Fundamentals of information transmission AND CODING (A.K.A. COMMUNICATION THEORY)

Signals and functions

Elementary operation of communication: send signal on medium from A to B.

- media-copper wire, optical fiber, air/space, ...
- signals-voltage and currents, light pulses, radio waves, microwaves, ...
\rightarrow electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function $s(t)$.

If $s(t)$ is "sufficiently nice" (Dirichlet conditions) then $s(t)$ can be represented as a linear combination of complex sinusoids:

\longrightarrow looks complicated
\longrightarrow underneath: sum of simple building blocks

Simple example:

\longrightarrow sinusoids form basis for other signals

Other examples (man-made \& nature):

\longrightarrow cells, atoms, strings, etc.
\longrightarrow what's the connection to linear algebra?

Building blocks: analogous to "basis" in linear algebra other elements (vectors) can be expressed as linear combinations of "elementary" elements (basis vectors)
\longrightarrow bases like atoms

Ex.: in 3-D, $\{(1,0,0),(0,1,0),(0,0,1)\}$ form a basis.

$$
\begin{aligned}
& \longrightarrow(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1) \\
& \longrightarrow \text { coefficients: 7, 2, } 4 \\
& \longrightarrow \text { "spectrum" }
\end{aligned}
$$

How many elements are there in a basis?

Vector spaces:

- finite dimensional
\rightarrow linear algebra
\rightarrow e.g., 7-dimensional: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$
- infinite dimensional: signals
$\rightarrow s(t)$: continuously varies with t
\rightarrow like infinite number of bases
\rightarrow bad news: cannot use linear algebra
\rightarrow good news: concepts remain the same
\rightarrow math: functional analysis

Given an arbitrary element in the vector space, how to find the coefficient of basis elements?

$$
\longrightarrow \text { e.g., given }(7,2,4) \text {, coefficient of }(0,1,0) \text { ? }
$$

But bases need not be $\{(1,0,0),(0,1,0),(0,0,1)\}$
$\longrightarrow\{(2,0,0),(0,4,0),(0,0,5)\}$ is fine too
\longrightarrow what's the spectrum of $(7,2,4)$?
\longrightarrow is $\{(11,0,3),(2,500,7),(31,44,1)\}$ valid basis?
\longrightarrow spectrum of $(7,2,4)$?
\longrightarrow in general, to qualify as a basis \ldots

How to calculate coefficients of basis (spectrum)?
Given basis set $\{(1,0,0),(0,1,0),(0,0,1)\}$
$\longrightarrow(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)$
\longrightarrow spectrum: $7,2,4$
\longrightarrow "read off": cheating!
\longrightarrow what's the general principle?

Recall "dot product" from linear algebra:

$$
\longrightarrow \quad\left(x_{1}, x_{2}, x_{3}\right) \circ\left(y_{1}, y_{2}, y_{3}\right)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

Ex.:

$$
\begin{aligned}
& \longrightarrow(1,0,0) \circ(1,0,0)=1 \\
& \longrightarrow(1,0,0) \circ(0,1,0)=0 \\
& \longrightarrow(1,0,0) \circ(0,0,1)=0
\end{aligned}
$$

What's special about basis set $\{(1,0,0),(0,1,0),(0,0,1)\} ?$

How can it be used to calculate spectrum?

To compute spectrum of $(1,0,0)$ for $(7,2,4)$:
\longrightarrow take dot product: $(7,2,4) \circ(1,0,0)=7$
\longrightarrow why does it work?

Since $(7,2,4)=7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)$,
we have
$(7,2,4) \circ(1,0,0)$

$$
\begin{aligned}
& =[7 \cdot(1,0,0)+2 \cdot(0,1,0)+4 \cdot(0,0,1)] \circ(1,0,0) \\
& =7 \cdot(1,0,0) \circ(1,0,0)
\end{aligned}
$$

$$
+2 \cdot(0,1,0) \circ(1,0,0)
$$

$$
+4 \cdot(0,0,1) \circ(1,0,0)
$$

$$
=7 \cdot 1+2 \cdot 0+4 \cdot 0
$$

$$
=7
$$

\longrightarrow light bulbs should go off!
\longrightarrow super-powerful trick

Lastly: why do we care about spectra?
\longrightarrow allows us to focus on what's important

