
- Inter-domain routing
 - \rightarrow border routers vs. backbone routers

- \longrightarrow "peering" between two AS's
- \longrightarrow includes customer-provider relationship
- \longrightarrow exchanges: peering between multiple AS's

- CIDR addressing
 - \rightarrow i.e., a.b.c.d/x
 - \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - \rightarrow check at www.iana.org (e.g., ARIN for US)
- Route table look-up: maximum prefix matching
 - \rightarrow e.g., entries: 128.10.0.0/16 and 128.10.27.0/24
 - \rightarrow destination address 128.10.27.20 matches 128.10.27.0/24 best
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - \rightarrow meaning of "shortest": delay, router hop, AS hop
 - \rightarrow route amplification: shortest AS path \neq shortest router path
 - \rightarrow mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

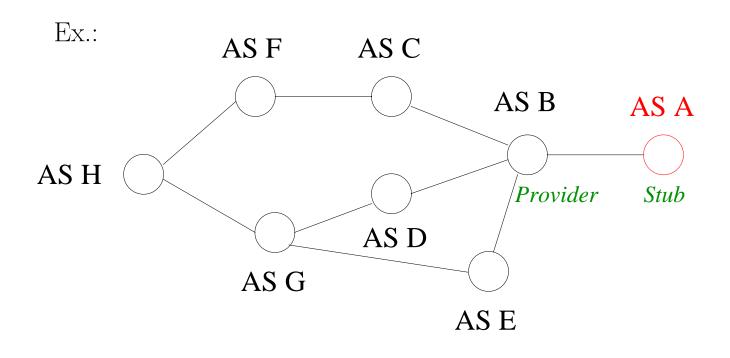
 \longrightarrow BGP update message propagation

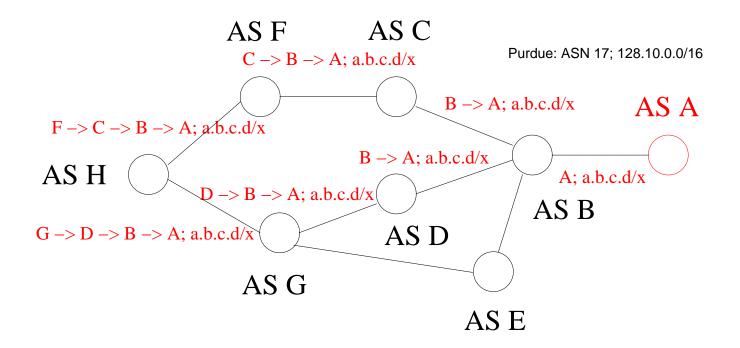
BGP update message:

 $ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1; a.b.c.d/x$

Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

 \longrightarrow "path vector"


 \longrightarrow called AS-PATH


Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537

Policy:

- if multiple AS-PATHs to target AS are known, choose one based on policy
 - \rightarrow e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
 - \rightarrow also subject to policy
 - \rightarrow no obligation to advertise
 - \rightarrow specifics depend on bilateral contract (SLA)
- SLA (service level agreement):
 - \longrightarrow bandwidth (e.g., 1 Gbps, OC-3, DS3
 - \longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)
 - \longrightarrow pricing (e.g., 1 Mbps: below \$100)
 - \longrightarrow availability (e.g., 99.999%)
 - \longrightarrow etc.

Performance

Route update frequency:

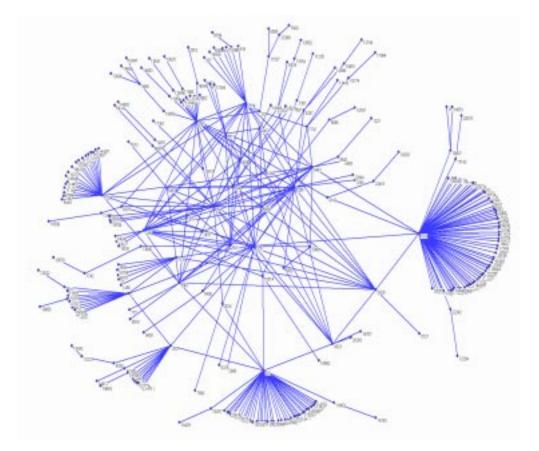
- \longrightarrow routing table stability vs. responsiveness
- \longrightarrow rule: not too frequently
- \longrightarrow 30 seconds
- \longrightarrow stability wins
- \longrightarrow hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

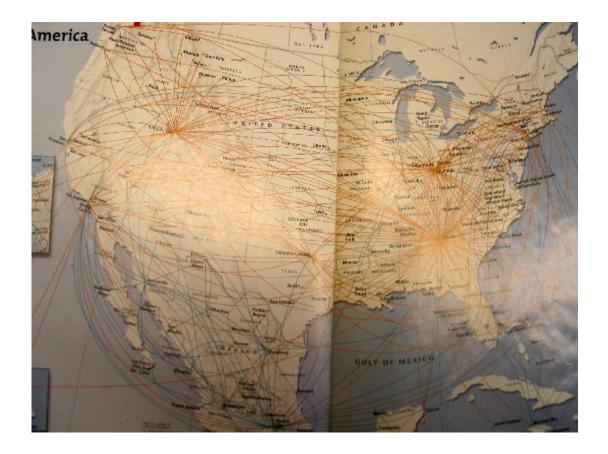
- \longrightarrow selfishness (e.g., fluttering)
- \longrightarrow BGP's vector path routing: inherently unstable
- \longrightarrow more common: slow convergence
- \longrightarrow target of denial-of-service (DoS) attack

Route amplification:

- \longrightarrow shortest AS path \neq shortest router path
- \longrightarrow e.g., may be several router hops longer
- \longrightarrow AS graph vs. router graph
- \longrightarrow inter- vs. intra-domain routing: separate subsystems
- \longrightarrow policy: company in Denmark


Route asymmetry:

- \longrightarrow routes are not symmetric
- \longrightarrow estimate: > 50%
- \longrightarrow mainly artifact of inter-domain policy routing
- \longrightarrow various performance implications
- \longrightarrow source traceback


Black holes:

- \longrightarrow persistent unreachable destination prefixes
- \longrightarrow BGP routing problems
- \longrightarrow further aggrevated by DNS
- \longrightarrow purely application layer: end system problem

- \longrightarrow who is connected to whom
- \longrightarrow Internet AS graph (segment of Jan. 2002)

Ex.: Delta Airlines route map

- \longrightarrow by design: hub and backbone architecture
- \longrightarrow mixture of centralized/decentralized design
- \longrightarrow small system: centralized is good
- \longrightarrow large system: decentralization necessary

Small system with centralized design:

- \longrightarrow star topology
- \longrightarrow e.g., Southwest Airlines

- \longrightarrow essentially two conjoined star topologies
- \longrightarrow a matter of load balancing
- \longrightarrow backbone topology: trivial