
Microdata Publishing with Algorithmic Privacy Guarantees

Tiancheng Li and Ninghui Li
Department of Computer Science, Purdue University

305 N. University Street
West Lafayette, IN 47907-2107

{li83,ninghui}@cs.purdue.edu

ABSTRACT
Many privacy notions for microdata publishing are defined based
only on the syntactic properties of the output data, and not the al-
gorithms. As a result, they cannot provide rigorous privacy guaran-
tees. In this paper, we take a major step towards practical solutions
for publishing microdata with algorithmic privacy guarantees. We
introduce a formal algorithmic privacy notion called semantic k-
anonymity that offers effective protection against re-identification
attacks. We also present a systematic approach based on colum-
nization and noisy count publishing for publishing microdata while
achieving algorithmic privacy. In addition to providing sound and
quantitative privacy guarantees, our approach has another impor-
tant advantage over existing methods: it can be applied to sparse
high-dimensional data such as transaction data. Through experi-
ments on the Netflix Prize dataset, we demonstrate that anonymized
microdata can be released with rigorous privacy guarantees while
supporting data mining tasks.

1. INTRODUCTION
Privacy preserving microdata publishing has been intensively

studied recently in the database community. Many privacy no-
tions have been introduced over the last decade or so, including
k-anonymity [29, 28, 31], `-diversity [22], t-closeness [21], and
several others. These privacy notions are defined based on syntac-
tic properties of the anonymized data. Given the anonymized data
alone (and no other information such as the anonymization algo-
rithm or the input dataset), one can determine whether the privacy
requirement is satisfied by checking the syntactic features of the
anonymized dataset. We call these syntactic privacy notions. Over
the years, it has been increasingly recognized that syntactic privacy
notions cannot provide rigorous privacy guarantees. Such notions
do not consider the relationship between input datasets and output
datasets, and are vulnerable to attacks using background knowledge
about the data and/or knowledge of the anonymization algorithm.

An alterative to syntactic privacy is algorithmic privacy, which
is defined on the behavior of the data anonymization algorithm. A
prominent example of algorithmic privacy is differential privacy [9,
11, 13], which has gradually been accepted as the privacy notion of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

choice for answering statistical queries. Many interesting results
have been obtained on answering statistical queries while satisfy-
ing differential privacy; however, there exists no method on pub-
lishing microdata that satisfies ε-differential privacy, which aims at
achieving the following objective: any disclosure will be, within
a small multiplicative factor, just likely whether or not the indi-
vidual participates in the database. Existing work involving mi-
crodata and differential privacy uses a weaker version known as
(ε, δ)-differential privacy, which allows privacy breaches with a
small probability δ.

Contributions & Organizations. In this paper, we take a ma-
jor step towards practical solutions for microdata publishing while
satisfying algorithmic privacy. Our contributions are as follows.

First, we demonstrate that k-anonymity does not offer suffi-
cient protection against re-identification, and neither does (ε, δ)-
differential privacy, for the values of δ used in existing work.

Second, we introduce an algorithmic privacy notion called se-
mantic k-anonymity that combines ideas from both k-anonymity
and differential privacy, and protects against re-identification. We
also show that it can be used to analyze existing microdata
anonymization methods to identify their privacy vulnerabilities.

Third, we analyze a family of microdata publishing methods
called noisy count publishing. We show that no practical noisy
count publishing method satisfies ε-differential privacy, and show
how to construct a noisy count publishing algorithm that satisfies
both (ε, δ)-differential privacy and semantic k-anonymity.

Fourth, we introduce a novel technique columnization for pub-
lishing high-dimensional data. Columnization breaks the data table
into columns each of which contains a number of highly-correlated
attributes. Each columns can then be published independently.

Fifth, we use a subset of the Netflix movie rating data to exper-
imentally evaluate our approach. Results show that our approach
is efficient, and can publish high-dimensional microdata with algo-
rithmic privacy guarantees while supporting data mining tasks.

The rest of the paper is organized as follows. We discuss k-
anonymity and differential privacy in Section 2, and introduce se-
mantic k-anonymity in Section 3. We present our framework for
anonymizing microdata in Section 4, the noisy count publishing
method in Section 5, and the columnization technique in Section 6.
We experimentally evaluate our approach in Section 7, discuss re-
lated work in Section 8, and conclude with directions for future
work in Section 9.

2. EXISTING PRIVACY NOTIONS
In this section, we analyze how well existing privacy notions de-

fend against re-identification attacks. Re-identification is what the
society views as the most clear form of privacy violation. If one

is able to correctly identify one individual’s record from suppos-
edly anonymized data, then people agree that the privacy is vio-
lated. In fact, most well-publicized privacy breach incidents from
microdata publishing are caused by re-identification. Examples in-
clude the identification of the medical record of the governor of
Massachusetts from the GIC data [31]; the identification of the
search history of one AOL user from the AOL query log data [4];
and the identification of Netflix subscribers from the Netflix Prize
dataset [26]. In all cases, re-identification of a single record is
viewed as unacceptable. In the case of the AOL query data, the
data was immediately removed, and the persons responsible for re-
leasing the data were fired.

2.1 k-Anonymity
The notion of k-anonymity [29, 28, 31] was introduced to pre-

vent re-identification; it requires that in the anonymized data, each
record is indistinguishable from at least k − 1 other records with
respect to the quasi-identifier (QID) attributes. The notion of k-
anonymity has often been criticized for not being able to prevent
attribute disclosure, and many other syntactic privacy notions have
been introduced to prevent attribute disclosure.

The criticism that k-anonymity does not prevent attribute dis-
closure is certainly valid; however, k-anonymity was not designed
to prevent attribute disclosure. The more important question is
whether k-anonymity indeed prevents re-identification. To our
knowledge, the assumption that k-anonymity offers some level of
protection against re-identification has not been explicitly chal-
lenged in the literature.

We show that k-anonymity cannot prevent re-identification.
Consider an algorithm that simply duplicates each record k times.
For any input dataset, this will result in a dataset that satisfies
k-anonymity, yet it essentially publishes the whole dataset un-
changed. Re-identification occurs as one can point to one record
(or, more precisely, k copies of one record) as an individual’s
record. If one additionally mandates the anonymized dataset must
be of the same size as the input dataset, we can change the algo-
rithm to first group records into buckets of size at least k each,
and in each group choose one record and change all records in the
group to that one. Such an algorithm outputs datasets that satisfy
k-anonymity yet publishes a significant portion of the dataset un-
changed and re-identifiable. This suggests that we need a better
notion of privacy for preventing re-identification.

2.2 Differential Privacy
A privacy notion that has gained much popularity over the past

few years is differential privacy [9, 11]. Unlike syntactic privacy
notions, differential privacy is defined for the algorithm, rather than
the output data. Differential privacy aims at achieving the follow-
ing objective:

Any disclosure will be, within a small multiplicative
factor, just likely whether or not the individual partici-
pates in the database.

To formalize this, differential privacy requires that, given two input
datasets that differ only in one tuple, the output distributions of the
algorithm on these two datasets should be close.

DEFINITION 1 (ε-DIFFERENTIAL PRIVACY [9, 11, 13]).
A randomized algorithm A gives ε-differential privacy if for all
datasets D0 and D1 that differ by at most one tuple, and any
S ∈ Range(A),

e−ε ≤ Pr[A(D1) = S]

Pr[A(D0) = S]
≤ eε (1)

In this and future definitions, we define 0/0 to be 1. Note that
when ε is close to 0, eε ≈ 1 + ε is close to 1. When one publishes
S = A(D), where A satisfies ε-differential privacy, one can claim
that this protects the privacy of every tuple t in D, because even if
one leaves t out of the dataset, in which case the privacy of t is con-
sidered to be fully protected, one may still publish S with a similar
probability. Differential privacy protects against re-identification,
among other things. Given the output S, one could not pinpoint
any tuple in S as from an individual, because S may occur even if
that individual’s tuple is not in the input data.

Differential privacy provides worst-case privacy guarantee in at
least two senses. First, inequality (1) must hold for every pair D0

and D1, meaning that the privacy for every tuple is protected under
any background knowledge. Second, inequality (1) requires that
the bound eε holds for all possible S, even if S occurs only with
very low probability. This provides a privacy bound for all possible
outcomes. These are desirable features, since as we have seen in
past privacy incidents, compromising the privacy of a single indi-
vidual may already cause enough trouble that should be avoided [4,
26].

The differential privacy definition requires that the probability
ratio bound to hold for all S. This has been proven to be too strong
to satisfy in many situations. The following weakened notion of
differential privacy has been introduced and used extensively in the
literature [9, 5, 7, 27, 23, 15].

