
CS 422 Park

Transport Protocols: TCP/UDP Structure

�! end-to-end mechanism

�! runs on top of link-based mechanism

�! treat network layer as black box

Three-level encapsulation:

TCP/UDPIPMAC Payload (TCP/UDP)

Payload (IP)

Payload (MAC)

MAC TrailerHeaders



CS 422 Park

Network layer assumptions:

� unreliable

� out-of-order delivery (in general)

� absence of QoS guarantees (delay, throughput etc.)

� insecure (IPv4)

Additional (informal) performance properties:

� works \�ne" under low load conditions

� can break down under high load conditions

� behavior range predictable (to certain extent)



CS 422 Park

Goal of UDP: Process identi�cation (\multiplexing").

�! port number as process demux key

Process A

Port X

Process B

Port Y

End System O.S.

UDP

IP

Process A’

Port X’

Process B’

Port Y’

End System O.S.

UDP

IP

Network

� form of end host processing (O.S.)

� generally: end system support (e.g., scheduling)



CS 422 Park

UDP packet format:

Source Port Destination Port

Length Checksum

Payload

2 2

Checksum calculation (pseudo header):

Source Address

Destination Address

4

UDP LengthProtocol00  0. . .



CS 422 Park

Goals of TCP:

� process identi�cation

� reliable communication (ARQ)

� speedy communication (congestion/ow control)

� segmentation

�! connection-oriented (i.e., stateful)

�! complex mixture of functionalities



CS 422 Park

Segmentation task: Provide \stream" interface to higher

level protocols

�! view: contiguous stream of bytes

� segment stream of bytes into blocks or segments of

�xed size

� segment size determined by TCP MTU (Maximum

Transmission Unit)

� use also for reliability mechanism



CS 422 Park

TCP packet format:

Source Port Destination Port

Sequence Number

Acknowledgement Number

Window Size

Urgent Pointer

DATA (if any)

Options (if any)

Checksum

Header
Length

F
I
NN

Y
SR

S
T

P

H
S

A
C
K

U

G
R

2 2



CS 422 Park

� Sequence Number: position of �rst byte of payload

� Acknowledgement: next byte of data expected (re-

ceiver)

� Header Length (4 bits): 4 B units

� URG: urgent pointer ag

� ACK: ACK packet ag

� PSH: override TCP bu�ering

� RST: reset connection

� SYN: establish connection

� FIN: close connection

�Window Size: receiver's advertised window size

� Checksum: prepend pseudo-header

� Urgent Pointer: byte o�set in current payload where

urgent data begins

� Options: MTU; take min of sender & receiver (default

556 B)



CS 422 Park

Checksum calculation (pseudo header):

Source Address

Destination Address

4

UDP LengthProtocol00  0. . .



CS 422 Park

Nagle's algorithm:

� do not want to send too many 1 B payload packets

� rule: connection can have only one such unacknowl-

edged packet outstanding

� while waiting for ACK, incoming bytes are accumu-

lated (i.e., bu�ered)

: : : compromise between real-time constraints and e�-

ciency.

�! useful for telnet-type applications



CS 422 Park

TCP connection establishment (3-way handshake):

A B

SYN = 1,  Seq. No. = X

SYN = 1,  Seq. No. = Y

ACK = 1,  Ack. No. = X + 1

ACK = 1,  Ack. No. = Y + 1

� X , Y are chosen randomly

� piggybacking

� sequence number prediction

� lingering packet problem



CS 422 Park

2-person consensus problem: Are A and B in agreement

about the state of a�airs after 3-way handshake?

�! impossibility, in general

�! lunch date problem



CS 422 Park

Call Collision:

A B

SYN = 1,  Seq. No. = X

SYN = 1,  Seq. No. = Y

SYN = 1,  Seq. No. = Y
Ack. No. = X + 1

SYN = 1,  Seq. No. = X
Ack. No. = Y + 1

�! only single TCB gets allocated

�! unique full association



CS 422 Park

TCP connection termination:

.

.

.
A B

Ack. No. = Y

Ack. No. = X + 1

Ack. No. = Y + 1

FIN = 1,  Seq. No. = Y

FIN = 1,  Seq. No. = X

Seq. No. = X + 1

� full duplex

� half duplex



CS 422 Park

More generally, �nite state machine representation of TCP's

control mechanism:

TCP's State-transition Diagram comes here



CS 422 Park

Features to notice:

� Connection set-up:

{ client's transition to ESTABLISHED state without

ACK

{ how is server to reach ESTABLISHED if client ACK

is lost?

