set.

2. For each predicate opred/z in P1 (including the new predicates introduced for classical
negation), introduce two new predicates: opredu/z and opreds/z. For any literal L =
opred(t1, . . . , tz) in P1, define Lu to be opredu(t1, . . . , tz), which is true when there is an
unrefuted candidate for L, and define Ls to be opreds(t1, . . . , tz), which is true when L is
skeptically defeated, i.e., when there is an unrefuted candidate for some literal that conflicts
with L.

3. For each mutex µ in Pm, let µ be “⊥ ← L1, L2 | bodyµ.” Define readyµ to be the atom
ready predµ(?x1, . . . , ?xw), in which ready predµ is a new predicate and “?x1, . . . , ?xw” are
the variables in “L1, L2.” Then add to O the rule “readyµ ← bodyµ.”

For each rule R in P1, let R be “〈labR〉 headR ← bodyR.” Define readyR to be the atom
ready predR(?x1, . . . , ?xw) and define refutedR to be the atom refuted predR(?x1, . . . , ?xw),
in which ready predR and refuted predR are new predicates and “?x1, . . . , ?xw” are the
variables in “〈labR〉 headR.” Then add the following three rules to O.

readyR ← bodyR. headu
R ← readyR, ∼ refutedR. headR ← headu

R, ∼ heads
R.

Intuitively, they mean: a rule is ready if its body is true; when a rule is ready and is not
refuted, its head has an unrefuted candidate; if a literal has an unrefuted candidate and is
not skeptically defeated, then the literal is true.

4. For each rule R in P1, let R be “〈labR〉 headR ← bodyR.” Then for each rule Q in P1, let Q
be “〈labQ〉 headQ ← bodyQ.” Without loss of generality, assume that the variables in Q do
not appear in R; one can always rename variables when necessary. Then for each mutex µ
in Pm, let µ be “⊥ ← L1, L2 | bodyµ.” Again, assume that the variables in µ do not appear
in R or Q. Let θ be the most general unifier (mgu) of “(headR, headQ)” and “(L1, L2).” If θ
exists, add the following two rules to O.

refutedRθ← readyµθ, readyQθ, overrides(labQ, labR)θ.

heads
Rθ ← readyµθ, headu

Qθ.

The first rule means that R is refuted if rule Q’s head conflicts with R’s head, Q is ready,
and Q’s label overrides R’s label. The second rule means that R is skeptically defeated if Q’s
head conflicts with R’s head and Q’s head has an unrefuted candidate.

The resulting program O is an OLP and it has size |O| = O(|P|3), because the transformation
does a three-level loop. By “size” of a program, we mean the number of symbols, i.e., variables,
constants, predicate symbols, logical operators, etc.

The semantics of a GCLP is defined by the semantics of its corresponding OLP. There are two
leading semantics for OLP: well-founded semantics (WFS) [4] and stable model semantics. Some
OLP programs do not have a stable model and some programs have more than one. Furthermore,
even for a propositional program, determining whether it has a stable model is NP-complete [15].

5

On the other hand, WFS assigns a unique three-valued model to every program. For finite ground
programs, the complexity of compute the well-founded model is worst-case quadratic in the size of
the program. Therefore, we choose to use WFS.

The GCLP model of P is computed as follows. First compute O, then compute the WFS model
of O, and, finally, translate the conclusions in O’s WFS model back into GCLP by discarding the
new predicates introduced in steps 2-4 and translating n pred(t1, . . . , tz) to ¬ pred(t1, . . . , tz). One
can also compile GCLP queries into OLP queries and evaluate them in OLP. To compile a GCLP
query into OLP, one only needs to replace ¬ pred with n pred. In OLP reasoning, one can detect
whether there is a conflict about a given literal lit by checking whether both litu and lits are true.

2.4 Complexity results

Theorem 1 The transformation from a GCLP P to the corresponding OLP takes time O(N 3),
and it generates an output program of size O(N 3). Here, N = |P | is the size of P.

