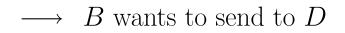
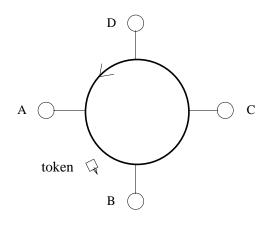
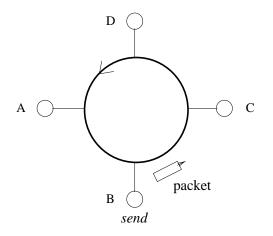
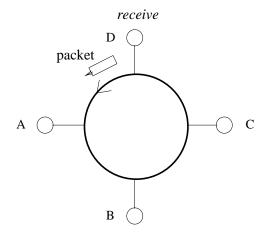
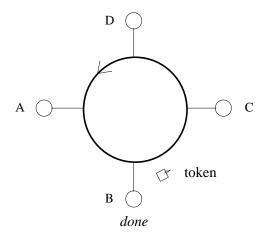

\longrightarrow token ring architecture

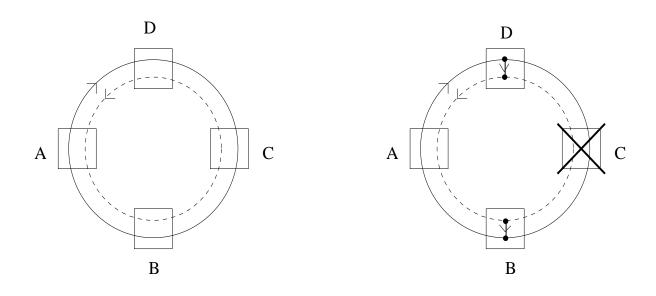

High-bandwidth extension of IBM 4 Mbps token ring and 16 Mbps IEEE 802.5 token ring standard.

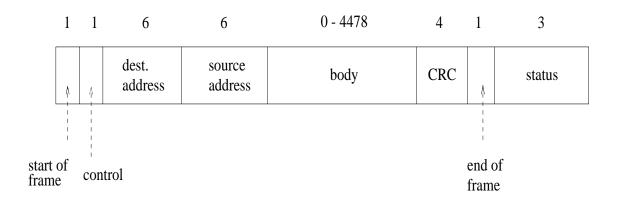

 \rightarrow 100 Mbps bandwidth


Used as high-bandwidth campus/city backbone.


 \rightarrow metropolitan/campus distance: MAN







Fault-tolerance:

- DAS (dual attachment station)
- SAS (single attachment station)

- frame size < 4500 B
- 4B/5B encoding
- synchronous/asynchronous data
- $\bullet~2~{\rm km}$ inter-station distance
- 200 km diameter (multimode fiber); 100 km circumference

Performance issues: fairness and efficiency

- TRT (token rotation time)
- THT (token holding time)

 $TRT = no. of nodes \times THT + link latency$

To increase efficiency: increase THT

- \longrightarrow let station send as much as it needs
- \longrightarrow same as frame size \uparrow
- \longrightarrow THT $\uparrow \implies \rho \uparrow$

To increase fairness: limit THT

 \longrightarrow limit station's one-time sending of data

To facilitate fairness: introduce TTRT (target token rotation time).

THT determining factor (assume TTRT is given):

- prioritized frames: synchronous/asynchronous
- Synchronous frames always get sent.
- If TRT > TTRT, then late; don't send asynchronous data.
- If TRT ≤ TTRT, then early; send asynchronous data for max { TTRT − TRT, single frame time } duration.

How to set TTRT?

- \longrightarrow token claim process
- \longrightarrow initiate when needed (e.g., start-up)
- Each station submits claim frame containing TTRT bid.
- Smaller TTRT bid overrides higher TTRT bids.
 - Compare claim frame bid against own desired TTRT.
 - If less, then reset own TTRT to lower value.
 - If larger, then put lower bid on claim frame and forward.
- Winner: same bid value when claim frame makes full circle.

 \longrightarrow leader election

At the end of the day, consistent TTRT value among all stations.

 \longrightarrow consensus problem

Compare against Ethernet's CSMA/CD.

- \longrightarrow round-robin reservation
- \longrightarrow absence of MA and collision
- \longrightarrow determinism vs. indeterminism
- \longrightarrow imperfect QoS assurance
- \longrightarrow performance vis-à-vis CSMA/CD?

Cooperative vs. noncooperative protocols

- \longrightarrow robust if some users use selfish MAC
- \longrightarrow could be malicious