{ TCP: default ACKing executed by all data pack-

ets; no extra overhead incurred

{ note: ESTABLISHED is macrostate

{ not a complete transition diagram

� Connection tear-down:

{ three normal cases

{ special issue with TIME WAIT state



CS 422 Park

Basic TCP data transfer:

0K

0K

A B

Ack = 1024, Win = 1024

Seq = 1024

Ack = 2048, Win = 0

Seq = 1024

Seq =2048

Seq = 0

Timer Expires;
Retransmit

1K

1K

0K

2K

Ack = 2048, Win = 0

Ack = 2048, Win = 1024



CS 422 Park

TCP's sliding window protocol

Stream
Byte

Stream
Byte

Receiver:
NextByteExpected

LastByteRead LastByteRcvd

Sender:

LastByteAcked

LastByteSent

LastByteWritten

� sender, receiver maintain bu�ers MaxSendBuffer,

MaxRcvBuffer



CS 422 Park

Note asynchrony between TCP module and application.

Sender side: maintain invariants

� LastByteAcked � LastByteSent � LastByteWritten

� LastByteWritten�LastByteAcked < MaxSendBuffer

�! bu�er ushing (advance window)

�! application blocking

� LastByteSent�LastByteAcked � AdvertisedWindow

Thus,

EffectiveWindow = AdvertisedWindow�

(LastByteSent� LastByteAcked)

�! upper bound on new send volume



CS 422 Park

Receiver side: maintain invariants

� LastByteRead < NextByteExpected �

LastByteRcvd+ 1

� LastByteRcvd� NextByteRead < MaxRcvBuffer

�! bu�er ushing (advance window)

�! application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer�

(LastByteRcvd� LastByteRead)



CS 422 Park

Three problems:

How to let sender know of changed in receiver window

size after AdvertisedWindow becomes 0?

� trigger ACK event on receiver side when

AdvertisedWindow becomes positive

� sender periodically sends 1-byte probing packet

�! design choice: smart sender/dumb receiver

Silly window syndrome: Assuming receiver bu�er is full,

what if application reads one byte at a time with long

pauses?

� can cause excessive 1-byte tra�c

� if AdvertisedWindow < MSS then set

AdvertisedWindow 0



CS 422 Park

Sequence number wrap-around problem: recall su�cient

condition

SenderWindowSize < (MaxSeqNum+ 1)=2

�! 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around im-

portant due to possibility of roaming packets.

bandwidth time until wrap-around y

T1 (1.5 Mbps) 6.4 hrs

Ethernet (10 Mbps) 57 min

T3 (45 Mbps) 13 min

FDDI (100 Mbps) 6 min

OC-3 (155 Mbps) 4 min

OC-12 (622 Mbps) 55 sec

OC-24 (1.2 Gbps) 28 sec

y From P & D for 32-bit sequence space



CS 422 Park

Even more importantly, \keeping-the-pipe-full" consider-

ation.

bandwidth delay-bandwidth product y

T1 (1.5 Mbps) 18 kB

Ethernet (10 Mbps) 122 kB

T3 (45 Mbps) 549 kB

FDDI (100 Mbps) 1.2 MB

OC-3 (155 Mbps) 1.8 MB

OC-12 (622 Mbps) 7.4 MB

OC-24 (1.2 Gbps) 14.8 MB

y From P & D for 100 ms latency



CS 422 Park

RTT estimation

: : : important to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precau-

tions

EstimateRTT � � EstimateRTT+ � � SampleRTT

� SampleRTT computed by sender using timer

� � + � = 1; 0:8 � � � 0:9, 0:1 � � � 0:2

� TimeOut 2 � EstimateRTT or

TimeOut 2 � TimeOut (if retransmit)

�! need to be careful when taking SampleRTT

�! infusion of complexity

�! still remaining problems



CS 422 Park

Hypothetical RTT distribution:

RTT

# Samples

RTT

# Samples

�! need to account for variance



CS 422 Park

Jacobson/Karels:

� Difference = SampleRTT� EstimatedRTT

� EstimatedRTT = EstimatedRTT+ � � Difference

� Deviation = Deviation+�(jDifferencej�Deviation)

Here 0 < � < 1.

Finally,

� TimeOut = � � EstimatedRTT+ � � Deviation

where � = 1, � = 4.

�! persistence timer

�! how to keep multiple timers in UNIX