Sketch of proof. The O(N 3) size bound follows from the definition of the transformation. The
definition corresponds straightforwardly to an algorithm linear in the output size. Note that there
are linear-time algorithms for unification (see [13]).

The O(N 3) worst-case size is reached when there are O(N) mutex’s and almost all pairs of rules
are potentially in conflict. This is highly unlikely in practice.

The following theorem shows that GCLP inferencing is tractable under restrictions similar to
those under which OLP inferencing is tractable (e.g., Datalog and bounded number of logical
variables per rule). We say that a LP obeys the VBL(v) restriction when there is an upper bound
v on the number of (logical) variables per rule/mutex, and each rule is label-range-restricted. If a
LP is both VBL(v) and Datalog, we say that it is VBLD(v).

Theorem 2 If a GCLP P is VBLD(v), then inferencing of P takes time O(N 2(3+v)).

Sketch of proof. First |O| = N 3. The key observation is that, when P is VBLD(v), the transfor-
mation maintains the per-rule number-of-variables bound. Then the ground instantiation of O has
size N3+v, because the Datalog restriction implies that there are O(N) terms that can be used to
instantiate each variable. Furthermore, because WFS inferencing takes worst-case quadratic time,
we have the bound O(N 2(3+v)).

We now show that the transformation maintains the variable bound. Each new rule added in
step 3 has at most v variables, because it only has variables from one rule in P. Now consider
the two rules added in step 4: “refutedRθ ← readyµθ, readyQθ, overrides(labQ, labR)θ.” and
“heads

Rθ ← readyµθ, headu
Qθ.” Because each rule in P is label-range-restricted, the only vari-

ables in the two new rules before applying θ are the variables in “(headR, headQ)” and “(L1, L2).”
Note that, under the Datalog restriction, when θ unifies two terms t1 and t2, nv((t1θ, t2θ)) ≤
min(nv(t1), nv(t2)), in which nv(t) is the number of variables in t. Similarly, when θ unifies t1, t2,
and t3, nv((t1θ, t2θ, t3θ)) ≤ min(nv(t1), nv(t2), nv(t3)).

If the mutex µ is from P, then there are at most v variables in “(L1, L2).” Because θ unifies
“(headR, headQ)” and “(L1, L2),” there are at most v variables in each of the two new rules. If µ
is a mutex added in the transformation, then (L1, L2) = (pred(?x1, . . . , ?xz), n pred(?x1, . . . , ?xz)).
Therefore, θ unifies the arguments of headR, the arguments of headQ, and (?x1, . . . , ?xz). Again
there are at most v variables in each of the two new rules.

6

Inferencing for a Datalog OLP that has variable-per-rule bound v takes time O(N 2(1+v)), and so
the worst-case GCLP inferencing complexity is equivalent to adding two variables per rule. This is
not so bad, because, logic programs with high variable bounds are often used in practice. Although
they have high theoretical worst-case complexity; the practical running times of many programs
are often acceptable.

3 D2LP: A Nonmonotonic Delegation Logic

In this section, we extend Delegation Logic to have the nonmonotonic expressive features in GCLP.
We call this nonmonotonic version of Delegation Logic D2LP.

3.1 Subtleties of integrating delegation and nonmonotonicity

Delegation is an important concept in many distributed authentication and authorization systems.
In Delegation Logic, each delegation has a depth, which is either a positive integer or the symbol “∗”
(infinite depth). DL interprets a depth-1 delegation “Alice delegates p^1 to Bob” as “Alice says p
if Bob says p.” A depth-2 delegation “Alice delegates p^2 to Bob” implies a depth-1 delegation and
also “Alice delegates p^1 to ?X if Bob delegates p^1 to ?X.” In D1LP, the delegation relation can
also be queried. That is, D1LP’s semantics answers both “who says what?” and “who delegates to
whom?”. Answering delegation queries and simultaneously resolving conflicts is subtle. Consider
the following example:
Example 3.1

〈A1〉 Alice delegates pˆ2 to Bob. 〈B1〉 Bob delegates pˆ1 to Carl.
〈B2〉 Bob says !p. 〈B3〉 Bob says overrides(B2, B1).
〈C1〉 Carl says p.

