Routing

Problem: Given more than one path from source to destination, which one to take?

Features:

- Architecture
- Algorithms
- Implementation
- Performance

Architecture

Hierarchical routing:

 \longrightarrow Internet: intra-domain vs. inter-domain routing

 \longrightarrow separate decision making

Granularity

- Router
- Domain: autonomous system (AS)
 - $\rightarrow 16$ bit identifier

Network representation

- Router graph
- AS graph

Route or path: criteria of goodness

- Hop count
- Delay
 - \rightarrow composed of three parts
- Bandwidth
 - \rightarrow available bandwidth
- Loss rate

Composition of goodness metric:

- \longrightarrow quality of end-to-end path
- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate

Goodness of routing:

- \longrightarrow assume N users or sessions
- \longrightarrow suppose path metric is delay
- System optimal routing
 - \rightarrow choose paths to minimize $\sum_{i=1}^{N} D_i$
- User optimal routing
 - \rightarrow each user *i* chooses path to minimize D_i
 - \rightarrow selfish actions

Pros/cons:

- System optimal routing:
 - $-\operatorname{Good}$: minimizes delay for the system as a whole
 - Bad: complex and difficult to scale
- User optimal routing:
 - Good: simple
 - Bad: may not make efficient use of resources \rightarrow utilization

Some pitfalls of user optimal routing:

 \longrightarrow stemming from selfishness

- Fluttering or ping pong effect
- Braess paradox

Braess paradox example:

- 6 users sending 1 Mbps traffic
- \bullet Delay on shared link increases with traffic volume x
- Users make routing decisions one after the other

- 3 users will take $A \to B \to D$
- 3 users will take $A \to C \to D$
- total delay per user: $(5 \cdot 3 + 1) + (3 + 25) = 44$

Resource provisioning:

 \longrightarrow high bandwidth link is added between B and C

- User 1: $A \to B \to C \to D$ (13)
- User 2: $A \to B \to C \to D$ (23)
- User 3: $A \to B \to C \to D$ (33)
- User 4: $A \to B \to C \to D$ (43)
- User 5: $A \to B \to D$ (52)
- User 6: $A \to C \to D$ (52)

Adding extra link should improve things, but has the opposite effect

- \longrightarrow paradox possible due to selfishness
- \longrightarrow D. Braess (1969)
- \longrightarrow cannot arise in system optimal routing
- \longrightarrow i.e., cooperative routing

Adam Smith: let the "invisible hand" do its work

- $\longrightarrow\,$ doesn't always lead to best outcome
- \longrightarrow capitalism vs. communism

Modus operandi of the Internet: user optimal routing \longrightarrow simplicity wins the day

Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

- Assume p is a shortest path from S to D $\rightarrow S \xrightarrow{p} D$
- Pick any intermediate node X on the path
- Consider the two segments p_1 and p_2 $\rightarrow S \xrightarrow{p_1} X \xrightarrow{p_2} D$
- The path p_1 from S to X is a shortest path, and so is the path p_2 from X to D

 \longrightarrow suggests algorithm for finding shortest path

Procedure: Grow a routing tree \mathcal{T} rooted at source S

 \longrightarrow initially \mathcal{T} only contains S

1. Find a node X with shortest path from S

 \rightarrow there may be more than one such node

 \rightarrow add X (and path $S \xrightarrow{p} X$) to routing tree \mathcal{T}

2. Find node Y with shortest path from \mathcal{T}

 \rightarrow update existing paths if going through Y is shorter

 \rightarrow uses shortest path decomposition property

3. Repeat step two until no more nodes left to add

Observations:

- \longrightarrow once node is added, it's final (no backtracking)
- \longrightarrow builds minimum spanning tree routed at S
- \longrightarrow Dijkstra's algorithm

- Running time: $O(n^2)$ time complexity $\rightarrow n$: number of nodes
- Can also be run "backwards"
 - \rightarrow start from destination D and go to all sources
 - \rightarrow single-destination/all-source shortest path
- \bullet Source S requires global link distance knowledge
 - \rightarrow centralized algorithm (center: source S)
 - \rightarrow every router runs Dijkstra with itself as source

- Internet protocol implementation
 - \rightarrow OSPF (Open Shortest Path First)
 - \rightarrow link state algorithm
- Minimum spanning tree routed at S:
 - \rightarrow multicasting: multicast tree
 - \rightarrow standardized but not implemented on Internet

Distributed/decentralized shortest path algorithm:

- \longrightarrow Bellman-Ford algorithm
- \longrightarrow based on shortest path decomposition property

Key procedure:

- Each node X maintains current shortest distance to all other nodes
 - \rightarrow a distance vector
- Each node advertises to neighbors its current best distance estimates
- A node X, upon receiving an update from neighbor Y, performs update: for all Z

 $d(X,Z) \gets \min\{\, d(X,Z), \ d(Y,Z) + \ell(X,Y) \,\}$

... same criterion as Dijkstra's algorithm

Remarks:

- Running time: $O(n^3)$
- Each source or router only talks to neighbors
 - \rightarrow local interaction
 - \rightarrow no need to send update if no change
 - \rightarrow if change, entire distance vector must be sent
- Knows shortest distance, but not path
 - \rightarrow just the next hop is known
- Elegant but additional issues compared to Dijkstra's algorithm
 - \rightarrow e.g., stability
- Internet protocol implementation
 - \rightarrow RIP (Routing Information Protocol)