FUNDAMENTALS OF INFORMATION TRANSMISSION AND CODING (A.K.A. COMMUNICATION THEORY)

Signals and functions

Elementary operation of communication: send signal on medium from A to B.

- media—copper wire, optical fiber, air/space, ...
- signals—voltage and currents, light pulses, radio waves, microwaves, . . .

 \rightarrow electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function s(t).

If s(t) is "sufficiently nice" (Dirichlet conditions) then s(t) can be represented as a linear combination of complex sinusoids:

- \longrightarrow looks complicated
- \longrightarrow underneath: sum of simple building blocks

Simple example:

 \rightarrow sinusoids form basis for other signals

Other examples (man-made & nature):

- \longrightarrow cells, atoms, strings, etc.
- \longrightarrow what's the connection to linear algebra?

Building blocks: analogous to "basis" in linear algebra

other elements (vectors) can be expressed as linear combinations of "elementary" elements (basis vectors)

 \longrightarrow bases like atoms

Ex.: in 3-D, $\{(1,0,0), (0,1,0), (0,0,1)\}$ form a basis. $\longrightarrow (7,2,4) = 7 \cdot (1,0,0) + 2 \cdot (0,1,0) + 4 \cdot (0,0,1)$ \longrightarrow coefficients: 7, 2, 4 \longrightarrow "spectrum"

How many elements are there in a basis?

Vector spaces:

- finite dimensional
 - \rightarrow linear algebra
 - \rightarrow e.g., 7-dimensional: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$
- infinite dimensional: signals
 - $\rightarrow s(t)$: continuously varies with t
 - \rightarrow like infinite number of bases
 - \rightarrow bad news: cannot use linear algebra
 - \rightarrow good news: concepts remain the same
 - \rightarrow math: functional analysis

Given an arbitrary element in the vector space, how to find the coefficient of basis elements?

 \longrightarrow e.g., given (7, 2, 4), coefficient of (0, 1, 0)?

But bases need not be $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

- $\longrightarrow \{(2,0,0), (0,4,0), (0,0,5)\}$ is fine too
- \longrightarrow what's the spectrum of (7, 2, 4)?
- \longrightarrow is {(11, 0, 3), (2, 500, 7), (31, 44, 1)} valid basis?
- \longrightarrow spectrum of (7, 2, 4)?
- \longrightarrow in general, to qualify as a basis . . .

How to calculate coefficients of basis (spectrum)?

Given basis set $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

$$\longrightarrow$$
 (7,2,4) = 7 · (1,0,0) + 2 · (0,1,0) + 4 · (0,0,1)

- \longrightarrow spectrum: 7, 2, 4
- \longrightarrow "read off": cheating!
- \longrightarrow what's the general principle?

Recall "dot product" from linear algebra:

$$\longrightarrow (x_1, x_2, x_3) \circ (y_1, y_2, y_3) = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Ex.:
$$\longrightarrow (1, 0, 0) \circ (1, 0, 0) = 1$$

$$\longrightarrow (1,0,0) \circ (0,1,0) = 0$$

$$\longrightarrow (1,0,0) \circ (0,0,1) = 0$$

What's special about basis set $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$?

How can it be used to calculate spectrum?

To compute spectrum of (1, 0, 0) for (7, 2, 4):

 \longrightarrow take dot product: $(7, 2, 4) \circ (1, 0, 0) = 7$

$$\longrightarrow$$
 why does it work?

Since
$$(7, 2, 4) = 7 \cdot (1, 0, 0) + 2 \cdot (0, 1, 0) + 4 \cdot (0, 0, 1),$$

we have

$$(7, 2, 4) \circ (1, 0, 0)$$

$$= [7 \cdot (1, 0, 0) + 2 \cdot (0, 1, 0) + 4 \cdot (0, 0, 1)] \circ (1, 0, 0)$$

$$= 7 \cdot (1, 0, 0) \circ (1, 0, 0)$$

$$+ 2 \cdot (0, 1, 0) \circ (1, 0, 0)$$

$$+ 4 \cdot (0, 0, 1) \circ (1, 0, 0)$$

$$= 7 \cdot 1 + 2 \cdot 0 + 4 \cdot 0$$

$$= 7$$

 \longrightarrow light bulbs should go off!

$$\longrightarrow$$
 super-powerful trick

Lastly: why do we care about spectra?