Should one conclude “Alice delegates p^1 to Carl”? By chaining the delegation 〈A1〉 and 〈B1〉 ,
it is true. Then, because of the fact 〈C1〉 , one should also conclude “Alice says p.” However,
this is counter-intuitive. Intuitively, the conclusion p propagates from Carl through Bob to Alice.
However, by 〈B2〉 and 〈B3〉 , the conclusion p is blocked at Bob; therefore it should not reach
Alice.

3.2 The Delegation-Query-Free Restriction

Because of the subtlety discussed in the previous section, in this paper, we restrict D2LP by
prohibiting delegation statements from appearing in queries or rule-bodies (since rule-bodies are
queries by nature). We call this the “delegation-query-free (DQF) restriction.” How to answer
delegation queries with conflict resolution is a topic for further research. We expect it to have a
much more complex syntax and semantics than the one we present here.

The DQF restriction is stronger than the conjunctive-delegatee-query restriction that ensures
that D1LP is tractable [12]. There, delegation statements in queries and rule-bodies are required
to have a single principal or a conjunction of principals as delegatee.

Under the DQF restriction, only “who says what?” can be answered, not “who delegates to
whom?” Despite this restriction, D2LP still has significant expressive power. One way to use
D2LP is to use direct statements to represent attributes of principals; for example, groups, roles,

7

and authorizations can all be viewed as attributes. Using D2LP, a principal can bind attributes to
principals, delegate to other principals the authority to bind attributes to principals, and reason
about attributes of principals.

Example 3.2: We now give an example of D1LP. In this program, Alice authorizes anyone she
believes to have good credit to do transactions and delegates the right to determine who has good
credit to credit bureaus and allows them to further delegate one more step.

Alice says authorizes(?P, transaction) if Alice says credit(?P, good).
Alice delegates credit(?P, good)ˆ2 to ?B if Alice says creditBureau(?B).

3.3 Syntax of D2LP

1. A base atom takes the form pred(t1, . . . , tn). A base literal takes the form pred(t1, . . . , tn)
or ¬ pred(t1, . . . , tn).3 Like GCLP, D2LP has a reserved binary predicate overrides For
prioritization.

2. A direct statement takes the form “X says lit.” A delegation statement takes the form
“X delegates lit^d to XS.” A speaks for statement takes the form “Y speaks for X on

lit.” Here X and Y are principal terms and X is called the issuer of this statement. A
principal term is either a principal or a variable. lit is a base literal. XS is a complex
principal term, i.e., either a principal structure or a variable; it is called the delegatee of
the delegation statement. Principal structures are constructed from principals and threshold
structures using “,”(conjunction) and “;”(disjunction). See [12] for definition and discussion
of threshold structures and discussion of delegations and speaks for statements.

A mutex statement takes the form “X says lit1 opposes lit2.” Here X is a principal term
and is called the issuer of this statement; lit1 and lit2 are base literals. Intuitively, this
statement means that, in X’s view, lit1 and lit2 conflict with each other, i.e., “X says lit1”
and “X says lit2” are mutually exclusive.

3. A body statement is either a body direct statement, which takes the form “XS says lit,” or a
negation-as-failure statement, which takes the form: “∼ XS says lit.” Here XS is a complex
principal term.

4. A rule takes the form: 〈lab〉 head if body.
Here head is a direct statement, a delegation statement, a speaks for statement, or a mutex
statement, and body is a formula constructed from body statements using “,”(conjunction)
and “;”(disjunction). Note that delegation statements, speaks for statements, and mutex
statements are not allowed to appear in rule-bodies. The rule labels are used to resolve
conflicts between direct statements derived from rules.