DEFINITION 2 ((ε, δ)-DIFFERENTIAL PRIVACY). A random-
ized algorithm A satisfies (ε, δ)-differential privacy, if for all
datasets D0 and D1 that differ in one tuple and for any S ∈
Range(A), the following holds with probability at least 1− δ:

e−ε ≤ Pr[A(D1) = S]

Pr[A(D0) = S]
≤ eε (2)

The above definition allows that for some output S, the inequal-
ity 2 does not need to hold. In fact, it is possible that for some S,
Pr[A(D1) = S] 6= 0 and Pr[A(D0) = S] = 0. If any such
S occurs as output, one can immediately tell that the input must
be D1 and not D0. However, the total probability that any S for
which inequality 2 doesn’t hold occurs (which we refer to as the
error probability) is bounded by δ.

An alternative relaxation of ε-differential privacy is to require
that for any P ⊆ Range(A),

Pr[A(D1) ∈ P] ≤ eε Pr[A(D0) ∈ P] + δ

and

Pr[A(D0) ∈ P] ≤ eε Pr[A(D1) ∈ P] + δ.

It has been shown [17] that this is weaker than the one in Defini-
tion 2, and we do not consider this variant in this paper.

Unfortunately, (ε, δ)-differential privacy compromises the most
desirable feature of ε-differential privacy, namely, worst-case pri-
vacy protection. Satisfying only (ε, δ)-differential privacy means
that when worst cases occur, there is no bound on the information
leakage and total re-identification could occur. In cryptography,
such an error probability is typically required to be at most 1/280,
hence it is not a practical concern. In data anonymization, however,
δ typically needs to be much bigger, e.g., on the order of 10−3 to
10−7. The privacy concern caused by worst cases cannot be ig-
nored.

For example, consider an algorithm such that given D, it pub-
lishes each tuple with probability 10−5. This satisfies (0, 10−5)-
differential privacy. However, given a database of 10 million tuples,

each corresponding to one individual, this algorithm will publish on
average 100 tuples unchanged. Hence the privacy of these 100 in-
dividuals is completely compromised. This example illustrates that
(ε, δ)-differential privacy does not guarantee that privacy breach
can occur with probability at most δ. It guarantees that for any tu-
ple, privacy breach can occur with probability at most δ. However,
when there are many tuples, it may be that with high probability
the privacy of some tuple will be breached.

3. SEMANTIC K-ANONYMITY
Intuitively, differential privacy requires that any single tuple does

not affect the output too much, in that if an output is possible when
the tuple exists, then the output should also be possible when the tu-
ple doesn’t exist. When publishing aggregate information, this can
usually be achieved by adding appropriate levels of noise to ensure
that the output doesn’t overly depend upon any single record [12].
However, it is much more difficult to satisfy differential privacy
when publishing microdata.

We are not aware of any practical techniques that publish
anonymized microdata while satisfying ε-differential privacy. At
the same time, satisfying only (ε, δ)-differential privacy may not
provide enough privacy protection. In this section, we introduce
a new algorithmic privacy notion called semantic k-anonymity. It
combines the ideas behind differential privacy and k-anonymity.
We argue that semantic k-anonymity is an appealing privacy no-
tion because it prevents re-identification even in the worst case. We
note that that semantic k-anonymity can be used either by itself, or
in conjunction with (ε, δ)-differential privacy, as they complement
each other. We start by examining why existing anonymization
methods do not satisfy differential privacy.

3.1 Why Existing Methods Cannot Provide
Differential Privacy?

Definitions 1 and 2 use the notion that two datasets D0 and D1

“differ in one tuple”. There are two different ways to interpret this.
One interpretation is that D0 is obtained by removing one tuple of
D1, i.e., D1 \ D0 = {t}. The other interpretation is that D0 is
obtained by replacing a tuple t in D1 with another tuple t′, i.e.,
D0 = D1\{t} ∪ {t′}. ε-Differential privacy offers strong pri-
vacy protection when either interpretation is used. When the latter
interpretation is used, we call the resulting notion replacement dif-
ferential privacy. Intuitively, replacement differential privacy en-
sures that: any disclosure when an individual participates in the
databases will be, within a small multiplicative factor, just as likely
to occur when that individual’s tuple is replaced by another tuple.
When publishing microdata, one may need to choose the latter in-
terpretation, since an algorithm may preserve the total number of
tuples, and trivially does not satisfy differential privacy when the
first interpretation is used.

Consider a generalization-based algorithm that uses global re-
coding, but not suppression, to satisfy k-anonymity. Given input
dataset D, such an algorithm computes a global recoding g, which
maps each value to a less precise value such that when g is applied
to all tuples in D, the output satisfies k-anonymity. Such an algo-
rithm may violate replacement differential privacy in several ways.

First, k-anonymity requires indistinguishability only for the QID
attributes, and non-QID attributes can be published unchanged.
When choosing a tuple t that has a unique value for a non-QID
attribute, output from D0 and from D1 can be easily distinguished.
To solve this problem, one would need to extend the definition of
k-anonymity to include all attributes in the dataset.

Second, the generalization scheme g depends on the input dataset
D, and may reveal what is in D. For example, when t contains

extreme values that are unique and very different from values in
D0 = D1 \ {t} ∪ {t′}, then the generalization scheme for D1 will
contain a generalized value for the extreme value, and the gener-
alization for D0 will not contain such a generalized value. This
problem can be solved by using a generalization scheme that does
not depend on the input dataset and suppressing tuples that after
generalization do not satisfy the k-anonymity property.

Third and finally, even with the above changes, such an algo-
rithm does not satisfy differential privacy. Suppose that we use a
global recoding scheme g and we have two tuples t and t′ such that
g(t) 6= g(t′), then for any D0 and D1 where D0 = D1\{t}∪{t′},
A(D0) and A(D1) will always contain different number of g(t).
For any S such that Pr[A(D0) = S] > 0, we have Pr[A(D1) =
S] = 0. This is due to the deterministic nature of such an algo-
rithm.

The above analysis leads to the question whether the determin-
istic nature of the algorithm by itself can make it fail to achieve
differential privacy. In the following, we show that this is indeed
the case. First, we observe that there are trivial deterministic meth-
ods that can achieve replacement differential privacy.

DEFINITION 3. An algorithm A is trivial if and only if it out-
puts the same data for inputs that have the same number of tuples.
More precisely, for any D and D′ that contain the same number of
tuples, A(D) = A(D′).

Any trivial algorithm satisfies replacement ε-differential privacy
for ε = 0; however, such algorithms are meaningless because the
output data has no use at all. In Theorem 1, we formally show
that trivial algorithms are the only deterministic methods that can
satisfy differential privacy.

THEOREM 1. If a deterministic algorithm A can achieve
replacement ε-differential privacy for any ε (or standard ε-
differential privacy, or (ε, δ)-differential privacy with δ < 1), then
A is trivial.

PROOF. Suppose that a deterministic method A satisfies differ-
ential privacy. We show that for any input datasets Da and Db that
have the same number of tuples, A(Da) = A(Db). Therefore, A
must be the trivial method.

We can construct a series of datasets {D0, D1, · · · , Dn+1} such
that D0 = Da and Dn+1 = Db, and Di and Di+1 differ in only
one tuple for 0 ≤ i ≤ n. Because A is deterministic, A(Di)
has the distribution that there is one output dataset Si such that
Pr[A(Di) = Si] = 1, and for any S 6= Si, Pr[A(Di) = S] = 0.
Because A satisfies differential privacy, we must have A(Di) =
A(Di+1) for 0 ≤ i ≤ n, and hence A(Da) = A(Db).

3.2 Semantic k-Anonymity
We have shown that no non-trivial deterministic algorithm sat-

isfies differential privacy. A natural question is whether this is
because deterministic algorithms indeed violate privacy in some
intuitive sense, or because differential privacy is too strong. To
answer this question, consider the following algorithm, which we
call the Deterministic Generalization and Suppression (DGS) algo-
rithm. The algorithm uses a global recoding scheme that does not
depend on the particular input dataset D, and then apply the recod-
ing scheme to the input dataset D, and finally remove all tuples that
do not satisfy k-anonymity when all attributes are considered. As
DGS is parameterized by a value k, we call it the k-DGS algorithm.

The k-DGS algorithm satisfies k-anonymity; however, this by
itself provides little confidence for privacy, since a trivial in-
secure algorithm that duplicates each tuple k times, also satis-
fies k-anonymity. The k-DGS algorithm does not satisfy (ε, δ)-
differential privacy for any ε as long as δ < 1, no matter how large

k is. As discussed in Section 3.1, this is because when the adver-
sary knows precisely the number of tuples that generalize to g(t) in
D0 \ {t}, then the count of g(t) in the output dataset tells whether
the input is D0 or D1.

At the same time, the k-DGS algorithm intuitively offers some
level of privacy protection, as it prevents re-identification, and the
level is higher when k is larger. Methods in spirit similar to DGS
are also used in practice. Can one find a sound privacy foundation
for algorithms like DGS? Our answer is “yes”. We now introduce
a privacy notion that is motivated by both differential privacy and
k-anonymity, and combines ideas from both.

