END-TO-END COMMUNICATION

Goal: Interconnect multiple LANs.

Why?

- Diverse LANs speak different languages
 - \rightarrow need to make them talk to each other
- Need management flexibility
 - \rightarrow global vs. local Internet
 - \rightarrow administrative policy barriers

Problems:

- How to choose paths (routing)?
- How to regulate flow (congestion control)?
 → not too much, not too little
- How to provide service quality (QoS control)?

Packet Switching vs. Circuit Switching

Router/switch design:

- Hardware: ASIC
- Software: fast PC as router or gateway
- Hybrid: network processor
 - \rightarrow programmable

- \longrightarrow fast vs. slow forwarding path
- \longrightarrow interconnection network

Circuit-switched forwarding:

- connection set-up message: signaling
 - \rightarrow how to: routing subsystem
 - \rightarrow different from forwarding subsystem
- source tag "A" inserted into look-up table
 - \rightarrow on-demand, compact look-up table
 - \rightarrow deletion upon termination
 - \rightarrow tag: VPI (virtual path identifier)

- \longrightarrow dispense with connection set-up signaling
- \longrightarrow each packet: autonomous entity

Source routing:

- packet contains path information
 - $\rightarrow \langle A, C, \dots, B \rangle$
- drawback: header length increases with path length \rightarrow not good for fast packet handling
 - \rightarrow why?

Destination-based forwarding:

- determine output port by destination address
- source address ignored
 - \longrightarrow same destination, same path: at any node
 - \longrightarrow Internet packet switching

Internet Protocol (IP)

Goals:

- interconnect diverse LANs into one logical entity
- implement best-effort service
 - \rightarrow no assurances ("what you get is what you get")

 \rightarrow simplicity

Represents:

• common language for carrying out non-LAN-specific conversations

 \rightarrow technical definition of Internet

- functionality and design philosophy
 - \rightarrow simple core / complex edge
 - \rightarrow end-to-end paradigm

- simplifies router design but increases complexity of end stations
- necessitates higher-up functional layer to achieve reliable transmission over unreliable medium

 \rightarrow e.g., implement ARQ at sender/receiver

"Black Box"

Best-effort vs. guaranteed service:

 \rightarrow router must support leasing of bandwidth

IP packet format:

- Header length: in 4 byte (word) units.
- TOS (type-of-service): Partially used.
- 4 bytes used for fragmentation.
- TTL (time-to-live): Prevent cycling (default 64).
- Protocol: demultiplexing key (TCP 6, UDP 17).

LAN has maximum transmission unit (MTU): maximum frame size

 \longrightarrow e.g., Ethernet 1500 B, WLAN 2313 B

- potential size mismatch problem (IP 64 kB)
- may happen multiple times hopping from LAN to LAN

Solution: fragment IP packet when needed, maintain sequencing information, then reassemble at destination.

- assign unique fragmentation ID
- set 3rd flag bit if fragmentation in progress
- sequence fragments using offset in units of 8 bytes

Example: IP fragmentation (Ethernet MTU)

Note: Each fragment is an independent IP packet.

Destination discards all fragments of an IP packet if one is lost.

- \longrightarrow "all for one, one for all"
- \longrightarrow set 2nd flag bit to disable fragmentation

TCP: Negotiate at start-up TCP segment (packet) size based on MTU

 \longrightarrow tries to prevent fragmentation

Dotted decimal notation: 10000000 00001011 00000011 00011111 \leftrightarrow 128.11.3.31

Symbolic name to IP address translation: domain name server (DNS).

Hierarchical organization: 2-level

 \longrightarrow network and host

Each interface (NIU) has an IP address; single host can have multiple IP addresses.

 \longrightarrow single-homed vs. multi-homed

Running out of addresses...

Waste of address space:

 \longrightarrow typical organization: network of networks

 \longrightarrow not too many hosts (class B: 64K)

Solution: subnetting—subdivide host ID into subnetwork ID and host ID

To determine subnet ID:

- AND IP address and subnet mask
 - \rightarrow already know if class A, B, C, or D
- 3-level hierarchy

Subnet ID	Subnet Mask	Next Hop	
128.10.2.0	255.255.255.0	Interface 0	
128.10.3.0	255.255.255.0	Interface 1	
128.10.4.0	255.255.255.0	128.10.4.250	

Forwarding and address resolution:

Either destination host is connected on a shared LAN, or not (additional IP hop needed).