Example 3.3 Continuing example 3.2, Alice also delegates the ability to determine that someone
has bad credit to any fraud expert, and bad-credit information overrides good-credit information.
Finally there is an expert Bob whom Alice fully trusts.

3We recommend using ! in place of ¬ when ASCII representation is desired.

8

〈trusted〉 Alice delegates credit(?P, ?Status) to Bob.
〈good〉 Alice delegates credit(?P, good)ˆ2 to ?X if Alice says creditBureau(?X).
〈bad〉 Alice delegates credit(?P, bad)ˆ1 to ?X if Alice says fraudExpert(?X).

Alice says credit(?P, good) opposes credit(?P, bad).
Alice says overrides(bad, good).
Alice says overrides(trusted, good).
Alice says overrides(trusted, bad).

3.4 Semantics of D2LP

D2LP’s semantics is define by transforming a D2LP P into a GCLP G. This transformation is, for
the most part, similar to the transformation from D1LP into OLP in [12].

In addition to the reserved predicate overrides, G has one more predicate: holds. It is used
to represent direct statements that appear in P or are derived in the inference process. An atom
of holds takes the form: holds(X, lt, len), where X is a principal term (a principal or a principal
variable), lt is a term that represents a base literal, and len ∈ [1..∗]. For any integer d, we have
d < ∗ and [d..∗] = [d..D] ∪ {∗}, where D is the largest integer delegation depth used in P. For
d1, d2 ∈ [0..∗], we define

d1⊕ d2 =

{

∗ if d1 = ∗, or d2 = ∗, or d1 + d2 > D
d1 + d2 otherwise

For each pred in P, we introduce two function symbols pred and nd pred. The function pred
is used to represent a base atom, and nd pred is used to represent a negated base atom. We use lt
to denote the term that corresponds to lt’s classical negation.

The field len stores the number of delegation steps this conclusion has gone through. A ‘∗’ in
the field len means that it has gone through more steps than we need to keep track of, i.e., the
number of steps is greater than the maximal integer delegation depth D.

In the transformation, we need to use the function PSFormula defined in [12] to expand
statements with complex principal structures as issuers. For example,

the function call PSFormula((A, (B;C)), holds(p(a), ∗)
returns (holds(A, p(a), ∗), (holds(B, p(a), ∗); holds(C, p(a), ∗))).

Transformation 0: Label and Negation transformation (D2LP specific)

This transformation changes rules in P; the result is called P0.

• For each rule R in P, let R be “〈labc(t1, . . . , tn)〉 headR if bodyR”; change its label to
“labc(X, t1, . . . , tn),” where X is the issuer of headR.

• In P, replace each base literal ¬ pred(. . .) with nd pred(. . .).

Transformation I: Body transformation

This transformation changes rule-bodies in P0; the result is called P1.

• Replace each body direct statement “XS says lt” with “PSFormula(XS, holds(lt, ∗)).”

• (D2LP specific) Replace each negation-as-failure statement “∼ XS says lt” with the “De-
Morganization” of “∼ holds(XS, lt, ∗),” i.e., the negation ∼ is pushed inside conjunctions
and disjunctions.

9

Transformation II: Head transformation

This transformation changes rule heads in P1, removes some rules, and adds some new rules; the
result is called P2.
For each rule R in P1, let R be “〈labR〉 headR if bodyR”; there are three cases for headR:

Case one:(D2LP specific) headR is a mutex statement “X says lt1 opposes lt2.”
• Remove R; and for each len1, len2 ∈ [1..∗], add the rule:

⊥ ← holds(X, lt1, len1), holds(X, lt2, len2) | bodyR.

Case two: headR is a direct statement “X says lt.”
• Replace R’s head with “holds(X, lt, 1).”

Case three: headR is either a delegation statement or a speaks for statement.

If headR is a delegation statement “A delegates lt^d to BS.” Let ll be 1.

