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TCP congestion control

Recall:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow}

Key question: how to set CongestionWindow which, in

turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD
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TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,

but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow+ 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .



CS 422 Park

“Linear increase” time diagram:
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What we want:
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Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2



CS 422 Park

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow+ 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast
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Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start
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CongestionWindow evolution:
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(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)
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(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-

ance
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TCP Reno: features (i)-(v)

−→ pre-dominant form

Many more versions of TCP:

−→ NewReno w/ SACK, w/o SACK, Vegas, etc.

−→ wireless, ECN, multiple time scale

−→ mixed verdict; pros/cons
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Given sawtooth behavior of TCP’s linear increase/exponential

backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD

(Method B) is not appropriate

→ use Method D

• For unimodal case—throughput decreases when sys-

tem load is excessive—story is more complicated

→ asymmetry in control law needed for stability
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Congestion Control: Selfishness, Stability and Optimality

−→ to be, or not to be, selfish . . .

−→ noncooperative game theory

−→ John von Neumann, John Nash, . . .

Congestion and “tragedy of commons”:

−→ Garrett Hardin, ’68

Offered Load

Throughput

Congestion

• if everyone acts selfishly, no one wins

→ in fact, everyone loses

• can this be prevented?
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Two-party congestion control setting:

−→ Prisoner’s Dilemma game

−→ both cooperate (stay silent): 1 year each

−→ both selfish (rat on the other): 5 years each

−→ one cooperative/one selfish: 9 vs. 0 years

When cast as congestion control game:
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9, 1 3, 3

−→ (a, b): throughput (Mbps) achieved by Alice/Bob

−→ what may happen?

−→ what do “rational” (w.r.t. selfishness) players do?
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Outcome of game with cooperative players?

−→ configuration (C,C) with payoff (5,5)

−→ system optimal: 5 + 5 = 10 (sum of payoffs)

−→ note: (1,9) and (9,1) are also system optimal

−→ also Pareto optimal

Def. (Pareto optimality): A system state or configuration

is Pareto optimal if total system payoff cannot be im-

proved without sacrificing one (or more) player’s payoff.

−→ improvement requires “sacrificial lamb”

−→ welfare notion of overall goodness

−→ note: system optimal⇒ Pareto optimal (trivial)

−→ (5,5), (1,9), (9,1): Pareto optimal

−→ (3,3): not Pareto optimal
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Outcome of game with noncooperative (i.e., selfish) play-

ers?

−→ (N,N) with payoff (3,3)

−→ notion of stability: Nash equilibrium

Def. (Nash equilibrium): A configuration is a Nash equi-

librium (NE) if no selfish player has an incentive to uni-

laterally change his/her action.

−→ (N,N) with payoff (3,3) is NE

−→ Alice, alone, changing N to C: (N,N) 7→ (C,N)

−→ (C,N) has payoff (1,9): bad for Alice

−→ Nash equilibrium is a rest point

−→ i.e., stable fixed-point (equilibrium)

−→ idea: due to John Nash

−→ key contribution: dynamics under selfishness
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Is congestion control game NE (3,3) system optimal?

−→ no: (1,9) and (9,1): total payoff 10 (vs. 6)

−→ in fact: system optimal (5,5) is better for both

−→ in general, NE need not be system optimal

−→ also NE need not be Pareto optimal

Puts a damper on Adam Smith’s postulate:

−→ wise, efficient “invisible hand” (i.e., “market”)

−→ economy of selfish users self-organizes efficiently

−→ rarely true: Achilles’ heel of “pure” capitalism

Karl Marx & communism?

−→ fantasy & wishful thinking

−→ evolution (hereto) has put premium on selfishness

−→ vulnerable to selfish elements

−→ Marx & Confucius: both more harm than good?
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5 regular (cooperative) TCP flows:

−→ share 11 Mbps WLAN bottleneck link
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4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

−→ same benchmark set-up
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Remarks:

• NE, in general, are neither efficient nor fair

→ ∃ special cases: strong rules/penalties

• in fact, in general, a Nash equilibrium need not exist

→ system subject to oscillation

→ circular “chain reaction”

• Nash’s main result (game theory): finite noncoop-

erative games with mixed strategies—choose action

probabilistically—always possess equilibrium

→ vs. pure strategy (more in tune with reality)

→ pure strategy games: hard problem

• congestion pricing

→ penalize those who congest: e.g., usage pricing

→ in the States: flat pricing (dominant)

→ not skimpy like the rest of the world!
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• repeated/evolutionary games

→ e.g., iterated Prisoner’s Dilemma

→ rob bank/get caught, again and again . . .

→ what should the prisoners do then?

→ tit-for-tat, grim trigger: can be optimal

→ most relevant for greedy TCP


