FUNDAMENTALS OF INFORMATION TRANSMISSION AND CODING (A.K.A. COMMUNICATION THEORY)

Signals and functions

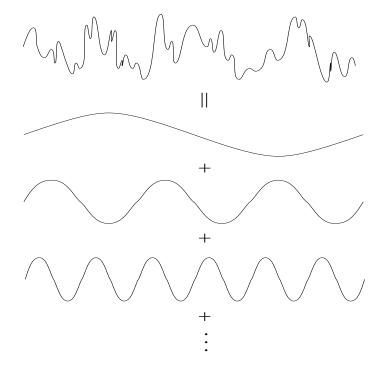
Elementary operation of communication: send signal on medium from A to B.

- \bullet media—copper wire, optical fiber, air/space, \ldots
- signals—voltage and currents, light pulses, radio waves, microwaves, . . .

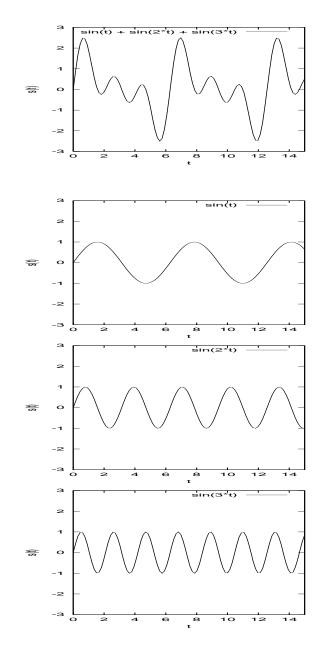
 \rightarrow electromagnetic wave

Signal can be viewed as a time-varying function s(t).

If s(t) is "sufficiently nice" (Dirichlet conditions) then s(t) can be represented as a linear combination of complex sinusoids:



Simple example:



 \rightarrow sinusoids form basis for other signals

Analogous to basis in linear algebra:

other elements can be expressed as linear combinations of elements in the basis set

Ex.: in 3-D, $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ form a basis.

$$\longrightarrow (7,2,4) = 7 \cdot (1,0,0) + 2 \cdot (0,1,0) + 4 \cdot (0,0,1)$$

$$\longrightarrow \text{ coefficients: } 7, 2, 4$$

 \rightarrow spectrum

How many elements are there in a basis?

Vector spaces:

- finite dimensional
- infinite dimensional: signals

Given an arbitrary element in the vector space, how to find the coefficient of basis elements?

 \longrightarrow e.g., given (7, 2, 4), coefficient of (0, 1, 0)?

Fourier expansion and transform:

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega,$$
$$S(\omega) = \int_{-\infty}^{\infty} s(t) e^{-i\omega t} dt.$$

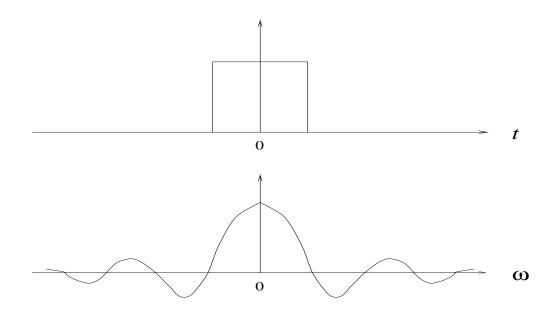
$$\longrightarrow \text{ recall: } e^{i\omega t} = \cos \omega t + i \sin \omega t$$
$$\longrightarrow S(\omega) \text{: coefficient of basis elements}$$
$$\longrightarrow \text{ time domain vs. frequency domain}$$

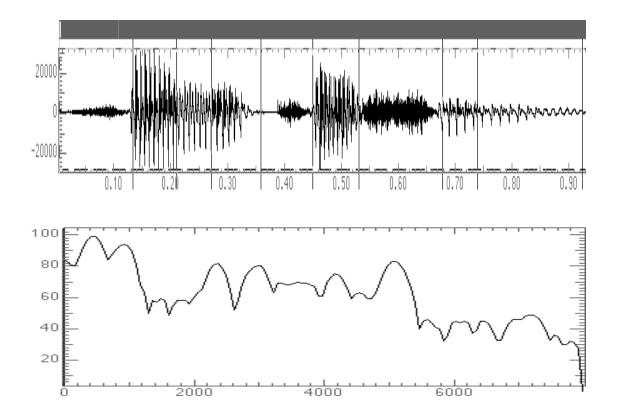
Frequency ω : cycles per second (Hz)

 $\longrightarrow \omega = 1/T$

T: period of sinusoid

Example: square wave





Source: Dept. of Linguistics and Phonetics, Lund University

Random function (i.e., white noise) has "flat-looking" spectrum.

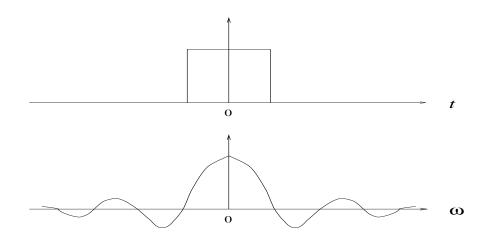
 \longrightarrow unbounded bandwidth

Why bother with frequency domain representation?

- \longrightarrow contains same information . . .
- \longrightarrow i.e., invertible

Luckily, most "interesting" functions arising in practice are "special":

- \longrightarrow bandlimited
- \longrightarrow i.e., $S(\omega) = 0$ for ω sufficiently large
- \longrightarrow when $S(\omega) \approx 0$, can treat as $S(\omega) = 0$
- \longrightarrow let's approximate!
- \longrightarrow e.g., square wave



Ex.: human auditory system

- \longrightarrow 20 Hz–20 kHz
- \longrightarrow speech is intelligible at 300 Hz–3300 Hz
- \longrightarrow broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

- \longrightarrow bandwidth 3000 Hz
- \longrightarrow copper medium: various grades

Digital data vs. analog data

Digital data: bits.

- \longrightarrow discrete signal
- \longrightarrow both in time and amplitude

Analog data: audio/voice, video/image

- \longrightarrow continuous signal
- $\longrightarrow~$ both in time and amplitude
- \longrightarrow analog data is often digitized
- \longrightarrow digital signal processing

How to digitize such that digital representation is faithful?

 \longrightarrow sampling

Sampling theorem (Nyquist): Given continuous bandlimited signal s(t) with $S(\omega) = 0$ for $|\omega| > W$, s(t) can be reconstructed from its samples if

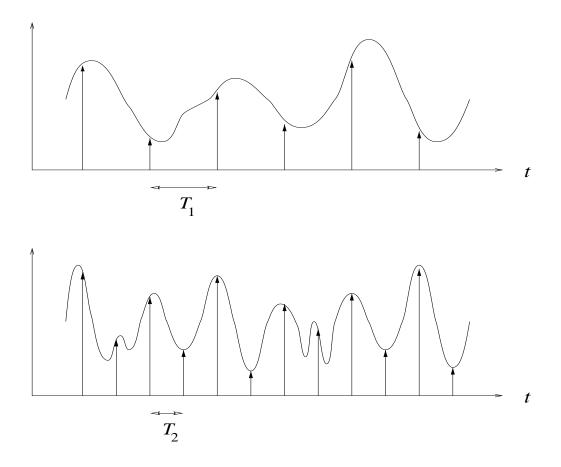
$$\nu > 2W$$

where ν is the sampling rate.

 $\longrightarrow \nu$: samples per second

Quantization issue ignored

 \longrightarrow amplitude must also be digitized



$$\nu_1 = \frac{1}{T_1} < \nu_2 = \frac{1}{T_2}$$