Direct Link Communication II: Wired Media

Multi-Access Communication

Two classes:

- contention-based
 - \rightarrow e.g., CSMA/CD, CSMA/CA
 - \rightarrow used in Ethernet, WLAN
- contention-free
 - \rightarrow e.g., TDM, FDM, TDMA, CDMA, token ring
 - \rightarrow one more method?
 - \rightarrow used in telephony and broadband data networks

 \rightarrow also called MAC (medium access control)

- broadband: FDM, TDMA, CDMA
- baseband: TDM, multiple access

Contention-based MAC for baseband:

- \longrightarrow keep in mind discussion group
- \longrightarrow how to keep discussion orderly?

- Time slots are available for grab
 - \rightarrow "on-demand" TDM
- Can listen to channel activity...
- To grab channel slot is to send
 - \rightarrow shoot-first-ask-later (e.g., TV talk shows)
- If ≥ 2 users grab at the same time, slot becomes junk \rightarrow collision

Why not just use TDM?

Benefits of contention-based MAC:

- \bullet when not too many users, faster response time
 - \rightarrow don't need to go through registration & reservation phase (TDM)
 - \rightarrow avoids a dmission control overhead
- \bullet decentralized
 - \rightarrow no central coordinator
 - \rightarrow simple; "self-organization"

Drawbacks of contention-based MAC:

- when many users, degraded response & throughput \rightarrow collision wastes slots, i.e., bandwidth
- lack of QoS (quality of service) assurances
 - \rightarrow "you get is what you get"; best effort
 - \rightarrow problematic for real-time traffic, e.g., telephony

Thus when to use what?

Ethernet and CSMA/CD

 \longrightarrow copper, fiber

Types:

- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base-T: twisted pair, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): category 5 UTP, fiber (also 100VG-AnyLAN)
- \bullet Gigabit & 10 Gbps Ethernet: fiber, category 5 UTP

Connectivity example:

- single-homed vs. multi-homed
- unique Ethernet address per NIC
- \bullet physical network: bus vs. hub vs. switch
 - \rightarrow very old vs. old vs. not-so-old

- \longrightarrow hub: multi-tap junction
- \longrightarrow bus and hub: logically equivalent

Wire segments can be hooked up by repeaters, bridges, hubs or switches.

- maximum of 2 (4 for IEEE 802.3) repeaters between two hosts; 1500 m
- for Fast Ethernet, 2 repeater hops

High-speed Ethernets have shorter network diameter

- \bullet about 2500 m for 10 Mbps Ethernet
- \bullet about 200 m for 100 Mbps Ethernet
- \bullet even shorter for 1 Gbps Ethernet
 - \rightarrow additional complications for medium-haul

IEEE 802.3 Ethernet frame:

 \longrightarrow IEEE 802.2 LLC (Logical Link Control) \longrightarrow common interface to different link protocols Encoding: Manchester

 \longrightarrow recall: Ethernet is baseband

Addressing:

- 48 bit unique address
- point-to-point
- broadcast (all 1's)

Receiver: Ethernet adaptor accepts frames with "relevant" address.

- accepts only own frame address
- accepts all frames: promiscuous mode
 - \rightarrow NIC feature
 - \rightarrow sniffing

CSMA/CD MAC:

• CS (Carrier Sense): can detect if some other node is using the link

 \rightarrow rule: if busy, abstein

• MA (Multiple Access): multiple nodes are allowed simultaneous access

 \rightarrow rule: if channel seems silent, send

• CD (Collision Detection): can detect if collision due to simultaneous access has occured

 \rightarrow rule: if collision, retry later

Wired vs. wireless media:

- \longrightarrow CD is key difference
- \longrightarrow diffcult to detect collision while transmitting

Signal propagation and collision:

Bi-directional propagation

 \longrightarrow terminator absorbs signal: prevent bounce back

 $\longrightarrow \tau$: one-way propagation delay

- sender needs to wait 2τ sec before detecting collision
- for 2500 m length, 51.2 μ s round-trip time (2 τ) \rightarrow fact
- enforce 51.2 μ s slot time
- at 10 Mbps, 512 bits; i.e., minimum frame size \rightarrow assures collision detection

- $\longrightarrow 6 + 6 + 2 + 46 + 4 = 64 \text{ B} = 512 \text{ bits}$
- \longrightarrow note: delay-bandwidth product

Retry upon collision: exponential backoff

- 1. Wait for random $0 \le X \le 51.2 \ \mu s$ before first retry
- 2. On *i*'th collision, wait for $0 \le X \le 2^{i-1} 51.2 \ \mu$ s before next attempt
- 3. Give up if i > 16
 - \longrightarrow a form of stop-and-wait
 - \longrightarrow what's the ACK?
 - \longrightarrow guaranteed reliability?
 - \longrightarrow pretty drastic measure: necessary?