DEFINITION 4 (SEMANTIC (k, ε)-ANONYMITY). We say
that an algorithm A provides semantic (k, ε)-anonymity when for
any dataset D and any tuple t ∈ D, at least one of the following
two conditions hold.

1. For any S,

e−ε ≤ Pr[A(D) = S]

Pr[A(D′) = S]
≤ eε,

where D′ is obtained by removing one copy of t from D.

2. There exist at least k − 1 tuples t1, t2, . . . , tk−1 in D other
than t such that for any 1 ≤ i ≤ k − 1, and any S,

e−ε ≤ Pr[A(D) = S]

Pr[A(Di) = S]
≤ eε,

where Di is obtained by replacing t with ti.

When ε = 0, Condition 1 requires that A(D) and A(D′) have the
same probability distribution, and Condition 2 requires that A(D)
and A(Di) have the same distribution. In this case, we say A sat-
isfies semantic k-anonymity.

Comparing with ε-differential privacy, semantic k-anonymity is
weaker in that differential privacy requires t to be replaceable by
any tuple (or removed from the dataset) while still resulting in out-
puts that have similar distributions, and semantic k-anonymity re-
quires only considering the cases when replacing t with tuple from
a particular set of size at least k.

Semantic k-anonymity may be more desirable than differential
privacy in some microdata publishing scenarios. Consider the fol-
lowing hypothetical example. Suppose that a faculty member X of
a university Y needs to decide whether to put her data in a survey,
and wants to evaluate the privacy consequences. If X uses the dif-
ferential privacy requirement, she needs to know whether the output
would be similar if her information is substituted by any other indi-
vidual from the population. Suppose that such a strong requirement
is not satisfied, but it turns out that if X’s record is substituted with
that of any other faculty member at university Y , then the output
would be of the same distribution. Would this provide enough pri-
vacy guarantee for X? The answer would depend on the situation,
but it is conceivable that in many situations X would be willing to
participate.

The intuition under semantic k-anonymity is “hiding in a
crowd”, a fundamental approach in privacy. It protects against re-
identification in the following sense. For any tuple in A(D), one
cannot claim that it belongs to an individual with high confidence,
because even if the individual’s tuple is not in the database and re-
placed by one of k−1 other tuples, the output could still be A(D).

We note that semantic k-anonymity is significantly different
from syntactic k-anonymity. First, semantic k-anonymity does not
require the distinction between QID attributes and other attributes.

It thus can be directly applied to cases where such distinctions are
difficult to make, such as transactional databases. Second, seman-
tic k-anonymity is algorithmic, rather than syntactic. One cannot
look at only A(D) and determine whether it satisfies semantic k-
anonymity; one has to examine A’s behavior on other inputs. One
can use semantic k-anonymity even when the output takes form
other than a table of tuples.

3.3 Satisfying Semantic k-Anonymity
We argue that semantic k-anonymity captures the intuition under

the originally proposed syntactic k-anonymity, yet avoids its pit-
falls. In other words, it is how k-anonymity should be defined. We
now show that semantic k-anonymity rules out some algorithms
that intuitively violates privacy, yet is satisfiable by some algo-
rithms that intuitively protects privacy.

Simply duplicating each record k times would not satisfy seman-
tic k-anonymity, since A(D) and A(Di) would have completely
different output when D contains t and Di doesn’t. We note that
a global recoding generation algorithm (such as Incognito) when
limited not to use suppression tends not to satisfy semantic k-
anonymity, because the recoding scheme can be influenced by one
or a few extreme values in the dataset. This illustrates a real privacy
vulnerability of an algorithm that satisfies syntactic k-anonymity.
We now show that semantic k-anonymity can be achieved by real-
world algorithms for anonymizing microdata.

THEOREM 2. The k-DGS algorithm satisfies semantic k-
anonymity.

PROOF. For any D and for any tuple t ∈ D, the k-DGS algo-
rithm will apply g to all tuples in D and remove anyone that doesn’t
have k − 1 other indistinguishable tuples. There are two cases for
t. The first case is that g(t) is removed. In this case, condition 1
in Definition 4 is satisfied. The second case is that g(t) is in an
equivalence of size at least k, then let t1, t2, · · · , tk−1 be the orig-
inal tuples in the equivalence class, then when replacing t with any
ti where 1 ≤ i ≤ k − 1, the output is the same. Condition 2 in
Definition 4 is satisfied.

One can also analyze other generalization algorithms such as
Mondrian for semantic k-anonymity. Mondrian consists of two
phases. In phase one, the multi-dimensional space of tuples is par-
titioned so that each region contains at least k tuples. In phase two,
each region is generalized so that all tuples in the region are in-
distinguishable with each other. To satisfy semantic k-anonymity,
one needs to ensure two properties. The first property is that the
partitioning phase does not depend on any individual tuple. This
can be achieved either by fixing the partitioning scheme, e.g., al-
ways split the range at the middle no matter how the values are dis-
tributed in the range, or by using probabilistic partitioning schemes
(so as to satisfy semantic (k, ε)-anonymity for some nonzero ε).
The second property is that only the boundary values of a region
are used to compute the generalized value for tuples in that region.
For example, consider a one-dimensional case where the attribute
is salary with range [0, . . . , 100M] and there are four data points
{20K, 80K, 150K, 20M}. Suppose a deterministic partitioning
scheme has resulted in two regions: [0, 100K) and [100K, 100M].
We should not generalize the second region into [150K, 20M],
which leaks the existence of the value 20M . When the 20M value
is replaced by another copy of 150K, the output would be dif-
ferent, violating the condition for semantic k-anonymity. When
these two properties are satisfied, the algorithm satisfies semantic
k-anonymity: any tuple can be replaced by another tuple in the
same equivalence class without changing the output.

The above analysis shows that by using semantic k-anonymity
to analyze existing generalization algorithms, one can find true pri-
vacy vulnerabilities. After fixing these vulnerabilities, it is possible
for the algorithm to satisfy semantic k-anonymity. This illustrates
the usefulness of the privacy notion.

4. A GENERAL FRAMEWORK FOR MI-
CRODATA PUBLISHING

We summarize our analysis so far. Ideally, we would like to
satisfy ε-differential privacy for some reasonable ε; however, this
may be difficult to achieve when publishing microdata. When ε-
differential privacy is not achievable, existing approaches use either
syntactic privacy notions such as k-anonymity, or (ε, δ)-differential
privacy. In Section 2, we have examined the weaknesses of both
options. We believe this current state of the art is unsatisfactory,
and have introduced semantic (k, ε)-anonymity.

We observe that semantic (k, ε)-anonymity and (ε, δ)-
differential privacy offer complementary protection. One key
weakness of (ε, δ)-differential privacy is that it doesn’t prevent
re-identification, which (k, ε)-anonymity does. On the other hand,
(k, ε)-anonymity only requires a tuple to be replaceable by k other
tuples, while the output being similar. Because k is typically a
small number, this may not offer sufficient protection when the
input dataset already contains k very similar records. This can be
addressed by (ε, δ)-differential privacy, which ensures that even
when a tuple is removed or replaced with an arbitrary tuple, the
output would, with high probability, be similar.

In the rest of this paper, we develop data anonymization tech-
niques that achieve (ε, δ)-differential privacy while protecting
against re-identification even in the worst case. There are two tech-
nical challenges that we need to address.

The first challenge is how to deal with high-dimensional data.
The techniques we use to satisfy semantic k-anonymity are variants
of algorithms for k-anonymity; however, it has been shown [1, 19,
32] that generalization for k-anonymity losses considerable amount
of information, especially for high-dimensional data. This is be-
cause generalization for k-anonymity suffers from the curse of di-
mensionality. In order for generalization to be effective, records
in the same bucket must be close to each other so that generaliz-
ing the records would not lose too much information. However,
in high-dimensional data, most data points have similar distances
with each other, forcing a great amount of generalization to satisfy
k-anonymity even for relative small k’s.

We meet this challenge by introducing a technique called colum-
nization that reduces data dimensionality. The basic idea is that we
vertically partition the table into columns, and publish each col-
umn independently. When partitioning the table, we group highly-
correlated attributes together, to preserve the most information. We
also show that rather than partitioning the attributes, one can choose
groups of attributes to publish together in one column, and one at-
tribute may be published in multiple columns, preserving its rela-
tionship with many attributes. This technique is described in detail
in Section 6.

The second challenge is how to satisfy both semantic k-
anonymity and (ε, δ)-differential privacy. To meet this challenge,
we study a family of algorithms called the Noisy Counting Pub-
lishing method in Section 5. This can be used in combination with
columnization and the deterministic generalization method.