If headR is a speaks for statement “B speaks for A on lt.” Let d be ∗; ll be 0, and BS be B.
• Delegation expansion: Remove R and for each len ∈ [1..d], add the rule:

〈labR〉 holds(A, lt, len ⊕ ll)← bodyR, PSFormula(BS, holds(lt, len)).

For both Case two and Case three, also do the following.
• For each len ∈ [1..D], add the rule

holds(X, lt, len ⊕ 1)← holds(X, lt, len).

• For len1, len2 ∈ [1..∗], add the mutex: (D2LP specific)
⊥ ← holds(A, lt, len1), holds(A, lt, len2).

• If lt is “overrides(labc1(t11, . . . , t1u), labc2(t21, . . . , t2v)).” Add the rule: (D2LP specific)
overrides(labc1(X, t11, . . . , t1u), labc2(X, t21, . . . , t2v))

if holds(X, overrides(labc1(t11, . . . , t1u), labc2(t21, . . . , t2v)), ∗).

Threshold structures are handled similarly to that in [12]. Here, we omit the details.
The goal of the above transformation is to define the intended semantics of D2LP. We have

found several possible further tweaks to the transformation that would ”optimize” it in the sense
of resulting in fewer output rules while maintaining equivalent semantics. However, these opti-
mizations do not improve the asymptotic bound of the output size. Thus, we choose to use this
computationally slightly more expensive but clearer definition.

An important property of this transformation is that it does not introduce any new variables;
more precisely: for each rule in G, all the variables in it come from one rule in P.

This transformation introduces new logical function symbols (”new” in the sense that they did
not appear in the original D2LP). In particular, even if the D2LP is Datalog, the generated GCLP
G is non-Datalog. For each predicate pred in P, G has one or two corresponding function symbols
(pred and nd pred). The transformation also introduces several pre-defined functions for threshold
structures. Thus, we cannot directly use the tractability results for Datalog GCLP in section 2.4.
The same problem exists in the transformation from D1LP to definite OLP; in [12], this problem
is dealt with by generating a typed OLP O. Essentially, we wish to ensure that, for each variable
in O, there are O(N) ground terms that can instantiate it. Because variables in G come from P,
these variables must be instantiated only to ground terms in P and not to terms constructed using
the function symbols introduced during the transformation. Typing ensures this restriction of the
instantiation. Here, we use the same technique. The transformation generates a typed GCLP. The
transformation from GCLP to OLP simply passes through the typing, to the generated OLP as
well. For more discussions of types, see appendix A.

10

3.5 Inferencing and Complexity Results

Theorem 3 The transformation from D2LP to GCLP generates an output program of size O(N 3D).
A straightforward algorithm takes time O(N 3D).

Sketch of proof. By the counting argument in [12], the function PSFormula has an O(N 2)
growth factor. The delegation expansion step generates the largest output among all steps. It
generates O(D) rules, and each one uses PSFormula. Therefore, this step has an O(N 2D) growth
factor. Thus the output program has size O(N 3D).

D2LP inferencing can be done by first compiling a D2LP program into a GCLP, then com-
puting its minimal GCLP model, and finally translating the conclusions back into D2LP. Each
GCLP conclusion holds(A, pred(. . .), len) is translated to “A says pred(. . .)”, and each conclusion
holds(A,nd pred(. . .), len) is translated to “A says ¬pred(. . .).” Another way to do inferencing is
as follows. First compile D2LP queries (in addition to D2LP programs) into GCLP; these queries
are compiled in the same way as rule-bodies. Then compile the GCLP queries and program into
OLP. And finally use an OLP inference engine to answer these queries.

Example 3.3 (continued) We now add the following facts to example 3.3.

Alice says creditBureau(cb1). Alice says fraudExpert(Carl).
Bob says credit(John, good). cb1 says credit(Jack, good).
Carl says credit(John, bad). Carl says credit(Jack, bad).