Take (7, 2, 4).
\longrightarrow which building block is most important?
$\longrightarrow(1,0,0)$ since it's multiplied by 7
\longrightarrow then comes $(0,1,0)$, followed by $(0,0,1)$

From an approximation angle

$$
\begin{aligned}
& \longrightarrow(7,2,4) \text { kind of looks like }(7,0,0) \\
& \longrightarrow(7,0,4) \text { is pretty close } \\
& \longrightarrow(7,2,4) \text { is } 100 \% \text { accurate }
\end{aligned}
$$

In science \& engineering:
\longrightarrow rare luxury to have 100% accurate things
\longrightarrow typically: must approximate

Ex.:

- compression: JPEG, MPEG are all lossy
\rightarrow disk space forces us to approximate
\rightarrow luckily human eye (or is it the brain?) does the same
- caching: memory hierarchy
\rightarrow "cache \mapsto RAM \mapsto disk"
\rightarrow cache contains approximation of memory
\rightarrow memory contains approximation of disk
\rightarrow luckily it works
\rightarrow programs obey locality-of-reference
- etc.

For signals that represent bits in networking
\longrightarrow take the same attitude
A complicated looking signal $s(t)$ may be replaced by a much simpler looking approximation $s^{\prime}(t)$
\longrightarrow then work with $s^{\prime}(t)$
\longrightarrow keep life simple
\longrightarrow don't sweat the little things (except when coding)
\longrightarrow Amdahl's law
\longrightarrow then there are additional benefits ...

On to signals: $s(t)$ can be viewed as

$$
s(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) e^{i \omega t} d \omega
$$

\longrightarrow signal $s(t)$ is a linear combination of the $e^{i \omega t}$'s
\longrightarrow recall: $e^{i \omega t}=\cos \omega t+i \sin \omega t$
\longrightarrow building block: sine curve
\longrightarrow basically: weighted sum of sine curves
\longrightarrow fancy name: Fourier expansion
$\longrightarrow S(\omega)$: coefficient/weight of basis elements
Frequency ω : cycles per second (Hz)
$\longrightarrow \omega=1 / T$ where T is the period
To simplify, we need to know which sine curves contribute most
\longrightarrow need to know $S(\omega)$

Simple rule to compute $S(\omega)$:

$$
S(\omega)=\int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t
$$

\longrightarrow does it look like a "dot product"?
\longrightarrow to simplify: throw out all sines with "small" $S(\omega)$
\longrightarrow how small is small?

Example: square wave $\longrightarrow s(t)$ and $S(\omega)$ profiles

Example: audio (e.g., speech) signal

Source: Dept. of Linguistics and Phonetics, Lund University

Random signal (i.e., white noise) has "flat-looking" spectrum.
\longrightarrow unbounded bandwidth
\longrightarrow cannot compress
\longrightarrow what about "snow" on TV screen?

Luckily, most "interesting" functions arising in practice are "special":
\longrightarrow bandlimited
\longrightarrow i.e., $S(\omega)=0$ for $|\omega|$ sufficiently large
\longrightarrow when $S(\omega) \approx 0$, can treat as $S(\omega)=0$
\longrightarrow let's approximate!
\longrightarrow e.g., square wave: cut the tails off $S(\omega)$

Ex.: human auditory system
$\longrightarrow 20 \mathrm{~Hz}-20 \mathrm{kHz}$
\longrightarrow speech is intelligible at $300 \mathrm{~Hz}-3300 \mathrm{~Hz}$
\longrightarrow broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property
\longrightarrow bandwidth 3000 Hz
\longrightarrow copper medium: various grades
\longrightarrow physical media: damages traveling signals
\longrightarrow no problem transmitting 3000 Hz signals
\longrightarrow if transmit 2 GHz signal: corruption large

For communication:

Both absolute frequency and bandwidth are relevant.
\longrightarrow baseband vs. broadband
\longrightarrow high-speed \Leftrightarrow broadband

Manipulate shape of different frequency sinusoids to simultaneously carry information (i.e., bits).
\longrightarrow multi-lane highway analogy
\longrightarrow different lane \Leftrightarrow different frequency
\longrightarrow can craft signals to our liking
\longrightarrow engineering application important for communication