- \longrightarrow reachable by LAN address forwarding
- \longrightarrow if not, network address (IP) forwarding

Table look-up I ("where to"):

- For each entry, compute SubnetID = DestAddr AND SubnetMask.
- Compare *SubnetID* with *SubnetID*.
- Take forwarding action (LAN or IP).

Remaining task: translate destination or next hop IP address into LAN address

- \longrightarrow must be done in either case
- \longrightarrow address resolution protocol (ARP)

Table look-up II ("what's your LAN name"):

• If ARP table contains entry, using LAN address link layer can take over forwarding task.

 \rightarrow ultimately everything is LAN

 \rightarrow network layer: virtual

• If ARP table does not contain entry, broadcast ARP Request packet with destination IP address.

 \rightarrow e.g., Ethernet broadcast address (all 1's)

• Upon receiving ARP response, update ARP table.

Dynamically maintain ARP table: use timer for each entry (15 min) to invalidate entries.

 \longrightarrow aging (old caching technique)

Other approaches to solve address depletion problem:

- IPv6
 - $\rightarrow 128$ bits (who wants it?)
- classless (vs. classful) IP addressing
 - \rightarrow variable length subnetting
 - $\rightarrow a.b.c.d/x$ (x: mask length)
 - \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - \rightarrow used in inter-domain routing
 - \rightarrow CIDR (classless inter-domain routing)
 - \rightarrow de facto Internet addressing standard

- dynamically assigned IP addresses
 - $\rightarrow \text{reusable}$
 - \rightarrow e.g., DHCP (dynamic host configuration protocol)
 - \rightarrow used by access ISPs, enterprises, etc.
 - \rightarrow specifics: network address translation (NAT)
 - \rightarrow private/unregistered vs. public/registered IP address
 - \rightarrow can additionally use port numbers: NAPT

Ex.: SOHO (small office/home office)

 \longrightarrow now: home networking

- dynamic IP address provided by ISP is shared through NAT
- IANA (Internet Assigned Numbers Authority)

 \rightarrow non-routable: e.g., 192.168.0.0/16, 10.0.0/8

Ex.: private backbone (ISP/enterprise) or testbed

 \bullet routers have 10.0.0/8 addresses

 \rightarrow each interface: a separate subnet

- only one of the routers connected to Internet
 - \rightarrow 128.10.27.0/24 address
- PCs connected to routers are dual-homed
 - \rightarrow 10.0.0/8 address & 128.10.27.0/24 address
 - \rightarrow dual-homed forwarding

Transport Protocols: TCP and UDP

- \longrightarrow end-to-end protocol
- \longrightarrow runs on top of network layer protocols
- \longrightarrow treat network layer & below as black box

Three-level encapsulation:

Headers				MAC Trailer
<		>		Å
MAC	IP	TCP/UDP	Payload (TCP/UDP)	
< Payload (IP)				
< Payload (MAC)				

\rightarrow common TCP payload: HTTP

Network layer (IP) assumptions:

- unreliable
- out-of-order delivery (not frequent)
- absence of QoS guarantees (delay, throughput, etc.)
- insecure (IPv4)

 \rightarrow IPsec

Additional (informal) performance properties:

- Works "ok"
- Can break down under high load conditions
 - \rightarrow Atlanta Olympics
 - \rightarrow DoS attack
- Wide behavioral range

Goal of UDP (User Datagram Protocol):

- \longrightarrow process identification
- \longrightarrow port number as demux key
- \longrightarrow minimal support beyond IP

End System O.S.

UDP packet format:

2	2	
Source Port	Destination Port	
Length	Checksum	
Payload		

Checksum calculation (pseudo header):

4

Source Address				
Destination Address				
00 · · · 0	Protocol	UDP Length		

 \longrightarrow

pseudo header, UDP header and payload

UDP usage:

- Multimedia streamining
 - \rightarrow lean and nimble
 - \rightarrow at minimum requires process identification
 - \rightarrow congestion control carried out above UDP
- Stateless client/server applications
 - \rightarrow persistent state a hinderance
 - \rightarrow lightweight