TCP congestion control

Recall:

where

MaxWindow =

 $\min\{\texttt{AdvertisedWindow}, \texttt{CongestionWindow}\}$

Key question: how to set **CongestionWindow** which, in turn, affects ARQ's sending rate?

- \longrightarrow linear increase/exponential decrease
- \longrightarrow AIMD

TCP congestion control components:

(i) Congestion avoidance

 \longrightarrow linear increase/exponential decrease

 \longrightarrow additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly, but decrease exponentially

Upon receiving ACK:

 $\texttt{CongestionWindow} \leftarrow \texttt{CongestionWindow} + 1$

Upon timeout:

CongestionWindow \leftarrow CongestionWindow / 2

But is it correct...

"Linear increase" time diagram:

 \rightarrow results in exponential increase

 \longrightarrow increase by 1 every window

Upon timeout and exponential backoff,

 $\texttt{SlowStartThreshold} \leftarrow \texttt{CongestionWindow} \, / \, 2$

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

```
\texttt{CongestionWindow} \leftarrow \texttt{CongestionWindow} + 1
```

- Until timeout at start of connection
 - \rightarrow rapidly probe for available bandwidth
- Until CongestionWindow hits SlowStartThreshold following Congestion Avoidance

 \rightarrow rapidly climb to safe level

- \longrightarrow "slow" is a misnomer
- \longrightarrow exponential increase is super-fast

Basic dynamics:

- \longrightarrow after connection set-up
- \longrightarrow before connection tear-down

CongestionWindow evolution:

CongestionWindow

Events (ACK or timeout)

(iii) Exponential timer backoff

```
TimeOut \leftarrow 2 \cdot TimeOut if retransmit
```

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

 \rightarrow segment indicated by ACK value

- Perform exponential backoff and commence Slow Start
 - \longrightarrow three duplicate ACKs: likely segment is lost
 - \longrightarrow react before timeout occurs

TCP Tahoe: features (i)-(iv)

(v) Fast Recovery

Upon Fast Retransmit:

- ◆ Skip Slow Start and commence Congestion Avoidance
 → dup ACKs: likely spurious loss
- Insert "inflationary" phase just before Congestion Avoidance

TCP Reno: features (i)-(v)

 \longrightarrow pre-dominant form

Many more versions of TCP:

- $\longrightarrow\,$ NewReno w/ SACK, w/o SACK, Vegas, etc.
- \longrightarrow wireless, ECN, multiple time scale
- \longrightarrow mixed verdict; pros/cons

Given sawtooth behavior of TCP's linear increase/exponential backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD (Method B) is not appropriate

 \rightarrow use Method D

- For unimodal case—throughput decreases when system load is excessive—story is more complicated
 - \rightarrow asymmetry in control law needed for stability

Congestion Control: Selfishness, Stability and Optimality

- \longrightarrow to be, or not to be, selfish . . .
- \longrightarrow noncooperative game theory
- \longrightarrow John von Neumann, John Nash, . . .

Congestion and "tragedy of commons":

 \longrightarrow Garrett Hardin, '68

• if everyone acts selfishly, no one wins

 \rightarrow in fact, everyone loses

• can this be prevented?

Two-party congestion control setting:

- \longrightarrow Prisoner's Dilemma game
- \longrightarrow both cooperate (stay silent): 1 year each
- \longrightarrow both selfish (rat on the other): 5 years each
- \longrightarrow one cooperative/one selfish: 9 vs. 0 years

When cast as congestion control game:

- \longrightarrow (a, b): throughput (Mbps) achieved by Alice/Bob
- \longrightarrow what may happen?
- \longrightarrow what do "rational" (w.r.t. selfishness) players do?

Outcome of game with cooperative players?

- \longrightarrow configuration (C,C) with payoff (5,5)
- \longrightarrow system optimal: 5 + 5 = 10 (sum of payoffs)
- \longrightarrow note: (1,9) and (9,1) are also system optimal
- \longrightarrow also Pareto optimal

Def. (Pareto optimality): A system state or configuration is Pareto optimal if total system payoff cannot be improved without sacrificing one (or more) player's payoff.

- \longrightarrow improvement requires "sacrificial lamb"
- \longrightarrow welfare notion of overall goodness
- \longrightarrow note: system optimal \Rightarrow Pareto optimal (trivial)
- \longrightarrow (5,5), (1,9), (9,1): Pareto optimal
- \longrightarrow (3,3): not Pareto optimal

Outcome of game with noncooperative (i.e., selfish) players?

- \longrightarrow (N,N) with payoff (3,3)
- \longrightarrow notion of stability: Nash equilibrium

Def. (Nash equilibrium): A configuration is a Nash equilibrium (NE) if no selfish player has an incentive to unilaterally change his/her action.

- \longrightarrow (N,N) with payoff (3,3) is NE
- \longrightarrow Alice, alone, changing N to C: (N,N) \mapsto (C,N)
- \longrightarrow (C,N) has payoff (1,9): bad for Alice
- \longrightarrow Nash equilibrium is a rest point
- \longrightarrow i.e., stable fixed-point (equilibrium)
- \longrightarrow idea: due to John Nash
- \longrightarrow key contribution: dynamics under selfishness

Is congestion control game NE (3,3) system optimal?

- \longrightarrow no: (1,9) and (9,1): total payoff 10 (vs. 6)
- \longrightarrow in fact: system optimal (5,5) is better for both
- \longrightarrow in general, NE need not be system optimal
- \longrightarrow also NE need not be Pareto optimal

Puts a damper on Adam Smith's postulate:

- \longrightarrow wise, efficient "invisible hand" (i.e., "market")
- \longrightarrow economy of selfish users self-organizes efficiently
- \longrightarrow rarely true: Achilles' heel of "pure" capitalism

Karl Marx & communism?

- \longrightarrow fantasy & wishful thinking
- \longrightarrow evolution (hereto) has put premium on selfishness
- \longrightarrow vulnerable to selfish elements
- \longrightarrow Marx & Confucius: both more harm than good?

5 regular (cooperative) TCP flows:

 $\longrightarrow\,$ share 11 Mbps WLAN bottleneck link

4 regular (cooperative) TCP flows and 1 noncooperative TCP flow:

 \rightarrow same benchmark set-up

Remarks:

- NE, in general, are neither efficient nor fair
 - $\rightarrow \exists$ special cases: strong rules/penalties
- in fact, in general, a Nash equilibrium need not exist
 - \rightarrow system subject to oscillation
 - \rightarrow circular "chain reaction"
- Nash's main result (game theory): finite noncooperative games with mixed strategies—choose action probabilistically—always possess equilibrium
 - \rightarrow vs. pure strategy (more in tune with reality)
 - \rightarrow pure strategy games: hard problem
- congestion pricing
 - \rightarrow penalize those who congest: e.g., usage pricing
 - \rightarrow in the States: flat pricing (dominant)
 - \rightarrow not skimpy like the rest of the world!

- repeated/evolutionary games
 - \rightarrow e.g., iterated Prisoner's Dilemma
 - \rightarrow rob bank/get caught, again and again . . .
 - \rightarrow what should the prisoners do then?
 - \rightarrow tit-for-tat, grim trigger: can be optimal
 - \rightarrow most relevant for greedy TCP