Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 - \rightarrow also called "distance vector"
 - \rightarrow metric: hop count
 - \rightarrow UDP
 - → nearest neighbor advertisement
 - → popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
 - \rightarrow also called "link state"
 - \rightarrow metric: average delay
 - \rightarrow directly over IP: protocol number 89
 - \rightarrow broadcasting via flooding
 - \rightarrow popular in larger intra-domain networks

• IS-IS: intra-domain, Dijkstra

- \rightarrow "link state"
- → directly over link layer (e.g., Ethernet)
- \rightarrow more recently: also available over IP
- \rightarrow flooding
- \rightarrow popular in larger intra-domain networks
- Source routing: packet specifies path
 - → implemented in various link layer protocols
 - → ATM call set-up: circuit-switching
 - \rightarrow IPv4/v6: option field
 - \rightarrow mostly disabled
 - \rightarrow large ISPs: sometimes used internally for diagnosis

BGP (Border Gateway Protocol):

- Inter-domain routing
 - \rightarrow border routers vs. backbone routers

Autonomous System B Peering Border Routers

- → "peering" between two AS's
- → includes customer-provider relationship
- → exchanges: peering between multiple AS's

- CIDR addressing
 - \rightarrow i.e., a.b.c.d/x
 - \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - → check at www.iana.org (e.g., ARIN for US)
- Route table look-up: maximum prefix matching
 - \rightarrow e.g., entries: 128.10.0.0/16 and 128.10.27.0/24
 - \rightarrow destination address 128.10.27.20 matches 128.10.27.0/24 best
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - → meaning of "shortest": delay, router hop, AS hop
 - \rightarrow route amplification: shortest AS path \neq shortest router path
 - → mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

→ BGP update message propagation

BGP update message:

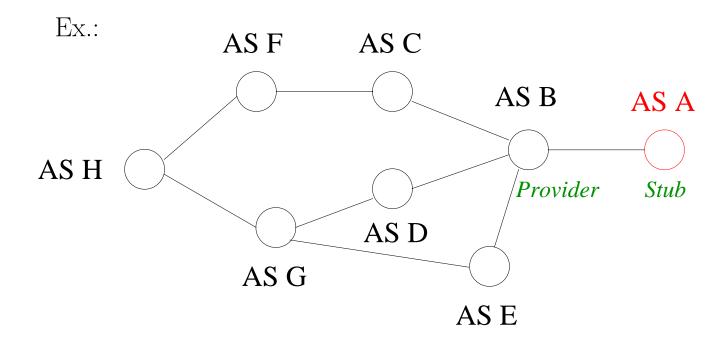
$$ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1$$
; a.b.c.d/x

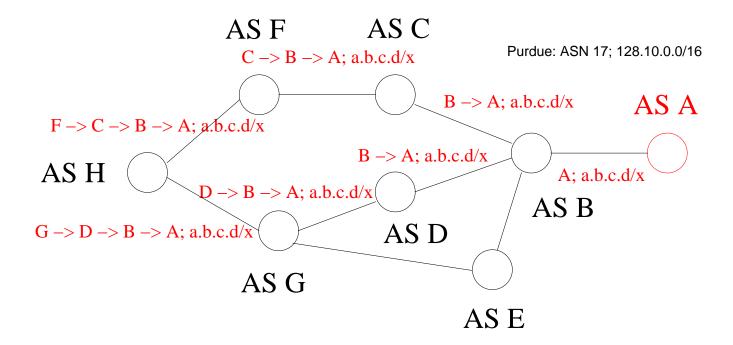
Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

- → "path vector"
- \longrightarrow called AS-PATH

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537


Policy:


• if multiple AS-PATHs to target AS are known, choose one based on policy

- → e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
 - \rightarrow also subject to policy
 - \rightarrow no obligation to advertise
 - \rightarrow specifics depend on bilateral contract (SLA)

SLA (service level agreement):

- → bandwidth (e.g., 10 Gbps, 1 Gbps
- \longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)
- \longrightarrow pricing (e.g., 1 Mbps: below \$100)
- \longrightarrow availability (e.g., 99.999%)
- \longrightarrow etc.

