INTRODUCTION

What is a computer network?

Components of a computer network:

- hosts (PCs, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- links (wired, wireless)
- protocols (IP, TCP, CSMA/CD, CSMA/CA)
- applications (network services)
- humans and service agents

Hosts, routers & links form the *hardware* side.

Protocols & applications form the *software* side.

Protocols can be viewed as the "glue" that binds everything else together.

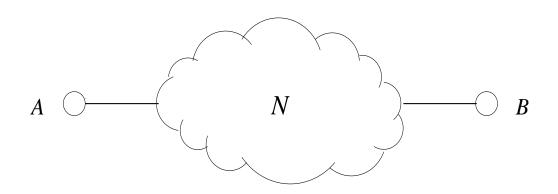
A physical network:

Protocol example: low to high

• NIC (network interface card): hardware

 \rightarrow e.g., Ethernet card, WLAN card

- device driver: part of OS
- ARP, RARP: OS
- \bullet IP: OS
- TCP, UDP: OS
- OSPF, BGP, HTTP: application
- web browser, ssh: application


 \rightarrow multi-layered glue

What is the role of protocols?

 \longrightarrow facilitate communication or networking

Simplest instance of networking problem:

Given two hosts A, B interconnected by some network N, facilitate communication of information between A & B.

Information abstraction

- representation as objects (e.g., files)
- bytes & bits
 - \rightarrow digital form
- signals over physical media (e.g., electromagnetic waves)
 - \rightarrow analog form

Minimal functionality required of A, B

- encoding of information
- decoding of information

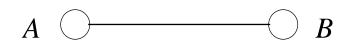
 \longrightarrow data representation & a form of translation

Additional functionalities may be required depending on properties of network ${\cal N}$

- information corruption
 - $\rightarrow 10^{-9}$ for fiber optic cable
 - $\rightarrow 10^{-3}$ or higher for wireless
- information loss: packet drop
- information delay: like toll booth, airport
- information security

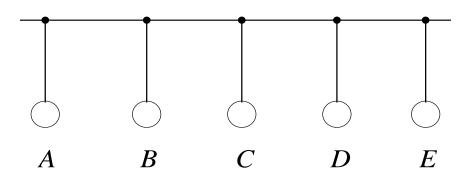
Network N connecting two or more nodes can be

- point-to-point links
- multi-access links
- internetworks
 - \longrightarrow physical vs. logical topology
 - \longrightarrow e.g., peer-to-peer, VPN

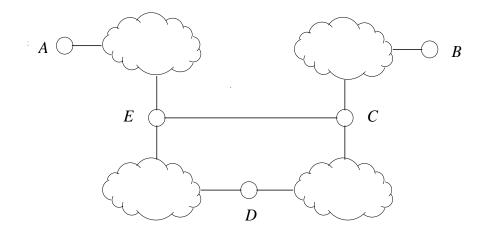

Network medium may be

- \bullet wired
- wireless

Node (e.g., hosts, routers) may be


- stationary
- \bullet mobile

Point-to-point links


- various "cables"
- \bullet line of sight wireless communication
 - \rightarrow directional antennas
- no addressing necessary
 - \rightarrow special case

Multi-access links

- bus (e.g., old Ethernet)
- wireless media
 - \rightarrow omni-directional antennas
- broadcast mode (physical; not logical)
 - \rightarrow listen to everything: promiscuous mode
- access control: i.e., bus arbitration
 - \rightarrow resolve contention and recover from interference
- addressing necessary

Internetwork

- recursive definition
 - \rightarrow point-to-point and multi-access: internetwork
 - \rightarrow composition of one or more internetworks
- addressing necessary
- path selection between sender/receiver: routing
- how much to send: congestion control
- protocol translation: internetworking
- location management: e.g., Mobile IP

LAN (local area network) vs. WAN (wide area network) distinction:

- LAN: point-to-point, multi-access
- WAN: internetwork
 - \longrightarrow geographical distinction is secondary
 - \longrightarrow often go hand-in-hand
 - \longrightarrow counter example?

Myriad of different LAN technologies co-existing in a WAN. For example:

- Fast Ethernet (100 Mbps)
- Gigabit Ethernet (1000 Mbps)
- \bullet WLAN (54 or 11 Mbps)
- FDDI (Fiber Distributed Data Interface)
- wireless Ethernet (11 Mbps, 54 Mbps)
- SONET
- ATM
- modem/DSL

 \longrightarrow WAN is a collection of LANs

Each LAN, in general, speaks a different language.

- \longrightarrow message format
- \longrightarrow procedural differences

Internetworking solves this problem by translating everything to IP ...

 \longrightarrow technical definition of **I**nternet

But:

- \longrightarrow IP is not necessary
- \longrightarrow e.g., large systems of layer 2 switches
- \longrightarrow trend: L2 (70s & 80s) \rightarrow IP (90s) \rightarrow L2 (Y2K+)
- \longrightarrow IP remains central glue

Remark on addresses (aka names):

Communicating entities are *processes* residing on nodes A and B running some operating system.