5. NOISY COUNT PUBLISHING
In this section, we study the noisy count publishing method.

Given a dataset D, the method works as follows. First, it constructs

a frequency table T that stores the frequency count of each tuple,
i.e., for each tuple t, table T contains an entry (t, ft) where ft is
the frequency count of t in D. Then for each entry (t, ft) in T , the
method generates a noisy count f′t and includes f′t copies of t in the
output database. We show how to design noisy count publishing
algorithms that satisfy both (ε, δ)-differential privacy and semantic
k-anonymity. This method is particularly suitable for high density
tables, i.e., tables where most (or all) tuples occur with reasonably
high frequency, which can be obtained by using columnization and
deterministic generalization.

5.1 Previous Results and Limitations
Two existing methods can be viewed as noisy count publishing:

random sampling and histogram releasing.

Random Sampling. Random sampling [2, 3] has been studied as
an effective method for privacy preserving data mining. A simple
random sampling method works as follows. Given a dataset D and
a sampling frequency q, the method sequentially scans the tuples in
D and includes each tuple with probability q. This simple random
sampling method is a special case of noisy count publishing. The
noisy count f′t is generated from a binomial distribution B(ft, q)
where the mean is ft ∗ q and the variance is ft ∗ q(1− q).

This sampling method has been analyzed in [7]. It has been
shown that ε-differential privacy cannot be achieved for any ε when
the input table may contain tuples that appear only once. Since if
D1 contains t, but D0 doesn’t, then one can find an output table S
with t such that Pr[A(D0) = S] = 0 but Pr[A(D1) = S] 6= 0. To
satisfy (ε, δ)-differential privacy, one has to require one or more of
the following three conditions: (1) a large δ is used, which destroys
privacy protection; (2) a very small sample frequency, which results
in low utility; and (3) requiring all tuples in the the input dataset to
have high frequency counts, which limits the applicability of the
algorithm.

Histogram Releasing. Dwork et al. [13] proved that the fre-
quency table T can be released in a privacy preserving manner by
adding a small amount of noise to ft in each entry independently.
Specifically, for each entry (t, ft), they add to ft noises that follow
a Laplace distribution f(x|0, λ) which has a mean 0 and a vari-
ance 2λ2. It was shown that this method ensures (2/λ)-differential
privacy.

While theoretically appealing, this method has several practical
limitations. First, the method may release a frequency count that
is not an integer or even a negative frequency count, hence one
cannot output a dataset in the same structure as the input dataset,
which makes the output data difficult to interpret and use. To solve
this problem, one needs to discretize the noise and avoid negative
counts. Second and more importantly, one needs to enumerate ev-
ery possible entry (t, ft) even when ft = 0. That is, even if a tuple
does not appear at all in the dataset, the method still needs to con-
sider that tuple and may possibly release a non-zero frequency for
it. Otherwise, an adversary can distinguish the output of D1 which
contains one copy of t and D0 which contains zero copy of t. This
makes the algorithm intractable because the number of possible tu-
ples can be extremely large. In fact, when ft = 0, the probability
that f′t 6= 0 is 1− 1

2λ
, which is at least 3/4 when ε ≤ 1 (bounding

probability ratio to be at most e). Hence, each tuple that does not
appear in the original dataset will appear with probability at least
3/4. In addition to making the output dataset impossibly large, it
also destroys utility.

5.2 Matrix-based Nosy Count Publishing
We now present a uniform way to represent different noisy count

publishing methods; we use a probability matrix to do so.

DEFINITION 5 (NOISY COUNT MATRICES). A noisy count
matrix is a matrix M([0,∞], [0,∞]) such that for all i =
0, 1, 2, · · · , the following holds:

Condition (a) :

∞∑
j=0

M(i, j) = 1

We say that row i in the matrix is degenerated if M(i, 0) = 1 and
M(i, j) = 0 for all j > 0.

Each cell M(i, j) is the probability that the released count is j
when the actual count is i. The i-th row can be viewed as a random
variable Xi that maps the actual count i to a noisy count in the set
{0, 1, 2, · · · }. If row i is degenerated, this means that when the
actual count of a tuple is i, the output will contain 0 copy of that
tuple, i.e., that tuple is suppressed. To avoid the problem of having
to publish tuples that do not occur in the input dataset, we need to
require that the row 0 is degenerated. This ensures that if a tuple
doesn’t occur in the input dataset, it won’t occur in the output. We
first show that satisfying ε-differential privacy is impossible when
we require row 0 to be degenerated.

THEOREM 3. For a matrix that has a degenerated row 0, if it
satisfies ε-differential privacy for any ε, all rows in the matrix must
be degenerated.

PROOF. Suppose on the contrary that matrix M satisfies ε-
differential privacy and not all rows in M are degenerated. Let the
first non-degenerated row in M be the i-th row and M(i, j) > 0
for some j. Since row 0 in M is degenerated, we have i ≥ 1 and
M(i− 1, j) = 0.

Now consider two datasets D0 and D1 where D1 = D0 ∪ {t}.
Suppose that tuple t occurs i times in D1 and i − 1 times in D0.

Since
M(i, j)

M(i− 1, j)
= ∞, the adversary can exclusively conclude

that the original data is D1 if the output data contains at least one
copy of t because the output data would not contain t at all if the in-
put data is D0. This violates the definition of ε-differential privacy.
And therefore, all rows in the matrix must be degenerated.

The above theorem says that if one wants to use a noisy count
matrix and satisfy ε-differential privacy, and one wants to avoid
publishing tuples not in the input dataset, then one can only always
publish empty datasets. This result shows that we must settle for
(ε, δ)-differential privacy and semantic k-anonymity.

5.3 Satisfying ε-differential privacy
We show how to construct M to satisfy ε-differential privacy,

with row 0 being non-degenerated. Such a matrix is impractical
to use; but its construction illustrates what is necessary for satis-
fying ε-differential privacy. The techniques developed here will
also be useful for the practical matrix we develop next for (ε, δ)-
differential privacy. The key idea is to add a noise that follows
discrete Laplace distributions.

When given ε, let r = e−ε. We aim to construct the matrix such
that the following condition holds.

Condition (b) : r ∗M(i−1, j) ≤ M(i, j) ≤ 1/r ∗M(i−1, j)

This condition ensures that whether the input table contains i−1
or i copies of a tuple, the probabilities that j copies occur in the
output are similar. In addition, for utility considerations, we want
the noisy counts to be as close to the original counts as possible.
First, in the i’th row, the probability for all non-zero rows should

be maximized at the i’th column. This ensures that when the input
has i copies of a tuple, if the output contains the tuple at all, it
is most likely to contain i copies of the tuple. Furthermore, the
expected value of row i should be as close to i as possible. The
following construction was designed to satisfy these conditions.

M(i, j) =

1

1 + r
ri if j = 0

1− r

1 + r
r|i−j| otherwise

(3)

Note that each row in M(i, j) is maximized when i = j, except
for the j = 0 column. The following theorem demonstrates the
relationship between the matrix M(,) and differential privacy.

THEOREM 4. Publishing noisy counts according to the matrix
in (3) ensures ln(1/r)-differential privacy.

PROOF. Suppose that we have two datasets D0 and D1 that dif-
fer in only one tuple: D1 = D0 ∪ {t}. Let T0 and T1 be the
frequency table of D0 and D1, respectively. T0 and T1 are exactly
the same except the entry for tuple t; let the entry of t in D0 and
D1 be (t, i− 1) and (t, i), respectively.

Let the released count for tuple t is j. By definition, the prob-
ability that the released count is calculated from T1 is M(i, j)
and the probability that the released count is calculated from T0

is M(i− 1, j). Therefore,

Pr[A(D1) = S|j]
Pr[A(D0) = S|j] =

M(i, j)

M(i− 1, j)

Because the matrix M(,) satisfies condition (b), which lead to r ≤
M(i, j)

M(i− 1, j)
≤ 1/r.

5.4 A Practical Noisy Count Matrix
The construction given in Equation (3) has a non-degenerated

row 0; this makes it impractical to use. In this section, we present
a construction that has a degenerated row 0, and achieves both
semantic k-anonymity and (ε, δ)-differential privacy. We need to
modify condition (b). To satisfy semantic k-anonymity, we require
that all of the first k rows of the matrix to be degenerated.

Condition (b1) :for all 0 ≤ i ≤ k − 1,

M(i, 0) = 1 and M(i, j) = 0 for j > 0.

We now consider (ε, δ)-differential privacy. We use wi to denote
the total non-zero probability of each row. That is M(i, 0) = 1 −
wi. Condition (b1) requires that wi = 0 for 0 ≤ i < k. Now
consider the first non-degenerated row (the row M(k, ·)); wi is
bounded by two constraints. First M(k, 0) = 1 − wi must be at
least e−ε to ensure M(k−1,0)

M(k,0)
< eε. Second, wk must be no more

than δ. Because when the input contains k − 1 copies of a tuple
t, the output would have 0 probability of containing t, and when
the input contains k copies of t, the output would contain t with
probability wi; which must be bounded by the error probability δ.
Hence, we have

Condition (b2) :M(k, 0) ≥ e−ε and 1−M(k, 0) ≤ δ

Finally, Condition (b3) below ensures that the strict form of ε-
differential privacy is satisfied when i ≥ k + 1.