One can conclude “Alice says credit(John, good)” and “Alice says credit(Jack, bad).”
Recall that we say that a LP is VBLD(v) if it is Datalog, each rule in it has at most v variables,

and for each rule the variables in its label also appears in the head. In practice, the bound v for
most programs is a small constant. We also expect that D will usually be much smaller than N .

Theorem 4 Inferencing of a D2LP P that is VBLD(v) takes time polynomial in (ND)v. When v
is a constant and D = O(N), inferencing of a D2LP takes time polynomial in N .

Sketch of proof. Given a D2LP P that is VBLD(v), the output GCLP program G has size O(N 3D)
and G is VBL(v). Typing ensures that variables in G will only be instantiated to constants in P
(note that P is Datalog). When we compile G into an OLP O, |O| = O((N 3D)3) and O has the
same variable bound. Instantiating O increases its size by O(N v), and inferencing of O takes time
quadratic in the size of instantiated O. Therefore, the inferencing time is polynomial in (ND)v. 4

4 Discussion and Conclusions

We defined the syntax and semantics of a nonmonotonic version of Delegation Logic: D2LP. D2LP
extends D1LP, the earlier version of Delegation Logic given in [11, 12], so as to equip it with
negation-as-failure (as in OLP) and prioritized conflict handling, in a manner similar to Generalized
Courteous Logic Programs (GCLP) [7, 8]. As one of its features for prioritized conflict handling,
D2LP includes not only classical negation, but also mutual exclusion integrity constraints (mutex’s)

4The complexity bound in the proof is a high-degree polynomial. We can get a tighter bound by doing a more
detailed analysis. One observation is that not all pairs of rules in G re potentially in conflict with each other. However,
due to space limit and focus of this paper, we omit that analysis. We also acknowledge that the practicality of D2LP
needs to be tested in experiments.

11

that specify the scope of conflict, i.e., that flesh out which particular consistency constraints are
to be enforced by the semantics. We discussed some subtleties that arise when the delegation
construct in DL is combined with these nonmonotonic features. In particular, care must be taken
in defining the semantics of delegation so as to make appropriate provision for handling of conflict
at intermediate steps in a chain of delegation. Partly as a result of these subtleties, in this paper,
we avoided the non-trivial derivation of statements about delegation per se, i.e., of delegation
statements, and thus prohibited queries about delegation statements.

Our technical approach to defining D2LP is based on compiling a D2LP into a Generalized
Courteous LP (GCLP), which is in turn compiled into an Ordinary LP (OLP). We showed that each
of these compilation steps is computationally tractable and that D2LP inferencing is thus tractable
under a broad restriction similar to that which ensures tractability of OLP inferencing. This
compilation approach enables D2LP to be implemented modularly on top of existing technologies
for OLP, which include not only Prolog but also SQL relational databases and many other rule-
based/knowledge-based systems (e.g., see [8] for discussion and review of how OLP relates to current
commercially important families of rule-based systems).

A major challenge in designing a knowledge representation (KR), esp. when nonmonotonic or
multi-agent, is to achieve usefully rich expressiveness and intuitively natural semantics, together
with moderate computational complexity and relative ease of incorporation into existing software
environments. We believe D2LP represents significant progress along these lines.

References

[1] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, “A Logical Framework for Reasoning on Data Access
Control Policies,” in Proceedings of the 12th IEEE Computer Security Foundations Workshop, IEEE
Computer Society Press, Los Alamitos, 1999, pp. 175-189.

[2] E. Bertino, S. Jajodia, and P. Samarati, “A Flexible Authorization Mechanism for Relational Data Man-
agement Systems,” ACM Transactions on Information Systems, 17:2 (1999), pp. 101-140. A preliminary
version appeared under the title “Supporting Multiple Access Control Policies in Database Systems” in
the Proceedings of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, May 1996.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The Role of Trust Management in Distributed
Systems,” in Secure Internet Programming, LNCS vol. 1603, Springer, Berlin, 1999, pp. 185-210.