Thus an *address* must also identify which process a message is destined for on a host.

 \longrightarrow e.g., port number abstraction

Key Issues

Fault-tolerance

- The larger the network, the more things can go wrong.
- E.g.: link/node failures, message corruption, software bugs
- \longrightarrow managing downtime: tier-1 providers
- \longrightarrow 99.999%

Two types of failures:

- independent
- \bullet correlated

In a network system with n components, assume a component fails with independent probability p

 $\longrightarrow~$ expected number of failures: $n\cdot p$

$$\longrightarrow$$
 probability of no failures: $(1-p)^n$

 \longrightarrow probability of k simulaneous failures: p^k

Thus correlated failures have miniscule probability.

 \longrightarrow exponentially small in k

In reality, failures are not independent.

 \longrightarrow e.g., power outage, natural disasters

We have:

 \longrightarrow Murphy's Law

- issue of reliable communication
- reliable network services

 \rightarrow main principle: redundancy

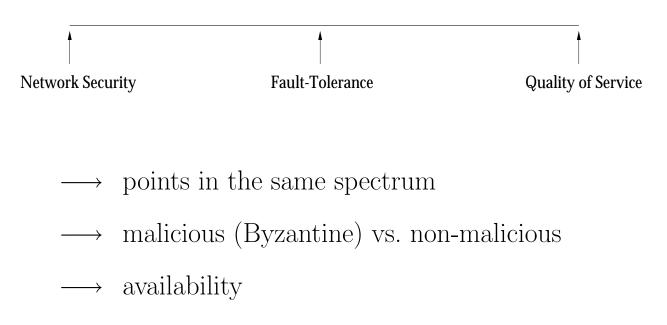
- Examples:
 - routing of messages: alternate/back-up routes
 - domain name servers: duplication
 - transmission by space probes: forward error correction (FEC)
 - \rightarrow also used for multimedia traffic

Network security

Features:

- confidentiality: encryption
- integrity: message has not been tampered
- authentication: sender really is who she claims to be
 - \longrightarrow "CIA"
 - \longrightarrow foundation: cryptography
 - \longrightarrow end-to-end
 - \longrightarrow networking problem?

Modern security vulnerabilities:


- denial of service (DoS) attack
 - \rightarrow e.g., SYN flooding
- distributed DoS (DDoS) attack
 - \rightarrow e.g., commercial, personal, infrastructure
- \bullet worm attacks: e.g., CodeRed, Blaster, \ldots
 - \rightarrow buffer overflow: mainly bugs in MS DLLs
- spam mail (security issue?)

- with fault-tolerance impacts QoS (quality of service)
 - \rightarrow Aug. 04: US broadband deployment exceeds dialup
- security: trade-off with overhead
 - \rightarrow what is the desired operating point?
 - \rightarrow too much \Rightarrow too slow
 - \rightarrow too little \Rightarrow too vulnerable

For example: secure routing (S-BGP)

 \longrightarrow "BBN vs. Cisco"

Big picture:

 \longrightarrow service assurances

<u>Performance</u>

Issues:

- excessive traffic can cause congestion (analogous to highways)
- traffic volume exhibits large fluctuations
 - \rightarrow burstiness
- multimedia traffic is voluminous (even for single user)
- ubiquitous access
 - \rightarrow wired/wireless Internet

Potential for bottleneck development

- \longrightarrow spontaneous or persistent
- \longrightarrow similar consequences as failures

Different applications require different levels of service quality.

Challenges:

- \longrightarrow how to provide customized QoS
- \longrightarrow many users and applications: scalability
- \longrightarrow must interoperate with legacy Internet

Current state:

- overprovisioning
 - \rightarrow "throw bandwidth at the problem"
 - \rightarrow tier-1 ISPs use sophisticated traffic engineering
- still no Internet QoS
 - \rightarrow changing with VoIP and content deployment
- not economic
 - \rightarrow few tier-1 providers make money

Data networking, telephony, and content convergence

\longrightarrow Y2K+ trend

- VoIP (Voice-over-IP): wired world
 - \rightarrow traditional TDM-based telephony system is entirely separate network
 - \rightarrow economic factors are dictating convergence
 - \rightarrow from KaZaA to Skype
- cellular voice networks: 2G, 2.5G, 3G
 - \rightarrow what is 4G?
 - \rightarrow telcos/cellular providers are concerned
 - \rightarrow take-over by WLAN + IP?
 - \rightarrow strategy: active participation

• peer-to-peer: rampant content dissemination

- \rightarrow from audio to movies
- \rightarrow content providers need to get into the action
- \rightarrow do not want to get into the action

\$6 question:

 \longrightarrow what will the wireless/wireline future hold?

Mixture of high bandwidth/low bandwidth networks, wireline/wireless, ...