INTRODUCTION

What is a computer network?

Components of a computer network:

- hosts (PCs, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- links (wired, wireless)
- protocols (IP, TCP, CSMA/CD, CSMA/CA)
- applications (network services)
- humans and service agents

Hosts, routers & links form the *hardware* side.

Protocols & applications form the *software* side.

Protocols can be viewed as the "glue" that binds everything else together.

A physical network:

Protocol example: low to high

• NIC (network interface card): hardware

 \rightarrow e.g., Ethernet card, WLAN card

- device driver: part of OS
- ARP, RARP: OS
- \bullet IP: OS
- TCP, UDP: OS
- OSPF, BGP, HTTP: application
- web browser, ssh: application

 \rightarrow multi-layered glue

What is the role of protocols?

 \longrightarrow facilitate communication or networking

Simplest instance of networking problem:

Given two hosts A, B interconnected by some network N, facilitate communication of information between A & B.

Information abstraction

- objects (e.g., files)
- bytes & bits
 - \rightarrow digital form
- signals over physical media (e.g., electromagnetic waves)
 - \rightarrow analog form

Minimal functionality required of A, B

- encoding of information
- decoding of information

 \longrightarrow data representation & a form of translation

Additional functionalities may be required depending on properties of network ${\cal N}$

- information corruption
 - $\rightarrow 10^{-9}$ for fiber optic cable
 - $\rightarrow 10^{-3}$ or higher for wireless
- information loss: packet drop
- information delay: think of airport
- information security

Network N connecting two or more nodes can be

- point-to-point links
- multi-access links
- internetworks
 - \longrightarrow logical topology point-of-view
 - \longrightarrow may differ from physical topology

Network medium may be

- \bullet wired
- wireless

Node (e.g., hosts, routers) may be

- stationary
- \bullet mobile

Point-to-point links

- various "cables"
- \bullet line of sight wireless communication
 - \rightarrow directional antennas
- no addressing necessary
 - \rightarrow special case

Multi-access links

- bus (e.g., old Ethernet, others)
- wireless media
 - \rightarrow omni-directional antennas
- broadcast mode
- access control: i.e., bus arbitration
 - \rightarrow resolve contention and recover from interference
- addressing necessary

Internetwork

- recursive definition
- addressing necessary
- path selection between sender/receiver: routing
- protocol translation: internetworking
- location management
 - \rightarrow mobile IP

LAN (local area network) vs. WAN (wide area network) distinction:

• LAN: point-to-point, multi-access

 \rightarrow when wireless: WLAN

- WAN: internetwork
 - \longrightarrow geographical distinction is secondary
 - \longrightarrow often go hand-in-hand
 - \longrightarrow counter example?

Myriad of different LAN technologies co-existing in a WAN. For example:

- Fast Ethernet (100 Mbps)
- Gigabit Ethernet (1000 Mbps)
- FDDI (Fiber Distributed Data Interface)
- wireless Ethernet (11 Mbps, 54 Mbps)
- ATM
- SONET
- modem/DSL & PPP

Thus, a network (internetwork), at the base level, is a collection of LANs that are connected together.

Each LAN, in general, speaks a different language.

 \longrightarrow e.g., message format

Internetworking solves this problem by translating everything to IP ...

 \longrightarrow technical definition of **I**nternet

But:

- \longrightarrow not necessary
- \longrightarrow layer 2 switches

Remark on addresses (or names):

Communicating entities are *processes* residing on nodes A and B running some operating system.

Thus an *address* must also identify which process a message is destined for on a host.

 \longrightarrow e.g., port numbers in UNIX

Key Issues

Fault-tolerance

The larger the network, the more things can go wrong.

E.g.: node/link failures, message corruption, lost messages, outdated messages.

In a network system with n components, assume a component fails with independent probability p

 \longrightarrow expected number of failures: $n \cdot p$

- \longrightarrow probability of no failures: $(1-p)^n$
- \longrightarrow probability of k simulaneous failures: p^k

In reality, failures are not independent.