[4] A. Van Gelder, K. A. Ross, and J. S. Schlipf, “The Well-founded Semantics for Logic Programming,”
Journal of the ACM, 38 (1991), pp. 620-650.

[5] B. Grosof, “Courteous Logic Programs: Prioritized Conflict Handling for Rules,” IBM Research Report
RC20836, May 1997. This is an extended version of [6].

[6] B. Grosof, “Prioritized Conflict Handling for Logic Programs,” in Proceedings of the International Sym-
posium on Logic Programming, MIT Press, Cambridge, 1997, pp. 197–212.

[7] B. Grosof, “Compiling Prioritized Default Rules Into Ordinary Logic Programs,” IBM Research Report
RC 21472, May 1999.

[8] B. Grosof, “DIPLOMAT: Compiling Prioritized Default Rules Into Ordinary Logic Programs, for E-
Commerce Applications (extended abstract of Intelligent Systems Demonstration),” in Proceedings of
AAAI-99, Morgan Kaufmann, 1999. Extended version is IBM Research Report RC 21473, May 1999.

[9] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A Logical Language for Expressing Authorizations,”
in Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE Computer Society Press,
Los Alamitos, 1997, pp. 31–42.

12

[10] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino, “A Unified Framework for Enforcing
Multiple Access Control Policies,” in Proceedings ACM SIGMOD Conference on Management of Data,
1997.

[11] N. Li, J. Feigenbaum, and B. Grosof, “A Logic-Based Knowledge Representation for Authorization
with Delegation (Extended Abstract),” in Proceedings of the 12th IEEE Computer Security Foundations
Workshop, IEEE Computer Society Press, Los Alamitos, CA, 1999, pp. 162-174. Full paper available as
IBM Research Report RC21492.

[12] N. Li, B. Grosof, and J. Feigenbaum, “A Practically Implementable and Tractable Delegation Logic,”
to appear in Proceedings of the 21st IEEE Symposium on Security and Privacy, May 2000, Oakland CA.
Also available at http://cs.nyu.edu/ninghui/papers/oakland00.ps.

[13] J. W. Lloyd, Foundations of Logic Programming, second edition, Springer, Berlin, 1987.

[14] E. Lupu and M. Sloman, “Conflict in Policy-based Distributed Systems Management,” IEEE Trans-
action on Software Engineering – Special Issue on Inconsistency Management, to appear. A prelimi-
nary version appeared under the title “Analysis for Management Policies” in Proceedings of the Fifth
IEEE/IFIP International Symposium on Integrated Network Management, San Diego, USA, May 1997.

[15] W. Marek and M. Trusczynski, Nonmonotonic Logic – Context-Dependent Reasoning, Springer, Berlin,
1993.

[16] L. Naish, “Types and the Intended Meaning of Logic Programs,” in [17], pp. 189–216.

[17] F. Pfenning (editor), Types in Logic Programming, The MIT Press, Cambridge, MA, 1992.

[18] T. Ryutov and C. Neuman, “Representation and Evaluation of Security Policies for Distributed System
Services,” in Proceedings of the DISCEX, Hilton Head Island, SC, January 2000.

[19] T. Woo and S. Lam, “Authorization in Distributed Systems: A New Approach,” Journal of Computer
Security, 2 (1993), pp. 107–136.

[20] T. Woo and S. Lam, “Designing a Distributed Authorization Service,” in Proceedings of IEEE INFO-
COM ’98, 1998.

13

A An approach to adding types to LP Languages

In section 3, we mentioned that typing is needed to ensure tractability of the D2LP inferencing.
Typing is also implicitly present in the syntax of DL. DL has principals and principal variables.
The set of principals is a subset of all the constants, and a variable is said to be a principal variable
if it appears in certain places. There is thus an implicit type: principal.

The addition of types to logic programs has been studied in the logic programming commu-
nity [17]. It has been argued that logic programs often make implicit assumptions about types
and a logic program only satisfies the intended meaning if type information is added to the pro-
gram [16]. We think that typing is potentially useful in LP-based authorization languages. In
authorization, there are different types of entities, e.g., subjects, objects, groups, roles, etc. Most
predicates should only take arguments of certain types.