Condition (b3) :e−εM(i− 1, j) ≤ M(i, j) ≤ eεM(i− 1, j)

Let r = e−ε/2, the construction given in (4) below satisfies
all three conditions (b1), (b2), and (b3). The basic idea of this

construction is to first compute wi, which bounds the maximum
non-zero probability of each row. Then within each row i ≥ k,
we distribute the non-zero probability wi among all columns by
following the distribution we used to satisfy ε-differential privacy
(Equation 3).

M(i, j) =

1− wi if j = 0
0 if 0 ≤ i ≤ k − 1 and j > 0
0 if i ≥ k and 1 ≤ j ≤ k − 1

1

1 + r
ri−kwi if i ≥ k and j = k

1− r

1 + r
r|i−j|wi if i ≥ k and j > k

(4)
where

wi =

0 if 0 ≤ i ≤ k − 1
min{δ, 1− e−ε} if i = k
min{1− (1− wi−1)e

−ε, reεwi−1} if i > k
(5)

Before we show the constructed matrix in (4) gives the desired pri-
vacy guarantee, we first show some properties of the construction.

LEMMA 1. The constructed matrix has two properties:

• For all i > k, we have wi > wi−1.

• The expected value of the random variable Xi is:

E[Xi] =

0 if 0 ≤ i ≤ k − 1

wi(i +
ri+1

1− r2
) if i ≥ k

(6)

PROOF. See the appendix.

To give some quantitative interpretation, we write a simple pro-
gram to calculate the wi values. Given ε = 1 and δ = 10−5 and
k = 10, for all i ≥ 35, wi ≥ 0.99. In other words, under this set of
parameters, after 35 − 10 = 25 iterations of the calculation using
Equation (5), wi is close to 1 and therefore we always release the
noisy count for tuples that occur at least 35 times in the data.

THEOREM 5. Publishing noisy counts according to the matrix
in (4) ensures both semantic k-anonymity and (ε, δ)-differential
privacy.

PROOF. We first show that the construction satisfies semantic
k-anonymity. Consider any tuple t in the input data. If t occurs
less than k times in the data, t is not released at all. Therefore,
removing t from the input data will not change the probability of
any outcome. If t occurs at least k times in the input data, changing
t to any of its copies will not change the probability of any outcome.
And there are at least k−1 such copies. Therefore, the construction
satisfies semantic k-anonymity.

In order to prove (ε, δ)-differential privacy, it suffices to show
that the constructed matrix in (4) satisfies all three conditions (b1),
(b2), and (b3). It is trivial to see that it satisfies condition (b1).

Proof for Condition (b2): When i = k, the error rate is 1 −
M(k, 0) = w1 ≤ δ. And M(k, 0) = 1− w1 ≥ e−ε.

Proof for Condition (b3): When i ≥ k + 1 and j = 0,
M(i, j)

M(i− 1, j)
=

M(i, 0)

M(i− 1, 0)
=

1− wi

1− wi−1
.

Based on Equation (5), we have

1− wi

1− wi−1
≥ 1− (1− (1− wi−1)e

−ε)

1− wi−1
= e−ε

and because wi ≥ wi−1, we have

1− wi

1− wi−1
≤ 1 < eε

Therefore,

e−ε ≤ M(i, 0)

M(i− 1, 0)
≤ eε (7)

When j > 0, we have
M(i, j)

M(i− 1, j)
=

rwi

wi−1
or

wi

rwi−1
.

Since
rwi

wi−1
≤ wi

rwi−1
, we only need to show

rwi

wi−1
≥ e−ε and

wi

rwi−1
≤ eε.

Since wi ≥ wi−1, we have
rwi

wi−1
≥ r ≥ e−ε and since wi ≤

reεwi−1, we have
wi

rwi−1
≤ eε Therefore, for j > 0,

e−ε ≤ M(i, j)

M(i− 1, j)
≤ eε (8)

Combining the results in Equation (7) and (8), we have proved con-
dition (b3).

6. COLUMNIZATION
The noisy count publishing method suppress tuples with low

(< k) frequency counts. When the frequency counts are just above
k, it adds a lot of noises. The level of noises decreases as the
frequency counts increase. However, in sparse high-dimensional
datasets, most tuples occur only a small number of times, making
the output data almost useless.

In this section, we present a novel technique columnization that
can handle sparse high-dimensional data. Specifically, columniza-
tion partitions the dataset vertically by grouping attributes into
columns based on the correlations among the attributes. Each col-
umn consists of a set of attributes that are highly correlated. We
allow overlapping columns, i.e., there can be intersections between
the set of attributes in two different columns. We then show that if
each column is published in a way that satisfies differential privacy,
publishing all columns also satisfy differential privacy.

Columnization is formally defined as follows. Let D be the
dataset to be published and suppose that D contains d attributes:
A = {A1, A2, · · · , Ad}.

DEFINITION 6 (COLUMNIZATION AND COLUMNS). A
columnization of a dataset D consists of several subsets of A.
Each subset of attributes is called a column.

For example, let the columnization be {C1, C2, ..., Cc}. This
columnization contains c columns C1, C2, · · · , Cc; for each 1 ≤
i ≤ c, we have Ci ⊆ A. We call {C1, C2, · · · , Cc} the columniza-
tion schema. A columnization schema can be non-overlapping or
overlapping. A columnization schema {C1, C2, · · · , Cc} is non-
overlapping partitioning when

⋃
i Ci = A and for any i 6= j,

Ci ∩ Cj = ∅. The columnization schema is overlapping if there
exists some i 6= j such that Ci ∩ Cj 6= ∅.

In Section 6.1, we present our columnization algorithms. In Sec-
tion 6.2, we analyze the privacy of columnization and demonstrate
how columnization can satisfy differential privacy.

6.1 Columnization Algorithms
Our columnization algorithm groups attributes into columns

so that each column contains a set of attributes that are highly-
correlated. This is good for utility because grouping highly-

correlated attributes preserves the correlations among those at-
tributes. A columnization-based anonymization algorithm consists
of the following steps. First, we measure the correlation between
all pairs of attributes. Second, we group attributes into columns
(which forms the columnization schema) based on their correla-
tions. Finally, we anonymize each column and release it.

Measures of Correlation. We first compute the correlations be-
tween pairs of attributes. There are many different measures of cor-
relation between two attributes. Which one to use would depend on
the kinds of data one has. In our experiments on the Netflix Prize
dataset, we choose to use cosine similarity [30], which is defined
as:

Sim(A1, A2) =

∑
t similarity(t[A1], t[A2])

|A1||A2|
where similarity(v1, v2) measures the similarity of two attribute
values and |A1| (|A2|) is the number of tuples that have values for
A1 (A2).

For other datasets, we expect that mean-square contingency co-
efficient [8], which is a chi-square measure of correlation between
two categorical attributes, may prove useful because most attributes
are categorical and because continuous attributes can be discretized
into categorical values.

Non-Overlapping Columnization. Having computed the cor-
relations for each pair of attributes, we use clustering to partition
attributes into columns, which form the non-overlapping colum-
nization schema. In our algorithm, each attribute is a point in the
clustering space. The distance between two attributes in the clus-
tering space is defined as d(A1, A2) = 1 − φ2(A1, A2), which
is in between of 0 and 1. Two attributes that are strong-correlated
will have a smaller distance between the corresponding data points
in our clustering space.

We choose the k-medoid method for the following reasons. First,
many existing clustering algorithms (e.g., k-means) requires the
calculation of the “centroids”. But there is no notion of “centroids”
in our setting where each attribute forms a data point in the clus-
tering space. Second, k-medoid method is very robust to the exis-
tence of outliers (i.e., data points that are very far away from the
rest of data points). Third, the order in which the data points are
examined does not affect the clusters computed from the k-medoid
method. We use the well-known k-medoid algorithm PAM (Parti-
tion Around Medoids) [18]. PAM starts by an arbitrary selection of
k data points as the initial medoids. In each subsequent step, PAM
chooses one medoid point and one non-medoid point and swaps
them as long as the cost of clustering decreases. Here, the cluster-
ing cost is measured as the sum of the cost of each cluster, which
is in turn measured as the sum of the distance from each data point
in the cluster to the medoid point of the cluster. The time complex-
ity of PAM is O(k(n − k)2). Thus, it is known that PAM suffers
from high computational complexity for large datasets. However,
the data points in our clustering space are attributes, rather than tu-
ples in the microdata. Therefore, PAM will not have computational
problems for clustering attributes.

