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Congestion Control

Phenomenon: when too much traffic enters into system,

performance degrades

−→ excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does

not occur

−→ congestion control

Need to understand:

•What is congestion?

• How do we prevent or manage it?
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Traffic influx/outflux picture:

traffic in−flight

traffic influx traffic outfluxNetwork

• traffic influx: λ(t) “offered load”

→ rate: bps (or pps) at time t

• traffic outflux: γ(t) “throughput”

→ rate: bps (or pps) at time t

• traffic in-flight: Q(t) “load”

→ volume: total packets in transit at time t
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Examples:

Highway system:

• traffic influx: no. of cars entering highway per second

• traffic outflux: no. of cars exiting highway per second

• traffic in-flight: no. of cars traveling on highway

−→ at time instance t

California Dept. of Transportation (Caltrans)



CS 422 Park

Water faucet and sink:

• traffic influx: water influx per second

• traffic outflux: water outflux per second

• traffic in-flight: water level in sink

−→ “congestion?”

faucet.com

Thermostat . . .
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802.11b WLAN:

• Throughput
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−→ unimodal or bell-shaped

−→ recall: less pronounced in real systems
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802.11b WLAN:

• Collision
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−→ underlying cause of unimodal throughput
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What we can regulate or control:

−→ traffic influx rate λ(t)

Ex.:

• Faucet knob in water sink

• Temperature needle in thermostat

• Cars entering onto highway

• Traffic sent by UDP or TCP

What we cannot control: the rest

−→ except in the long run: bandwidth planning

−→ does scheduling (e.g., FIFO, round robin) help?

−→ Kleinrock’s conservation law: “zero-sum pie”
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How does in-flight traffic or load Q(t) vary?

Consider two time instances t and t + 1.

At time t + 1:

Q(t + 1) = Q(t) + λ(t)− γ(t)

• Q(t): what was there to begin with

• λ(t): what newly arrived

• γ(t): what newly exited (delivered to applications)

• λ(t)− γ(t): net influx

• Q(t) cannot be negative

→ Q(t + 1) = max{0, Q(t) + λ(t)− γ(t)}
• missing item?
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Pseudo Real-Time Multimedia Streaming

−→ e.g., RealPlayer, Rhapsody, Internet radio

−→ “pseudo” because of prefetching trick

−→ application is given headstart: few seconds

Goal: fill buffer & prevent from becoming empty

Method:

• prefetch X seconds worth of data

→ e.g., audio and video

• initial delayed playback

→ penalty incurred by pseudo real-time

• keep fetching audio/video data such that X seconds

worth of future data resides in receiver’s buffer

→ allows hiding of spurious congestion

→ user: continuous playback experience
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Pseudo real-time app architecture:

−→ traffic control component

λ (t) γ

Sender Receiver

Buffer

Q Q(t)*

• Q(t): current buffer level

• Q∗: desired buffer level

• γ: throughput, i.e., playback rate

→ e.g., for video 24 frames-per-second (fps)

Goal: vary λ(t) such that Q(t) ≈ Q∗

−→ don’t buffer too much (memory cost)

−→ don’t buffer too little (bumpy road)
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Basic idea:

• if Q(t) = Q∗ do nothing

• if Q(t) < Q∗ increase λ(t)

• if Q(t) > Q∗ decrease λ(t)

−→ “control law”

Protocol implementation:

• control action undertaken at sender

→ smart sender/dump receiver

→ when might the opposite be better?

• receiver informs sender of Q∗ and Q(t)

→ feedback packet (“control signaling”)

→ or just Q∗ −Q(t)

→ or just up/down (binary)

→ depends



CS 422 Park

Other applications:

Router congestion control

−→ active queue management (AQM)

• receiver is a router

• Q∗ is desired buffer occupancy/delay at router

• router throttles sender(s) to maintain Q∗

−→ similar to old source quench message (ICMP)

−→ considered too much messaging overhead
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Slightly modified Internet standard:

−→ ECN (explicit congestion notification)

• two bits in IPv4 TOS field

→ ECT: ECN capable transport (bit 6)

→ CE: congestion experienced (bit 7)

• congested router marks ECT

• supported in most routers, default not turned on

• requires TCP sender/receiver changes

Also proposed to throttle denial-of-service attack traffic

−→ push-back

−→ good guy vs. bad guy problem
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Key question in feedback congestion control: how much

to increase or decrease λ(t)

−→ “control problem”