CSMA/CD Throughput

 \rightarrow approximate analysis in simplified setting

Assumptions:

- time is slotted
 - \rightarrow slot duration: 2τ
- k hosts; each host transmits with probability p at every slot
 - \rightarrow transmission behavior among hosts independent
 - \rightarrow transmission behavior across slots independent

New performance metric: utilization (ϱ)

- \longrightarrow fraction of total bandwidth attained
- $\longrightarrow 0 \le \varrho \le 1$
- \longrightarrow captures efficiency and wastage

In slotted CSMA/CD:

- \longrightarrow fraction of usefully used slots
- \longrightarrow what are "uselessly used" slots?

Ex.: snapshot of baseband channel over 10 time slots

- \rightarrow blue: successfully transmitted frames
- \rightarrow brown: collided frames
- \rightarrow utilization ϱ ?

One more viewpoint:

 $\rightarrow\,$ note: useful and useless "periods" alternate

In the long run,

$$\varrho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$

 \rightarrow avrg. length of adjacent "good" and "bad" periods \rightarrow formula holds under mild conditions

Next: calculate E[good] and E[bad]

Fix time slot. Probability that a fixed host acquires the slot successfully

$$p(1-p)^{k-1}$$

Probability that some host acquires the slot

$$\eta = kp(1-p)^{k-1}$$

 \longrightarrow why?

Now, let's be generous and find p that maximizes η \longrightarrow upper bounding

Fact: η is maximized at p = 1/k. Also,

$$\lim_{k \to \infty} \eta = \lim_{k \to \infty} \left(1 - \frac{1}{k} \right)^{k-1} = 1/e.$$

 \longrightarrow many user assumption

 \longrightarrow common practice to simplify expression (valid?)

Probability bad period persists for exactly i slots

$$(1-\eta)^{i-1}\eta$$

Thefore average bad period

$$E[\text{bad}] = \sum_{i=0}^{\infty} i(1-\eta)^{i-1}\eta = 1/\eta$$

E[bad] is in unit of slots. Convert to second:

$$2\tau/\eta = 2\tau e$$

Similarly calculate E[good]; call it γ .

Convert γ to second:

 $\gamma F/B$

where

- F: frame size (bits)
- B: bandwidth (bps)

Putting everything together

$$\varrho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$
$$= \frac{\gamma F/B}{\gamma F/B + 2\tau e}$$
$$= \frac{\gamma F/B}{\gamma F/B + 2Le/c}$$
$$= \frac{1}{1 + (2e/c\gamma)BL/F}$$

where

L: length of wire (meters)c: speed of light (m/s)

What does the formula say?

For example, if B is increased, what must be done to maintain high utilization?

In practice today: switched Ethernet

- contention moved from bus to "single point"
 - \rightarrow switch: star topology
 - \rightarrow analogous to old telephone switch-boards
- Ethernet frames are logically scheduled
 - \rightarrow includes buffering

Diagram of output-buffered switch:

 \longrightarrow interconnection networks (e.g., shuffle-exchange) \longrightarrow switching fabric: hardware

- Ethernet switch emulates CSMA/CD
 - \rightarrow backward compatibility
 - \rightarrow use same frame format
- upon buffer overflow: send collision signal
 - \rightarrow transparent to legacy host NIC
 - \rightarrow awkward: instituted for incremental deployment
 - \rightarrow Internet: new technology must respect legacy
- Ex.: 10Base-T, 100Base-T, 1000Base-T and 1000Base-X
 - \longrightarrow FE: 802.3u; GigE: 802.3ab and 802.3z
 - \longrightarrow negotiation: e.g., full/half duplex
 - \longrightarrow how can GigE overcome length limitation?
 - \longrightarrow e.g., supports 200 m as in FE

Slot time extension:

- frame format remains the same
- \bullet minimum slot time extended from 64 B to 512 B
 - \rightarrow padding: transparent to legacy CSMA/CA
 - \rightarrow also called carrier extension
 - \rightarrow reconciliation sublayer between MAC and PHY

Packet bursting:

- \bullet slot time extension alone problematic
 - \rightarrow small frames: marginal increase in throughput
- allow burst of packets
 - \rightarrow only first packet is padded & burst limit

Longer distances?

 \longrightarrow e.g., 1000Base-LX

Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

- CSMA/CD disabled
 - \rightarrow purely point-to-point link
 - \rightarrow switch-to-switch
 - \rightarrow simpler
 - \rightarrow backward compatibility: not an issue
- flow control
 - \rightarrow pause frame to prevent buffer overflow

QoS: 802.3p

- \longrightarrow frame tagging conveys priority
- \longrightarrow priority classes supported at switches