We now briefly describe an approach to add types to LP languages. Our approach is different
from other approaches presented in [17] in that we view type information as supplementary to the
logic rules. One can give partial type information or even no type information at all; every program
is correctly typed. The additional type information serves two purposes: to clarify the intended
meaning of policy programs and to enable more efficient reasoning. This approach can be used to
add types to OLP, GCLP, or other LP languages.

Intuitively, each type corresponds to a subset of all the ground terms; these subsets do not need
to be disjoint. We use symbols that start with a colon for type names. A ground term has type :x
if it is contained in the subset corresponding to :x. A term may have multiple types. We require
that all terms constructed by one function (a function is uniquely identified by its name and arity)
have the same types. So we can say a function f has types :x and :y, or equivalently, both the type
:x and the type :y contain the function f . In our approach, one can also define the argument types
of functions and predicates, the types of variables, and the subtype relationship between types.

A typed (LP) program P consists of a set of typed rules (called the theory of P) and a (possibly
empty) set of type specifications. In a typed rule, each term (including variable) can be followed by
zero or more type names; they are called type definitions of the term. There are two pre-defined
types in any program: “:a” (all terms) and “:c” (constants). Every term has the type :a, and every
constant has the type :c in addition to :a. These two types do not need to be explicitly added
to terms. The scope of a function (including a constant) is the whole program. All the type
definitions for a function in one program are taken together; this function has all these types. The
scope of a variable is the rule in which it appears. All the type definitions for a variable in one
rule are taken together; the variable should only be instantiated to terms that have all the required
types.

Type definitions in rules can only define the “return types” of a function (the types of the
terms constructed by this function). The type specification part can specify the argument types
of predicates and functions. For example, “← declare pred(overrides(:l, :l))” specifies that the
predicate overrides/2 only takes terms of type :l as arguments. This specification is equivalent to
adding a type definition :l to each argument of each use of the predicate overrides/2. For example,
with this specification, an atom overrides(?X, good:d) is equivalent to overrides(?X:l, good:l:d).

Similarly, one can specify the argument types for functions, e.g., “← declare func(auth(, :group):l).”
This specifies that the second argument of the function auth/2 has to be the type :group, but it
doesn’t specify the type for the first argument. This specification also defines the function auth/2
to have the type :l. There can be at most one specification for each predicate or function. If no

14

specification exists for a predicate or a function, each argument has the default type :a.
In the specification part, one can also specify the ordering of two types. The declaration “:-

declare incl(:x, :y)” means that all the terms defined to have the type “:y” automatically have the
type “:x.”

The semantics of such a typed OLP P is defined as follows. First, find all the functions in P;
determine the functions contained in each type and the types for each variable; then determine the
functions each variable can be instantiated to, this is the intersection of all the sets of functions
corresponding to each type the variable has. This can be done in time N 2S2, where N = |P| and S
is the number of types in P. Second, instantiate P. To do this, we need to compute all the ground
terms that can instantiate some variable. There may be infinite number of such terms; however,
if the type signatures of all functions satisfy an acyclic condition, there are only finite number of
such terms. Finally, we can compute the minimal model of the instantiated program.

To ensure that variables in the post-transform GCLP for a D2LP P will only be instantiated
to terms constructed from functions and constants in P, add the following step as the first step of
the transformation from D2LP to GCLP.

Transformation S: Sort-related transformation
For each sort in P, insert a d to its name after the colon, for example, :a becomes :da. Change

all sort names in P to be the new one. Also explicitly add the sort :dc to all constants and :da to
all terms. For each sort specification of predicate pred in P, replace it with sort specifications for
functions pred and nd pred.

After this transformation, each variable in G has the type :da. Therefore, it can only be
instantiated to terms in P, because only these terms have the type :a.

15