Overlapping Columnization. In non-overlapping columnization,
each attribute belongs only to one column. When some attributes
are highly correlated with many other attributes, this may result
in low utility. Hence we allow overlapping columnization. We
vary the number of columns to be {c1, c2, · · · , cb}. In other words,
we run the non-overlapping columnization b times; at the i-th time
(1 ≤ i ≤ b), we set the number of columns to be ci and run the
non-overlapping columnization which generates ci columns. The

total number of columns is
∑b

i=1 ci. It is possible that the same
column C may be generated multiple times in different runs of
the non-overlapping columnization and then C is released multi-
ple times. When this occurs, it suggests that C is a set of attributes
that have very strong correlations with each other and C should be
released multiple times to enforce the attribute correlations. There
can be other methods to achieve overlapping columnization. It is
our future work to study other methods for overlapping columniza-
tion.

Releasing Columns. After we generate the columnization
schema, the columns are then anonymized and released. Given a
columnization schema {C1, C2, . . . , Cc}, we generate c datasets
D1, D2, . . . , Dc by projecting the input dataset D onto each Ci.
We then anonymize each Di and publish it. We require that
the algorithm for publishing each Di satisfies both semantic k-
anonymity and (ε, δ)-differential privacy. One approach that satis-
fies the requirements is to first perform deterministic generalization
using a global recoding scheme, and then use the noisy count pub-
lishing method presented in Section 5. The first step is optional. If
the data after columnization already has high-enough density, gen-
eralization is not needed.

6.2 Privacy Analysis
Let A∗ be the algorithm that publishes all c columns. A∗ takes

a dataset D and a columnization schema {C1, C2, . . . , Cc} as the
inputs and outputs a set of columns that obey the columnization
schema. For simplicity of discussion, we write A∗(D) as the out-
put and omit the columnization schema that is implicit for the al-
gorithm. Let A be an algorithm that is applied to a single col-
umn and, then A∗(D) = {A(D1), A(D2), · · · , A(Dc)} where
{D1, D2, · · · , Dc} is generated by projecting D onto the colum-
nization schema.

We observe that when A satisfies semantic k-anonymity, A∗

does not necessarily satisfy semantic k-anonymity. However, the
fact that each column Di is published using the Noisy Count
Method that satisfies semantic k-anonymity already provides pro-
tection against re-identification intuitively, especially for transac-
tional data. For any tuple in A(Di), the tuple could be the re-
sult of any of at least k original tuples, and cannot be uniquely
linked with any original tuple. We also note that suppose we do
not require A to satisfy semantic k-anonymity and A satisfies only
(ε, δ)-differential privacy for non-zero δ, then one could publish
potentially identifying fragments of some tuples.

The following theorem establishes the (ε, δ)-differential privacy
property of the columnization algorithm A∗.

THEOREM 6. If algorithm A ensures (ε/c, δ/c)-differential
privacy, then algorithm A∗ ensures (ε, δ)-differential privacy.

PROOF. Consider two datasets D and D′ that differ in one tuple
(let D′ = D \ {t}). Let the c columns that correspond to D be
{D1, D2, · · · , Dc} and the c columns that correspond to D′ be
{D′

1, D
′
2, · · · , D′

c}. Since D and D′ differ in one tuple, D1 and
D′

1 also differ in one tuple. Similarly, D2 and D′
2 differ in one

tuple, and so on.
Let the output data be {X1, X2, · · · , Xc}. Since each column

satisfies (ε/c, δ/c)-differential privacy, for all 1 ≤ i ≤ c, the fol-
lowing holds with probability at least 1− δ/c,

e−ε/c ≤ Pr[A(D′
i) = Xi]

Pr[A(Di) = Xi]
≤ eε/c

We now show that A∗ satisfies (ε, δ)-differential privacy. Error
occurs when at least one of the above c inequalities fail, which is

bounded by c ∗ (δ/c) = δ. When all of the above inequalities hold,

Pr[A∗(D′) = {X1, X2, · · · , Xc}]
Pr[A∗(D) = {X1, X2, · · · , Xc}] =

∏
i Pr[A(D′

i) = Xi]∏
i Pr[A(Di) = Xi]

=
∏

i

Pr[A(D′
i) = Xi]

Pr[A(Di) = Xi]

∈ [e−ε, eε]

Therefore, A∗ ensures (ε, δ)-differential privacy.

The analysis above proves that A∗ ensures (ε, δ)-differential pri-
vacy if algorithm A satisfies (ε/c, δ/c)-differential privacy. This
requires that c cannot be too large. Fortunately, it turns out that
we can formally prove a tighter bound on privacy protection. In
a sparse high-dimensional dataset, each tuple contains values for
only a small fraction of attributes and a large fraction of attributes
have null values. For example, although the Netflix Prize dataset
contains 17770 different movies, most users have ratings for at
most 100 movies.

Suppose that each tuple contains non-null values in at most c∗

columns; for each of the other c − c∗ columns, the tuple has null
values for all attributes in the column. Without loss of generality,
we consider a single tuple t that contains non-null values in the first
c∗ columns {C1, C2, ..., Cc∗}.

THEOREM 7. Algorithm A∗ ensures (ε, δ)-differential privacy,
if algorithm A ensures (ε/c∗, δ/c∗)-differential privacy, where c∗

is the maximum number of columns that a tuple contains non-null
values.

PROOF. See the appendix.

Theorem 7 requires that algorithm A satisfies (ε/c∗, δ/c∗)-
differential privacy. When c∗ is large, it may require a significant
amount of noises for A. We propose to have an upper bound for c∗.
Specifically, if a tuple covers more than c∗ columns, we randomly
pick c∗ columns and remove the data in other columns for that tu-
ple. We experimentally evaluate the performance of columnization
in Section 7.2.

7. EXPERIMENTS
We evaluate our approach on the Netflix Prize dataset 1 that

contains 100,480,507 ratings of 17,770 movies contributed by
480,189 Netflix subscribers. Each rating has the following for-
mat: (userID, movieID, rating, date), where rating is an integer in
{0, 1, 2, 3, 4, 5}with 0 being the lowest rating and 5 being the high-
est rating. We don’t use the date information in the experiments.
To study the impact of the number of movies and the number of
users on the performance, we choose a subset of Netflix Prize data
as the training data and vary the number of movies and the num-
ber of users. Specifically, we choose the first nMovies movies, and
from all users that have rated at least one of the nMovies movies,
we randomly choose a fraction fUsers of users. We evaluate the
performance of our approach on this subset of the Netflix Prize
dataset.

For columnization, we treat each column as a subset of training
data by padding values for attributes that are not present in the col-
umn. Specifically, let the set of attributes in the dataset be A and let
the columnization schema be {C1, C2, · · · , Cc}. By definition, for
1The Netflix Prize dataset is now available from the UCI Ma-
chine Learning Repository (http://archive.ics.uci.edu/ml/datasets/
Netflix+Prize)

values default value
ε {1, ln(5), ln(10)} ln(5)

δ {10−3, 10−5, 10−7} 10−5

k {3, 10, 20} 10

Table 1: Privacy parameters and default values.

each 1 ≤ i ≤ c, Ci ⊆ A. For each column Ci, we add attributes
to that column so that the column contains all attributes of A. And
for all attributes in A\Ci, the cells are padded with “N/A”. Using
padding, the total number of training users is increased from n to
c× n.

We use the standard SVD-based prediction method 2. As in Net-
flix Prize, prediction accuracy is measured as the rooted-mean-
square-error (RMSE). Table 1 shows the privacy parameters we
used in the experiments and their default values.

We compare our methods against the baseline method. The base-
line method simply predicts any user’s rating on a movie as the
average rating of that movie. Intuitively, the baseline method con-
siders the following data publishing algorithm: the algorithm re-
leases, for each movie, the average rating of that movie from all
users. Note that even such a simple algorithm does not satisfy dif-
ferential privacy. We also compare prediction accuracy with the
prediction using the original data.

We evaluate the practical noisy count matrix in Section 7.1.
Our results show that the practical matrix method fails on high-
dimensional data. In Section 7.2, we demonstrate the effectiveness
of columnization in handling high-dimensional data.

7.1 Noisy Count Publishing
In this experiment, we study how much noises are added to the

data in order to satisfy algorithmic privacy. We measure the amount
of noises in terms of both noise level and RMSE.

Noise Level V.S. Frequency Count. We are interested in the
following question: given a tuple that occurs f times in the original
data, how much noises are added on average for that tuple? For this
purpose, we show the amount of added noise as a function of the
frequency count.