 \longrightarrow allows us to focus on what's important Take (7, 2, 4).

- \longrightarrow which building block is most important?
- \longrightarrow (1,0,0) since it's multiplied by 7
- \longrightarrow then comes (0, 1, 0), followed by (0, 0, 1)

From an approximation angle

- \longrightarrow (7,2,4) kind of looks like (7,0,0)
- \longrightarrow (7,0,4) is pretty close
- \longrightarrow (7,2,4) is 100% accurate

In science & engineering:

- \longrightarrow rare luxury to have 100% accurate things
- \longrightarrow typically: must approximate

Ex.:

- compression: JPEG, MPEG are all lossy
 - \rightarrow disk space forces us to approximate
 - \rightarrow luckily human eye (or is it the brain?) does the same
- caching: memory hierarchy
 - \rightarrow "cache \mapsto RAM \mapsto disk"
 - \rightarrow cache contains approximation of memory
 - \rightarrow memory contains approximation of disk
 - \rightarrow luckily it works
 - \rightarrow programs obey locality-of-reference
- etc.

For signals that represent bits in networking

 \longrightarrow take the same attitude

A complicated looking signal s(t) may be replaced by a much simpler looking approximation s'(t)

 \longrightarrow then work with s'(t)

 \longrightarrow keep life simple

- \longrightarrow don't sweat the little things (except when coding)
- \longrightarrow Amdahl's law
- \longrightarrow then there are additional benefits . . .

On to signals: s(t) can be viewed as

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega,$$

 \longrightarrow signal s(t) is a linear combination of the $e^{i\omega t}$'s

$$\longrightarrow$$
 recall: $e^{i\omega t} = \cos \omega t + i \sin \omega t$

- \longrightarrow building block: sine curve
- \longrightarrow basically: weighted sum of sine curves

$$\longrightarrow$$
 fancy name: Fourier expansion

 $\longrightarrow S(\omega)$: coefficient/weight of basis elements

Frequency ω : cycles per second (Hz)

$$\longrightarrow \omega = 1/T$$
 where T is the period

To simplify, we need to know which sine curves contribute most

 \longrightarrow need to know $S(\omega)$

Simple rule to compute $S(\omega)$:

$$S(\omega) = \int_{-\infty}^{\infty} s(t) e^{-i\omega t} dt.$$

 \longrightarrow does it look like a "dot product"?

$$\longrightarrow$$
 to simplify: throw out all sines with "small" $S(\omega)$

$$\longrightarrow$$
 how small is small?

Example: square wave

 $\longrightarrow s(t)$ and $S(\omega)$ profiles

Source: Dept. of Linguistics and Phonetics, Lund University

Random signal (i.e., white noise) has "flat-looking" spectrum.

- \longrightarrow unbounded bandwidth
- \longrightarrow cannot compress
- \longrightarrow what about "snow" on TV screen?

Luckily, most "interesting" functions arising in practice are "special":

- \longrightarrow bandlimited
- \longrightarrow i.e., $S(\omega) = 0$ for $|\omega|$ sufficiently large

$$\longrightarrow$$
 when $S(\omega) \approx 0$, can treat as $S(\omega) = 0$

- \longrightarrow let's approximate!
- \longrightarrow e.g., square wave: cut the tails off $S(\omega)$

Ex.: human auditory system

- \longrightarrow 20 Hz–20 kHz
- \longrightarrow speech is intelligible at 300 Hz–3300 Hz
- \longrightarrow broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

- \longrightarrow bandwidth 3000 Hz
- \longrightarrow copper medium: various grades
- \longrightarrow physical media: damages traveling signals
- \longrightarrow no problem transmitting 3000 Hz signals
- \longrightarrow if transmit 2 GHz signal: corruption large

Both absolute frequency and bandwidth are relevant.

- \longrightarrow baseband vs. broadband
- \longrightarrow high-speed \Leftrightarrow broadband

Manipulate shape of different frequency sinusoids to **simultaneously** carry information (i.e., bits).

- \longrightarrow multi-lane highway analogy
- \longrightarrow different lane \Leftrightarrow different frequency
- \longrightarrow can craft signals to our liking
- \longrightarrow engineering application important for communication