Direct Link Communication I: Wired Media

Reliable Transmission

Principal methodology: ARQ (Automatic Repeat reQuest)

 \longrightarrow use retransmission

 \longrightarrow common to wired/wireless communication

• used at link layer and higher layers (e.g., TCP)

 \rightarrow function duplication

• alternative: FEC

 \rightarrow not assured

Three components:

- timer
- acknowledgment (ACK)
- retransmit

Stop-and-wait

Assumption: Frame is "lost" due to corruption; discarded by NIC after error detection.

Issue of RTT (Round-Trip Time) & timer management:

• what is proper value of timer?

 \rightarrow RTT estimation

- easier for single link
 - \rightarrow RTT is more well-behaved
- more difficult for multi-hop path in internetwork
 - \rightarrow propagation latency + queueing effect

Another key problem: not keeping the pipe full.

- \longrightarrow delay-bandwidth product
- $\longrightarrow~$ volume of data travelling on the link

High throughput: want to keep the pipe full

Stop-and-wait throughput (bps):

- RTT
- frame size (bits)

 \longrightarrow throughput = frame size / RTT

Ex.: Link BW 1.5 Mbps, 45 ms RTT

• delay-bandwidth product:

 $\rightarrow 1.5~{\rm Mbps}\,\times\,45~{\rm ms}=67.5~{\rm kb}\thickapprox 8~{\rm kB}$

• if frame size 1 kB, then throughput:

 $\rightarrow 1024 \times 8/0.045 = 182$ kbps

 \rightarrow utilization: only 182 kbps/1500 kbps = 0.121

 \rightarrow note: same as 1 kB / 8 kB

Solution: increase frame size

- brute increase of frame size can be problematic
- send blocks of data, i.e., sequence of frames

Sliding window protocol

Issues:

- Shield application process from reliability management chore
 - \rightarrow exported semantics: continuous by te stream
 - \rightarrow simple application view: e.g., <code>read</code> system call
- Both sender and receiver have limited buffer capacity
 - \rightarrow efficiency: space-bounded computation
 - \rightarrow task: "plug holes & flush"

Simple solution when receiver has infinite buffer capacity:

- sender keeps sending at maximum speed
- receiver informs sender of holes
- sender retransmits missing frames
 - \longrightarrow sender's buffer capacity?

More complex solution due to bounded space:

• Sliding window technique

 \rightarrow send blocks of packets

- \rightarrow repair holes with positive/negative ACK
- Flow control & congestion control
 - \rightarrow sending too much is counterproductive
 - \rightarrow regulate sending rate

Set-up:

- SWS: Sender Window Size (sender buffer size)
- *RWS*: Receiver Window Size (receiver buffer size)
- LAR: Last ACK Received
- LFS: Last Frame Sent
- *NFE*: Next Frame Expected
- *LFA*: Last Frame Acceptable

Assign sequence numbers to frames.

 \longrightarrow IDs

Maintain invariants:

- $LFA NFE + 1 \le RWS$
- LFS LAR $+ 1 \le$ SWS

Sender:

- Receive ACK with sequence number X
- Forwind LAR to X
- Flush buffer up to (but not including) LAR
- Send up to SWS (LFS LAR + 1) frames
- Update LFS

- \bullet Receive packet with sequence number Y
- Forwind to (new) first hole & update NFE \rightarrow NFE need not be Y + 1
- Send cumulative ACK (i.e., NFE)
- Flush buffer up to (but not including) NFE to application
- Update LFA \leftarrow NFE + RWS 1

ACK variants:

- piggyback
- negative ACKs
- selective ACKs

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1)/2.

 \longrightarrow note: stop-and-wait is special binary case

Multi-Access Communication

Ethernet and CSMA/CD

 \longrightarrow copper, fiber media

Types:

- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- Gigabit & 10 Gbps Ethernet: fiber, category 5 UTP

Connectivity example:

- \longrightarrow physical network: bus (old) vs. switch (new)
- \rightarrow multihomed/singlehomed
- \longrightarrow unique Ethernet address per NIC

Park

Segments can be hooked up by repeaters, bridges, gateways, hubs or switches.

- maximum of 2 (4 for IEEE 802.3) repeaters between two hosts; 1500 m
- for Fast Ethernet, 2 repeater hops

High-bandwidth Ethernets have *shorter* network diameter.

- \bullet about 2500 m for 10 Mbps Ethernet
- about 200 m for 100 Mbps Ethernet
- even shorter for 1 Gbps Ethernet

DIX Ethernet frame:

IEEE 802.3 Ethernet frame:

- \longrightarrow IEEE 802.2 LLC (Logical Link Control)
- \longrightarrow optional feature of LLC: ARQ

Encoding: Manchester

Addressing:

- 48 bit unique address
- point-to-point
- broadcast (all 1's)

Receiver: Ethernet adaptor accepts frames with "relevant" address.

- accepts only own frame address
- accepts all frames: promiscuous mode
 - \rightarrow NIC feature

MAC (Medium Access Control) approaches:

 \longrightarrow i.e., multiplexing problem

- broadband: FDM, CDMA
- baseband: TDM, multiple access
 - \rightarrow why not just use TDM?

Multiple access for baseband:

- Time slots are available for grab
 - \rightarrow like "on-demand" TDM
- To grab is to send
 - \rightarrow speak first (e.g., TV talk shows)
- If ≥ 2 users grab at the same time, slot becomes junk \rightarrow collision

- When not too many users, faster response time
 - \rightarrow don't need to go through registration & reservation phase (TDM)
 - \rightarrow registration: admission control
- Decentralized
 - \rightarrow no central coordinator
 - \rightarrow simple; self-organization

Drawbacks of multiple access:

- When many users, degraded response & throughput \rightarrow collision wastes slots, i.e., bandwidth
- Lack of quality of service assurances
 - \rightarrow "you get what you get"; a form of best effort
 - \rightarrow problematic for real-time traffic, e.g., telephony