Given a tuple t, let actt be the actual frequency of t in the orig-
inal dataset and nost be the released noisy count of t in the output
data. Let T (f) = {t|actt = f} be the set of tuples that occurs
exactly f times in the original dataset. The noise level at the fre-
quency count of f is defined as:

noise(f) =
1

|T (f)|
∑

t∈T (f)

|nost − f |
f

In this experiment, we fix nMovies = 100 and fUsers = 5%
and evaluate the function noise(f) with respect to a number of fac-
tors. We first evaluate noise(f) for different ε values. We use
the default values for δ = 10−5 and k = 10 and vary ε to be
{1, ln(5), ln(10)}. Figure 1(a) plots the function noise(f). The
noise level is quite large when f is small; for example, for ε = 1,
the noise level stays to be 1 for f ≤ 30; the method doesn’t release
any tuple that occurs fewer than 30 times. And noise(f) decreases
as f increases; when f ≥ 50, the noise level reduces to below
0.1, indicating that on average nost is in between of 0.9 × actt

and 1.1 × actt. Therefore, very accurate frequency counts can be
published. When we increase ε (which corresponds to a weaker

2An implementation of the SVD method on the Netflix Prize
dataset is available here: http://www.timelydevelopment.com/dem-
os/NetflixPrize.aspx.

00.20.40.60.811.2
1 25 36 49 65 77 155 1294Noise level Frequency count f

epsilon=1epsilon=ln(5)epsilon=ln(10)
(a) ε values

0
0.2
0.4
0.6
0.8
1

1.2

1 25 36 49 65 77 155 1294

No
ise

 le
ve

l

Frequency count f

delta=10^{-7}
delta=10^{-5}
delta=10^{-3}

(b) δ values

00.20.40.60.811.2
1 20 33 41 50 65 75 83 193Noise level Frequency count f

kSize = 20kSize = 10kSize = 3
(c) k values

00.20.40.60.811.2
0 30 60 90 120 185 240 285 730Noise level Frequency count f

fUsers=5%fUsers=10%fUsers=20%
(d) Number of users

Figure 1: Noise level V.S. Frequency count

00.40.81.21.6
delta=10^{-7} delta=10^{-5} delta=10^{-3}

baseline epsilon=1epsilon=ln(5) epsilon=ln(10)original
(a) RMSE (k = 10)

00.40.81.21.6
delta=10^{-7} delta=10^{-5} delta=10^{-3}

baseline epsilon=1epsilon=ln(5) epsilon=ln(10)original
(b) RMSE (k = 3)

Figure 2: RMSE for noisy count publishing

privacy requirement), the noise level also decreases. For example,
when ε = ln(10), we can publish counts starting from f = 15.

Figure 1(b) evaluates the impact of δ on nos(f). We use the
default values for ε = ln(5) and k = 10 and vary δ to be
{10−3, 10−5, 10−7}. When we increase δ (which corresponds to
a weaker privacy requirement), the noise level decreases. For ex-
ample, when δ = 10−7, we can start releasing data at f = 30;
when δ = 10−5, we can start releasing data at f = 23; and when
δ = 10−3, we can start releasing data at f = 15. Figure 1(c)
demonstrates noise(f) for different k values. We use the default
values for ε = ln(5) and δ = 10−5 and vary the k value to be
{3, 10, 20}. We can see that when we increase k, the noisy level
increases. When k = 3, we can start releasing data at f = 13 and
when k = 20, we can start releasing at at f = 35. Figure 1(d)
plots the function noise(f) for different number of users, where we
vary fUsers to be {5%, 10%, 20%}. When the number of users in-
creases, the domain of the frequency count also increases and the
average noise level decreases quickly when the frequency count in-
creases.

RMSE V.S. ε, δ, k. We evaluate the performance of the noisy
count publishing method on rating prediction. We use the SVD
method and fix nMovies = 100 and fUsers = 20%. Experimen-
tal results are shown in Figure 2. In Figure 2(a), we fix k = 10
and vary the ε and δ values. RMSE decreases when we increase
ε or increase δ. Figure 2(b) depicts the results for k = 3 which
share similar patterns. Comparing Figure 2(a) with Figure 2(b),
we see that RMSE decreases when k decreases. In all cases, the
noisy count publishing method is better than the baseline method
but worse than the RMSE of the original data.

The noisy count publishing method cannot handle high-
dimensional data. When we increase the number of movies to
nMovies = 500, the RMSE error of noisy count publishing is close
to that of the baseline method, and in some cases, it is even worse
than the baseline method. This validates our concerns that the noisy
count publishing method cannot deal with high-dimensional data
and it leads to the columnization technique.

7.2 Columnization
This experiment evaluates the effectiveness of columnization in

Cluster sizes c∗

schema 1 {5} 2
schema 2 {10} 3
schema 3 {50} 6
schema 4 {5, 10} 4
schema 5 {5, 10, 50} 8

Table 2: Five columnization schemas.

00.40.81.21.6
epsilon=1 epsilon=ln(5) epsilon=ln(10)

baseline Schema 1 Schema 2Schema 3 Schema 4 Schema 5original
(a) RMSE V.S. ε

00.40.81.21.6
delta=10^{-7} delta=10^{-5} delta=10^{-3}

baseline Schema 1 Schema 2Schema 3 Schema 4 Schema 5original
(b) RMSE V.S. δ

Figure 3: RMSE for noisy count publishing

handling high-dimensional data. First, we measure correlations be-
tween movies. Let m1 and m2 be two movies and let m1i and m2i

be the the i-th user’s rating on movie m1 and m2, respectively. To
measure the correlation of two movies, we use the cosine similarity
measure:

Sim(m1, m2) =

∑
similarity(m1i, m2i)

|supp(m1) ∪ supp(m2)|
similarity(m1i, m2i) outputs 1 if both ratings are defined and they
are the same; it outputs 0 otherwise. We then apply the k-medoid
algorithm PAM to partition the attributes into c clusters (see Sec-
tion 6.1 for a detailed description of the columnization algorithm).

After we have generated the columnization schema, we split the
data based on the schema and count the number of columns that
a user’s rating may cover; a user’s rating covers a column if the
user rated at least one movie in that column. We bound the num-
ber of columns any user’s rating can cover by c∗. Specifically, if
a user’s rating covers more than c∗ columns, we randomly retain
c∗ columns for that user and remove the user’s ratings in other
columns. We then enforce (ε/c∗, δ/c∗)-differential privacy on each
column.

We choose nMovies = 500 and fUsers = 20% and k = 10
and choose five columnization schemas shown in Table 7.2. For
example, in schema 1, we have 5 columns and we bound c∗ by
2. And in schema 5, we have overlapping columnization which
publishes 5 + 10 + 50 = 65 columns and c∗ is bounded by 8.
All of our experiments are very efficient; for nMovies = 500 and
fUsers = 20%, both columnization and noisy count generation
take only a few minutes.

Figure 3 plots the RMSE for the five columnization schemas,
compared to the baseline method and the original data. Our results
demonstrate that we can actually build accurate statistical learn-

ing models from columnized data while preserving algorithmic pri-
vacy. In Figure 3(a), we fix k = 10 and δ = 10−5 and vary the ε
values. When ε = ln(10), the RMSE errors of schema 2, 4, and 5
are quite close to the RMSE error using the original data. When ε
decreases, the RMSE error increases. In Figure 3(b), we fix k = 10
and ε = ln(5) and vary the δ values. When δ = 10−3, the RMSE
errors of schema 2, 4, and 5 are quite close to the RMSE error us-
ing the original data. When δ decreases, the RMSE error increases.
Since noisy count publishing without columnization fails on this
dataset, the experiments demonstrate that columnnization can be
effectively used for sparse high-dimensional dataset.

When we increase the number of columns, we obtain higher-
density data (where each tuple occurs with a larger frequency
count) but at the cost of the increasing c∗ value. This is a trade-
off shown in our experiments: when we increase the number of
columns from 5 to 10, the RMSE error decreases; however, when
we further increase the number of columns from 10 to 50, the
RMSE error increases. The results also show that overlapping
columnization may not always improve prediction accuracy. In
fact, schema 4 slightly outperforms schema 5 in most experiments.

8. RELATED WORK
In the interest of space, we focus on work that publish data to sat-

isfy algorithmic privacy notions such as differential privacy. Differ-
ential privacy [9, 11] represents a major breakthrough in privacy-
preserving data publishing. Most results on differential privacy are
about answering statistical queries, rather than publishing micro-
data. A survey on these results can be found in [12]. The seminal
work of Dwork et al. [13] shows that functions with low sensitivity
can be computed accurately. A function has low sensitivity if re-
moving one tuple in the input data can only change the probability
of any outcome by a small amount. Our matrix-based framework
for noisy count publishing is based on [13] and makes it a practical
technique for releasing microdata.

