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Fundamentals of information transmission

and coding (a.k.a. communication theory)

Signals and functions

Elementary operation of communication: send signal on

medium from A to B.

• media—copper wire, optical fiber, air/space, . . .

• signals—voltage and currents, light pulses, radio waves,

microwaves, . . .

→ electromagnetic wave

Signal can be viewed as a time-varying function s(t).



CS 422 Park

If s(t) is “sufficiently nice” (Dirichlet conditions) then s(t)

can be represented as a linear combination of complex

sinusoids:
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Simple example:
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−→ sinusoids form basis for other signals
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Analogous to basis in linear algebra:

other elements can be expressed as linear combi-

nations of elements in the basis set

Ex.: in 3-D, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form a basis.

−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ coefficients: 7, 2, 4

−→ spectrum

How many elements are there in a basis?
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Vector spaces:

• finite dimensional

• infinite dimensional: signals

Given an arbitrary element in the vector space, how to

find the coefficient of basis elements?

−→ e.g., given (7, 2, 4), coefficient of (0, 1, 0)?
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Fourier expansion and transform:

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdω,

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt.

−→ recall: eiωt = cos ωt + i sin ωt

−→ S(ω): coefficient of basis elements

−→ time domain vs. frequency domain

Frequency ω: cycles per second (Hz)

−→ ω = 1/T

T : period of sinusoid
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Example: square wave
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Example: audio (e.g., speech) signal

Source: Dept. of Linguistics and Phonetics, Lund University
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Random function (i.e., white noise) has “flat-looking”

spectrum.

−→ unbounded bandwidth

Why bother with frequency domain representation?

−→ contains same information . . .

−→ i.e., invertible
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Luckily, most “interesting” functions arising in practice

are “special”:

−→ bandlimited

−→ i.e., S(ω) = 0 for ω sufficiently large

−→ when S(ω) ≈ 0, can treat as S(ω) = 0

−→ let’s approximate!

−→ e.g., square wave
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Ex.: human auditory system

−→ 20 Hz–20 kHz

−→ speech is intelligible at 300 Hz–3300 Hz

−→ broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

−→ bandwidth 3000 Hz

−→ copper medium: various grades
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Digital data vs. analog data

Digital data: bits.

−→ discrete signal

−→ both in time and amplitude

Analog data: audio/voice, video/image

−→ continuous signal

−→ both in time and amplitude

−→ analog data is often digitized

−→ digital signal processing

How to digitize such that digital representation is faithful?

−→ sampling
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Sampling theorem (Nyquist): Given continuous

bandlimited signal s(t) with S(ω) = 0 for |ω| > W ,

s(t) can be reconstructed from its samples if

ν > 2W

where ν is the sampling rate.

−→ ν: samples per second

Quantization issue ignored

−→ amplitude must also be digitized
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Slowly vs. rapidly varying signal:
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