BGP-update procedure:

Upon receiving BGP update message from neighbor to target AS $\cal A$

- 1. Store AS-PATH reachability info for target A
 - \rightarrow AdjIn table (one per neighbor)
- 2. Determine if new path to A should be adopted
 - \rightarrow policy
 - \rightarrow path should be unique
 - → BPG table (locRIB) & IP routing table update
 - \rightarrow inter-domain: IP table update from BGP
- 3. Determine who to advertise reachability for target A
 - \rightarrow selective advertisement

Note: if shortest-path then same as Dijkstra in-reverse

BGP-withdrawal:

- 1. Use BGP keep-alive message to sense neighbor
 - \rightarrow timeout
- 2. If keep-alive does not arrive within timeout, assume node is down
- 3. Send BGP withdraw message for neighbor who is deemed down if no alternative path exists; else send BGP update message
 - \rightarrow may trigger further updates

Other BGP features:

- BGP runs over TCP
 - \rightarrow port number 179
 - \rightarrow i.e., "application layer" protocol
- BPG-4 (1995); secure BGP
 - \rightarrow S-BGP: not implemented yet ("BBN vs. Cisco")

Performance

Route update frequency:

- → routing table stability vs. responsiveness
- → rule: not too frequently
- \longrightarrow 30 seconds
- → stability wins
- → hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

- → selfishness (e.g., fluttering)
- → BGP's vector path routing: inherently unstable
- → more common: slow convergence
- → target of denial-of-service (DoS) attack

Route amplification:

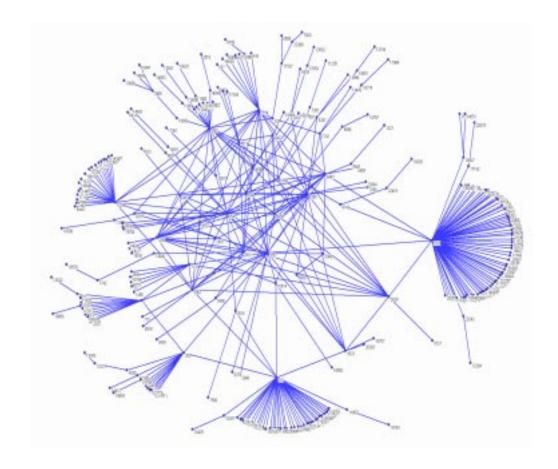
- \longrightarrow shortest AS path \neq shortest router path
- → e.g., may be several router hops longer
- → AS graph vs. router graph
- → inter- vs. intra-domain routing: separate subsystems
- → policy: company in Denmark

Route asymmetry:

- → routes are not symmetric
- \longrightarrow estimate: > 50%
- → mainly artifact of inter-domain policy routing
- → various performance implications
- → source traceback

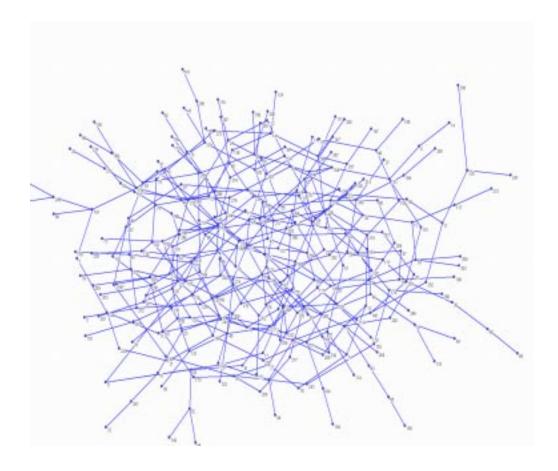
Black holes:

---- persistent unreachable destination prefixes

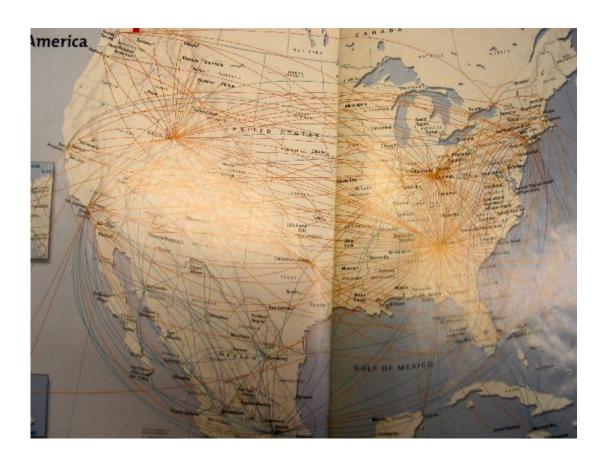

→ BGP routing problems

→ further aggrevated by DNS

---- purely application layer: end system problem


Topology:

- \longrightarrow who is connected to whom
- → Internet AS graph (segment of Jan. 2002)



Contrast with random graph: same number of nodes and edges

- \longrightarrow random graph: choose each link with prob. p
- \longrightarrow independently: prob. of k neighbors is p^k

Ex.: Delta Airlines route map

- → by design: hub and backbone architecture
- → mixture of centralized/decentralized design
- → small system: centralized is good
- → large system: decentralization necessary

Small system with centralized design:

- \longrightarrow star topology
- → e.g., Southwest Airlines

- → essentially two conjoined star topologies
- → a matter of load balancing
- → backbone topology: trivial