−→ different specific manifestation (e.g., TCP)

Desired state of the system:

−→ i.e., target operating point

want: Q(t) = Q∗ and λ(t) = γ

Start from:

−→ empty buffer and no sending rate at start

i.e., Q(t) = 0 and λ(t) = 0
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Time evolution (or dynamics): track Q(t) and λ(t)

Q*
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Congestion control methods: A, B, C and D

Method A:

• if Q(t) = Q∗ then λ(t + 1)← λ(t)

• if Q(t) < Q∗ then λ(t + 1)← λ(t) + a

• if Q(t) > Q∗ then λ(t + 1)← λ(t)− a

where a > 0 is a fixed parameter

−→ linear increase and linear decrease

Question: does it work?

Example:

• Q∗ = 100

• γ = 10

• Q(0) = 0

• λ(0) = 0

• a = 1
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With a = 0.5:
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With a = 3:
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With a = 6:
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Remarks:

• Method A isn’t that great no matter what a value is

used

→ keeps oscillating

• Actually: would lead to unbounded oscillation if not

for physical restriction λ(t) ≥ 0 and Q(t) ≥ 0

−→ easily seen: start from non-zero buffer

−→ e.g., Q(0) = 110
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With a = 1, Q(0) = 110, λ(0) = 11:
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Method B:

• if Q(t) = Q∗ then λ(t + 1)← λ(t)

• if Q(t) < Q∗ then λ(t + 1)← λ(t) + a

• if Q(t) > Q∗ then λ(t + 1)← δ · λ(t)

where a > 0 and 0 < δ < 1 are fixed parameters

Note: only decrease part differs from Method A.

−→ linear increase with slope a

−→ exponential decrease with backoff factor δ

−→ e.g., binary backoff in case δ = 1/2

Similar to Ethernet and WLAN backoff

−→ question: does it work?
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With a = 1, δ = 1/2:
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With a = 3, δ = 1/2:
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With a = 1, δ = 1/4:
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With a = 1, δ = 3/4:
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Note:

• Method B isn’t that great either

• One advantage over Method A: doesn’t lead to un-

bounded oscillation

→ note: doesn’t hit “rock bottom”

→ due to asymmetry in increase vs. decrease policy

→ typical “sawtooth” pattern

• Method B is used by TCP

→ linear increase/exponential decrease

→ additive increase/multiplicative decrease (AIMD)

Question: can we do better?

−→ what “freebie” have we not utilized yet?
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Method C:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))

where ε > 0 is a fixed parameter

Tries to adjust magnitude of change as a function of the

gap Q∗ −Q(t)

−→ incorporate distance from target Q∗

−→ before: just the sign (above/below)

Thus:

• if Q∗ −Q(t) > 0, increase λ(t) proportional to gap

• if Q∗ −Q(t) < 0, decrease λ(t) proportional to gap

Trying to be more clever. . .

−→ bottom line: is it any good?
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With ε = 0.1:

0

50

100

150

200

250

0 50 100 150 200

Lo
ad

Time

Load Evolution
Target

0

5

10

15

20

25

30

0 50 100 150 200

La
mb

da

Time

Lambda Evolution
Gamma



CS 422 Park

With ε = 0.5:
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Answer: no

−→ looks good

−→ but looks can be deceiving

Time to try something strange

−→ any (crazy) ideas?

−→ good for course project (assuming it works)
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Method D:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))− β(λ(t)− γ)

where ε > 0 and β > 0 are fixed parameters

−→ odd looking modification to Method C

−→ additional term −β(λ(t)− γ)

−→ what’s going on?

Sanity check: at desired operating point Q(t) = Q∗ and

λ(t) = γ, nothing should move

−→ check with methods A, B and C

−→ fixed-point property

−→ what about Method D?

Now: does Method D get to the targe fixed point?
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With ε = 0.2 and β = 0.5:
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With ε = 0.5 and β = 1.1:
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With ε = 0.1 and β = 1.0:
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Remarks:

• Method D has desired behavior

• Is superior to Methods A, B, and C

• No unbounded oscillation

• In fact, dampening and convergence to desired oper-

ating point

→ converges to target operating point (Q∗, γ)

→ asymptotic stability
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Why does it work?

What is the role of the −β(λ(t)− γ) term in the control

law:

λ(t + 1)← λ(t) + ε(Q∗ −Q(t))− β(λ(t)− γ)

Need to look beneath the hood . . .

−→ ???

−→ intuition


