CS 422 Park

Basic TCP data transfer:

2K

H

Seq=0

Ack = 1024, Win = 1024
f Seq = 1024
i 0K
Timer Expires; _ .
v
= 1024
\ 0K

Ack =2048, Win=0
1K

Ack = 2048, Win = 1024
Seq =2048
0K

1K

:

:

CS 422 Park

TCP’s sliding window protocol

LastByteSent
Sender: l
Byte
Stream
LastByteAcked LastByteWritten
Receiver: NextBytjExpected
Byte
XX Stream
LastByteRead LastByteRcvd

e sender, receiver maintain buffers MaxSendBuffer,
MaxRcvBuffer

CS 422 Park

Note asynchrony between TCP module and application.

Sender side: maintain invariants

e LastByteAcked < LastByteSent < LastByteWritten

e LastByteWritten—LastByteAcked < MaxSendBuffer

— buffer flushing (advance window)

—— application blocking
e LastByteSent—LastByteAcked < AdvertisedWindow

Thus,

EffectiveWindow = AdvertisedWindow—

(LastByteSent — LastByteAcked)

— upper bound on new send volume

CS 422 Park

Actually, one additional refinement:

—— CongestionWindow

EffectiveWindow update procedure:

EffectiveWindow = MaxWindow—
(LastByteSent — LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

—— domain of TCP congestion control

CS 422 Park

Recelver side: maintain invariants

e LastByteRead < NextByteExpected <
LastByteRcvd + 1

e LastByteRcvd — NextByteRead < MaxRcvBuffer

— buffer flushing (advance window)

—— application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer—
(LastByteRcvd — LastByteRead)

CS 422 Park

[ssues:

How to let sender know of change in receiver window size
after AdvertisedWindow becomes 07

o tricger ACK event on receiver side when

AdvertisedWindow becomes positive

e sender periodically sends 1-byte probing packet

— design choice: smart sender/dumb receiver

—— same situation for congestion control

CS 422 Park

Silly window syndrome: Assuming receiver buffer is full,
what if application reads one byte at a time with long
pauses’

e can cause excessive 1-byte traffic

e if AdvertisedWindow < MSS then set

AdvertisedWindow <« 0

CS 422 Park

Do not want to send too many 1 B payload packets.

Nagle’s algorithm:

e rule: connection can have only one such unacknowl-
edged packet outstanding

e while waiting for ACK, incoming bytes are accumu-
lated (i.e., buffered)

. compromise between real-time constraints and effi-
clency.

—— useful for telnet-type applications

CS 422 Park

Sequence number wrap-around problem: recall sufficient
condition

SenderWindowSize < (MaxSeqNum + 1)/2
— 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around im-
portant due to possibility of roaming packets.

bandwidth time until wrap-around §
T1 (1.5 Mbps) 6.4 hrs
Ethernet (10 Mbps) 57 min
T3 (45 Mbps) 13 min
F/E (100 Mbps) 6 min
OC-3 (155 Mbps) 4 min
OC-12 (622 Mbps) 55 sec
OC-24 (1.2 Gbps) 28 sec

CS 422 Park

Even more importantly, “keeping-the-pipe-full” consider-

ation.

bandwidth delay-bandwidth product
T1 (1.5 Mbps) 18 kB

Ethernet (10 Mbps) 122 kB

T3 (45 Mbps) 549 kB

FDDI (100 Mbps) 1.2 MB

OC-3 (155 Mbps) 1.8 MB

OC-12 (622 Mbps) 7.4 MB

OC-24 (1.2 Gbps) 14.8 MB

—— 100 ms latency

Also, throughput limitation imposed by TCP receiver
window size.

— e.g., high-performance grid apps

CS 422 Park

RTT estimation

... iImportant to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precau-

tions

EstimateRTT < « - EstimateRTT + [- SampleRTT

e SampleRTT computed by sender using timer
ea+3=1 08<a<0901<5<0.2

e TimeOut « 2 - EstimateRTT or

TimeOut < 2 - TimeOut (if retransmit)

— need to be careful when taking SampleRTT
— infusion of complexity

— still remaining problems

CS 422 Park

Hypothetical RTT distribution:

Samples # Samples

RTT RTT

—— need to account for variance

—— not nearly as nice

CS 422 Park

Jacobson /Karels:

e Difference = SampleRTT — EstimatedRTT
e EstimatedRTT = EstimatedRTT + ¢ - Difference

e Deviation = Deviation+d(|Difference|—Deviation)

Here 0 < 6 < 1.

Finally,

e TimeOut = 4 - EstimatedRTT + ¢ - Deviation

where =1, ¢ = 4.

—— persistence timer

—— how to keep multiple timers in UNIX