In [25], McSherry and Talwar proposed an exponential mech-
anism for releasing data with differential privacy. However, their
mechanism is not feasible in practice because it takes time expo-
nential to the size of the possible outputs. Blum et al. [6] consid-
ered synthetic data generation that is useful for a particular class
of queries. Their approach uses the exponential mechanism [25]
and therefore also suffers from the computational constraints. Very
recently, Dwork et al. [14] obtained a number of theoretical results
on the boundary between computational feasibility and infeasibil-
ity for different utility measures. These papers focus on theoretical
studies, and do not include a practical method for anonymizing mi-
crodata while satisfying algorithmic privacy notions.

Differential privacy has been used for a number of real-world
applications. Machanavajjhala et al. [23] gave a formal privacy
analysis for a synthetic data generation method and applied it to
a mapping program for protecting the commuting patterns of the
population in the United States. Korolova et al. [20] considered
publishing search queries and clicks that achieves (ε, δ)-differential
privacy. A similar approach for releasing query logs with differen-
tial privacy was proposed by Gotz et al. [16]. Our work differs
in the following. First, we present a generic method that can be
applied to any relational dataset, rather than dataset of a particu-
lar kind. Second, our method is applicable to high-dimensional
data. Third, existing work satisfies only (ε, δ)-differential privacy
which, as we show in Section 2, does not provide sufficient protec-
tion against re-identification.

In another related work, McSherry and Mironov [24] showed
how to construct recommendation systems, and in particular, the
Netflix movie recommendation system, while satisfying differen-

tial privacy. Their approach ensures that when the recommenda-
tions are viewed as output, they satisfy differential privacy. Their
approach follows the paradigm of statistical query answering and
is not applicable when one needs to publish microdata.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we take a major step towards practical solutions

for publishing microdata while providing rigorous privacy protec-
tion. While ε-differential privacy offers strong protection, there
is no known method for achieving it when publishing microdata.
While existing methods use (ε, δ)-differential privacy, we point out
that this does not protect against real-world privacy concerns such
as re-identification of some records. We introduce semantic k-
anonymity, which combines differential privacy with k-anonymity
and offers practical protection against re-identification even in the
worst case, and complements (ε, δ)-differential privacy. We intro-
duce noisy count publishing that can achieve both (ε, δ)-differential
privacy and semantic k-anonymity. We present the columnization
technique for handling sparse high-dimensional data. Our experi-
ments on the Netflix Prize dataset demonstrate the effectiveness of
our approach. In summary, our approach is very efficient, can pub-
lish a large amount of high-dimensional microdata, and can achieve
strong algorithmic privacy protection.

This work motivates several directions for future research. First,
a major problem that remains open is whether it is possible to
publish microdata while satisfying ε-differential privacy. Perhaps
methods based on perturbation can be used for this purpose. Sec-
ond, we have presented a general approach and filled each step with
a particular algorithm. Other algorithms may be able to fit in these
steps while providing better tradeoff between privacy and utility.
The following are some examples. There may be other ways to
columnize a table, especially for generating overlapping columns.
Generalization can be a useful step after columnization; and it is in-
teresting to find other generalization algorithms that satisfy seman-
tic k-anonymity. The noisy count matrix we propose in this paper
may be improved. It also include parameters that can be tuned; an
interesting question is how to choose such parameters. Finally, it
is an interesting topic to see whether some of the techniques devel-
oped in this paper can be applied to publishing graph data (such as
social network data) while ensuring algorithmic privacy.

10. REFERENCES
[1] C. Aggarwal. On k-anonymity and the curse of

dimensionality. In VLDB, pages 901–909, 2005.
[2] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving

olap. In SIGMOD, pages 251–262, 2005.
[3] S. Agrawal and J. R. Haritsa. A framework for high-accuracy

privacy-preserving mining. In ICDE, pages 193–204, 2005.
[4] M. Barbaro and T. Z. Jr. A face is exposed for aol searcher

no. 4417749. available at http://www.nytimes.com/2006/08/
09/technology/09aol.html?ex=1312776000.

[5] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: the sulq framework. In PODS, pages 128–138,
2005.

[6] A. Blum, K. Ligett, and A. Roth. A learning theory approach
to non-interactive database privacy. In STOC, pages
609–618, 2008.

[7] K. Chaudhuri and N. Mishra. When random sampling
preserves privacy. In CRYPTO, pages 198–213, 2006.

[8] H. Cramer. Mathematical Methods of Statistics. Princeton,
1948.

[9] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[10] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and
unsupervised discretization of continuous features. In ICML,
pages 194–202, 1995.

[11] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.
[12] C. Dwork. Differential privacy: A survey of results. In

TAMC, pages 1–19, 2008.
[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[14] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and
S. Vadhan. On the complexity of differentially private data
release: efficient algorithms and hardness results. In STOC,
pages 381–390, 2009.

[15] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith.
Composition attacks and auxiliary information in data
privacy. In KDD, pages 265–273, 2008.

[16] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and
J. Gehrke. Privacy in search logs. CoRR, abs/0904.0682,
2009.

[17] S. P. Kasiviswanathan and A. Smith. A note on differential
privacy: Defining resistance to arbitrary side information.
CoRR, abs/0803.3946, 2008.

[18] L. Kaufman and P. Rousueeuw. Finding Groups in Data: an
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[19] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. In SIGMOD, pages 217–228, 2006.

[20] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas.
Releasing search queries and clicks privately. In WWW,
pages 171–180, 2009.

[21] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and `-diversity. In ICDE, pages
106–115, 2007.

[22] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. `-diversity: Privacy beyond
k-anonymity. In ICDE, page 24, 2006.

[23] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
ICDE, pages 277–286, 2008.

[24] F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the net. In
KDD, pages 627–636, 2009.

[25] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, 2007.

[26] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In S&P, pages 111–125, 2008.

[27] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In STOC,
pages 75–84, 2007.

[28] P. Samarati. Protecting respondent’s privacy in microdata
release. TKDE, 13(6):1010–1027, 2001.

[29] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical Report
SRI-CSL-98-04, SRI International, 1998.

[30] A. Singhal. Modern information retrieval: A brief overview.
IEEE Data Eng. Bull., 24(4):35–43, 2001.

[31] L. Sweeney. k-anonymity: A model for protecting privacy.
Int. J. Uncertain. Fuzz., 10(5):557–570, 2002.

[32] X. Xiao and Y. Tao. Anatomy: simple and effective privacy

preservation. In VLDB, pages 139–150, 2006.

APPENDIX

Proof of Lemma 1.
PROOF. To prove the first part of the lemma, it suffices to show

that 1 − (1 − wi−1)e
−ε > wi−1 and reεwi−1 > wi−1. The first

inequation is equivalent to (1− wi−1)(1− e−ε) > 0 which holds
since wi−1 > 0 for i > k and e−ε < 1. The second inequation
holds since reε = eε/2 > 1.

It is easy to see that E[Xi] = 0 for 0 ≤ i ≤ k− 1. When i ≥ k,
by the definition of the expected value of a random variable,

E[Xi] = wi

∞∑
j=1

j ×M(i, j)

= wi
1− r

1 + r
× (i−1∑

j=1

j × ri−j +

∞∑
x=i

j × rj−i)

= wi
1

1 + r
× (

(ri− r − r2 − ri+1

1− r
) + (i +

r

1− r
)
)

= wi(i +
ri+1

1− r2
)

The lemma is proved.

Proof of Theorem 7.
PROOF. Consider two datasets D and D′ that differ in one tuple

(let D′ = D \ {t}). Let the c columns that correspond to D be
{D1, D2, · · · , Dc} and the c columns that correspond to D′ be
{D′

1, D
′
2, · · · , D′

c}. Since tuple t covers at most c∗ columns, at
most c∗ columns of D and D′ differ in one tuple and all other
columns are exactly the same. Without loss of generality, let the
the first c∗ columns be the columns where D and D′ differ in one
tuple and for any i > c∗, we have Di = D′

i.
Let the output columns be {X1, X2, · · · , Xc}. Since Di = D′

i

for any i > c∗,
Pr[A(D′

i) = Xi]

Pr[A(Di) = Xi]
= 1. Since all columns satisfy

(ε/c∗, δ/c∗)-differential privacy, for all 1 ≤ i ≤ c∗, with probabil-
ity at least 1− δ/c∗,

e−ε/c∗ ≤ Pr[A(D′
i) = Xi]

Pr[A(Di) = Xi]
≤ eε/c∗

We now show that A∗ satisfies (ε, δ)-differential privacy. First, the
error probability is at most c∗(δ/c∗) = δ. Second, when error does
not occur,

Pr[A∗(D′) = {X1, X2, · · · , Xc}]
Pr[A∗(D) = {X1, X2, · · · , Xc}] =

∏c
i=1

Pr[A(D′
i) = Xi]

Pr[A(Di) = Xi]

=
∏c∗

i=1

Pr[A(D′
i) = Xi]

Pr[A(Di) = Xi]

∈ [e−ε, eε]

Therefore, A∗ ensures (ε, δ)-differential privacy.