 \longrightarrow e.g., power outage, natural disasters

We have:

 \longrightarrow Murphy's Law

- issue of reliable communication
- reliable network services

 \longrightarrow main principle: redundancy

- For example:
 - routing of messages: alternate/back-up routes
 - domain name servers: duplication
 - transmission by space probes: forward error correction (FEC)

Network security

Features:

- confidentiality: encryption
- integrity: message has not been tampered
- authentication: sender really is who she claims to be
 - \longrightarrow cryptography
 - \longrightarrow end-to-end

Modern security vulnerabilities:

- denial of service (DoS) attack
 - \rightarrow e.g., SYN flooding
- distributed DoS (DDoS) attack
 - \rightarrow e.g., commercial, personal, infrastructure
- virus attacks: e.g., Code Red

- along with fault-tolerance impacts QoS (quality of service)
- trade-off with overhead
 - \longrightarrow what is the desired operating point?
 - \longrightarrow too much \Rightarrow too slow
 - \longrightarrow too little \Rightarrow too vulnerable

Big picture:

<u>Performance</u>

Issues:

- excessive traffic can cause congestion (analogous to highways)
 - \rightarrow differences
- traffic volume exhibits large fluctuations

 \rightarrow burstiness

- multimedia traffic is voluminous even for single user
- ubiquitous access
 - \rightarrow wired/wireless Internet

Thus, potential for bottleneck development.

 \longrightarrow similar consequences as failures

Different applications require different levels of service (fast, slow, accurate, etc.).

- \longrightarrow how to provide customized QoS
- \longrightarrow many users and applications: scalability
- \longrightarrow must interoperate with legacy Internet
- \longrightarrow incremental deployment

Current state:

- overprovisioning
- still no customized QoS
- not economic

Data networking & telephony convergence

Recent developments:

- VoIP (voice-over-IP): wired world
 - \rightarrow traditional TDM-based telephony system is entirely separate network
- cellular voice networks: 2G, 2.5G, 3G
 - \rightarrow what is 4G?
 - \rightarrow telcos/cellular providers are concerned
 - \rightarrow take-over by WLAN + IP?

6 million (or billion/trillion) \$ question:

 \longrightarrow what will the wireless/wireline future hold?

Network performance

Three yardsticks or performance measures:

- throughput: bps or b/s (bits-per-second)
- latency: msec, ms (millisecond)
 - \rightarrow signal propagation speed
- delay: msec and second
 - \rightarrow includes software processing overhead
- jitter: delay variation (standard deviation)

Bandwidth vs. throughput:

bandwidth—maximum data transmission rate achievable at the hardware level; determined by signalling rate of physical link and NIC.

throughput—maximum data transmission rate achievable at the software level; overhead of network protocols inside OS is accounted for.

reliable throughput—maximum reliable data transmission rate achievable at the software level; effect of recovery from transmission errors and packet loss accounted for.

- \longrightarrow "true" measure of communication speed.
- \longrightarrow as opposed to raw throughput
- \longrightarrow point-to-point link: simple
- \longrightarrow multi-hop connection: more complicated

Trend on protocol implementation and overhead side:

migration of protocol software functionality into NICs; NIC is becoming a powerful, semi-autonomous device.

network processors: programmable NICs and more such as forwarding between NICs, i.e., router

- \longrightarrow as opposed to ASIC based devices
- \longrightarrow trade-off between hardware & software
- \longrightarrow boundary between hardware & software blurred

Meaning of "high-speed" networks:

- signal propagation speed is bounded by SOL (speed-of-light)
 - $\rightarrow \sim \! 300 \mathrm{K} \ \mathrm{km/s} \ \mathrm{or} \ \sim \! 186 \mathrm{K} \ \mathrm{miles/s}$
 - \rightarrow optical fiber, copper
 - \rightarrow coast-to-coast latency
 - \rightarrow geostationary satellites: ${\sim}22.2 \mathrm{K}$ miles/s
 - \rightarrow limitation of sending a single bit (e.g., as photon)
- can only increase "bandwidth"
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow simulatenous transmission
 - \rightarrow a single bit does not travel faster

A key issue:

- \longrightarrow fat & length pipes
- \longrightarrow large *delay-bandwidth product*
- \longrightarrow significant damage before recovery
- \longrightarrow e.g., oil pipeline
- \longrightarrow reactive cost
- \longrightarrow characteristic feature of feedback systems

Some units:

Gbps (Gb/s), Mbps (Mb/s), kbps (kb/s):

 10^9 , 10^6 , 10^3 bits per second; indicates data transmission rate; influenced by clock rate (MHz) of signalling hardware; soon Tbps.

 \rightarrow communication rate: factors of 1000

Common bit rates:

- 10 Mbps (10BaseT), 100 Mbps (100BaseT)
- 100 Mbps (FDDI)
- 64kb/s (digitized voice)
- 144kb/s (ISDN line 2B + D service)
- 1.544 Mbps (T1), 44.736 Mbps (T3)
- 155.52 Mbps (OC-3), 622.08 Mbps (OC-12)
- OC-24, OC-48

GB, MB, kB:

2³⁰, 2²⁰, 2¹⁰ bytes; size of data being shipped; influenced by the memory structure of computer; already TB.

- \longrightarrow data size: factors of 1024
- \longrightarrow byte over bit

Common data sizes:

- 512 B, 1 kB (TCP segment size)
- 64 kB (maximum IP packet size)
- 53 B (ATM cell)
- 810 B (SONET frame)

Packet, frame, cell, datagram, message, etc.

 \longrightarrow packet most generic term

Conventional usage

- frame: LAN-level
- datagram: IP packets
- cell: ATM packets
- packet: generic
- PDU (protocol data unit): generic
- message: high-level (e.g., e-mail)

Characteristics of message loss & delay:

(i) Point-to-point link

- Single bit:
 - $\rightarrow \approx L/\text{SOL}$
 - \rightarrow latency
- Multiple, say S, bits:

 $\rightarrow \approx L/\text{SOL} + S/B$

- \rightarrow latency + transmission time
- ... which dominates?

(ii) Multi-hop connection

• Case 1:
$$B_1 = B_2$$

 $\rightarrow = 2(L/\text{SOL} + S/B) + \varepsilon$

 $\rightarrow \varepsilon$: other processing overhead

- Case 2: $B_1 < B_2$
- Case 3: $B_1 > B_2$
 - \rightarrow without memory, i.e., buffer: information loss
 - \rightarrow loss rate = 1 (B₂/B₁) at full throttle
 - \rightarrow with buffer: depends
 - \rightarrow how much buffer space required for no loss?

Example:

- Suppose $B_1 = 2B_2$.
- Suppose transmitting at B_1 bps for 10 seconds.
 - $\rightarrow 5 \text{sec} \times B_1 \text{ bits}$
- Conservation argument:
 - \rightarrow during 10s, 10sec $\times B_1$ bits coming in
 - \rightarrow during the same time, 10sec $\times B_2$ bits going out
 - \rightarrow since $B_2 = B_1/2$, excess 5sec $\times B_1$ bits
 - \rightarrow commensurate holding space for no loss

No loss comes at a cost:

- fast memory is not cheap
- management overhead
- packets have to wait in line for their turn
 - \rightarrow queueing delay
 - \rightarrow how long?

Depends on scheduling.

- FIFO (first-in-first-out) or FCFS
- round robin
- priority queue
- weighted fair queue

 \rightarrow can use TOS field of IPv4 to encode priority

Is adding more and more buffer space a good solution? When is it outright bad?

Is the speed mismatch problem inherent?

 \rightarrow yes and no

