
CS 422 Park

Congestion Control

Phenomenon: when too much traffic enters into system,

performance degrades

−→ excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does

not occur

−→ not too fast, not too slow

−→ congestion control

−→ first question: what is congestion?

CS 422 Park

Set-up: “traffic influx vs. outflux viewpoint”

traffic in−flight

traffic influx traffic outfluxNetwork

• traffic influx: λ(t) “offered load”

→ rate: bps (or pps) at time t

• traffic outflux: γ(t) “throughput”

→ rate: bps (or pps) at time t

• traffic in-flight: Q(t) “load”

→ volume: total packets in transit at time t

CS 422 Park

Examples:

Highway system:

• traffic influx: no. of cars entering highway per second

• traffic outflux: no. of cars exiting highway per second

• traffic in-flight: no. of cars traveling on highway

−→ at time instance t

California Dept. of Transportation (Caltrans)

CS 422 Park

Water faucet and sink:

• traffic influx: water influx per second

• traffic outflux: water outflux per second

• traffic in-flight: water level in sink

−→ “congestion?”

faucet.com

Thermostat . . .

CS 422 Park

802.11b WLAN:

• Throughput

 3

 3.5

 4

 4.5

 5

 5.5

 3.5 4 4.5 5 5.5 6 6.5

M
A

C
 S

ys
te

m
 T

h
o
u
g
h
p
u
t
(M

b
/s

)

Offered Load (Mb/s)

node 2
node 5

node 10
node 20
node 30
node 50

node 100

−→ unimodal or bell-shaped

−→ recall: less pronounced in real systems

CS 422 Park

What we can regulate or control:

−→ traffic influx rate λ(t)

−→ only decision variable under our control

Ex.:

• Faucet knob in water sink

• Temperature needle in thermostat

• Cars entering onto highway

• Traffic sent by UDP or TCP

What we cannot control: the rest

−→ except in the long run: bandwidth planning

−→ does scheduling (e.g., FIFO, round robin) help?

−→ Kleinrock’s conservation law: “zero-sum pie”

CS 422 Park

How does in-flight traffic or load Q(t) vary?

Consider two time instances t and t + 1.

At time t + 1:

Q(t + 1) = Q(t) + λ(t)− γ(t)

• Q(t): what was there to begin with

• λ(t): what newly arrived

• γ(t): what newly exited (delivered to applications)

• λ(t)− γ(t): net influx

• Q(t) cannot be negative

→ Q(t + 1) = max{0, Q(t) + λ(t)− γ(t)}
• missing item?

CS 422 Park

Pseudo Real-Time Multimedia Streaming

−→ e.g., RealPlayer, iTunes, Internet radio

−→ “pseudo” because of prefetching trick

−→ application is given headstart: few seconds

−→ fill buffer & prevent from becoming empty

Steps involved:

• prefetch X seconds worth of audio/video data

• causes initial delayed playback

→ e.g., a couple of seconds delay after click

• keep fetching audio/video data such that X seconds

worth of future data resides in receiver’s buffer

→ hides spurious congestion from user

→ continuous playback experience

CS 422 Park

Pseudo real-time application architecture:

λ (t) γ

Sender Receiver

Buffer

Q Q(t)*

• Q(t): current buffer level

• Q∗: desired buffer level

• γ: throughput, i.e., playback rate

→ e.g., for video 24 frames-per-second (fps)

Goal: vary λ(t) such that Q(t) ≈ Q∗

−→ don’t buffer too much: memory cost

−→ don’t buffer too little: cannot hide congestion

CS 422 Park

Other applications:

−→ pseudo real-time set-up is highly versatile

−→ captures many scenarios

Ex. 1: Router congestion control

−→ active queue management (AQM)

• receiver is a router

• Q∗ is desired buffer occupancy/delay at router

• router throttles sender(s) to maintain Q∗

−→ send control messages to senders

−→ slow down, go faster, stay put

CS 422 Park

Ex. 2: Slightly modified Internet standard

−→ ECN (explicit congestion notification)

• two bits in IPv4 TOS field

→ ECT: ECN capable transport (bit 6)

→ CE: congestion experienced (bit 7)

• congested router marks ECT

• supported in most routers, default not turned on

• requires TCP sender/receiver changes

→ sender slows down if CE bit turned on in ACK

CS 422 Park

Ex. 3: Desktop videoconferencing

−→ e.g., AOL, MSN, Skype, Yahoo

−→ video quality is not good: why?

−→ misconception: network

receiver video quality:
not good (why?)

kernel space

USB/FireWire interface

user space

controller
DMA

IRQ

DMA buffer

kernel buffer

sys
call

transcoding/encoding/
transmission

video camera

Sender PC

...

CS 422 Park

Performance consequences:

hit

miss

0 500 1000 1500 2000

frame index

Video Quality: Miss vs. Hit

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000

ke
rn

e
l b

u
ff

e
r

si
ze

 (
b

yt
e

s)

time (msec)

Kernel Buffer Dynamics

CS 422 Park

Thus: pseudo real-time multimedia streaming application

of congestion control

−→ producer/consumer rate mismatch problem

−→ called “flow control”

−→ origin of “congestion control”

−→ sender-receiver point-to-point link

Note: in OS

−→ focus on orderly access of shared data structure

−→ i.e., kernel buffer

−→ e.g., use of counting semaphores

−→ necessary but insufficient

CS 422 Park

What to do to achieve goal (i.e., Q(t) = Q∗)?

Basic idea:

• if Q(t) = Q∗ do nothing

• if Q(t) < Q∗ increase λ(t)

• if Q(t) > Q∗ decrease λ(t)

−→ “control law”

Protocol implementation:

• control action undertaken at sender

→ smart sender/dump receiver

→ when might the opposite be better?

• receiver informs sender of Q∗ and Q(t)

→ feedback packet (“control signaling”)

→ or up/down (binary)

→ or Q∗ −Q(t)

CS 422 Park

Key question in feedback congestion control: how much

to increase or decrease λ(t)

−→ we already know which direction

Desired state of the system:

−→ i.e., target operating point

want: Q(t) = Q∗ and λ(t) = γ

−→ why can it not be anything else?

Start from:

−→ empty buffer and no sending rate at start

i.e., Q(t) = 0 and λ(t) = 0

CS 422 Park

Time evolution (or dynamics): track Q(t) and λ(t)

Q*

11 2 3 4 5 6 7 8 9 10 11 12 . . .

Q(t)

t

λ (t)

t

γ

11 2 3 4 5 6 7 8 9 10 11 12 . . .

