Routing

Problem: Given more than one path from source to destination, which one to take?

Features:

- Architecture
- Algorithms
- Implementation
- Performance

Architecture

Hierarchical routing:
\longrightarrow Internet: intra-domain vs. inter-domain routing \longrightarrow separate decision making

Granularity

- Router
- Domain: autonomous system (AS)
$\rightarrow 16$ bit identifier

Network representation

- Router graph
- AS graph

Stub AS

Transit AS

Route or path: criteria of goodness

- Hop count
- Delay
\rightarrow composed of three parts
- Bandwidth
\rightarrow available bandwidth
- Loss rate

Composition of goodness metric:
\longrightarrow quality of end-to-end path

- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate

Goodness of routing:

\longrightarrow assume N users or sessions
\longrightarrow suppose path metric is delay

- System optimal routing
\rightarrow choose paths to minimize $\sum_{i=1}^{N} D_{i}$
- User optimal routing
\rightarrow each user i chooses path to minimize D_{i}
\rightarrow selfish actions

Pros/cons:

- System optimal routing:
- Good: minimizes delay for the system as a whole
- Bad: complex and difficult to scale
- User optimal routing:
- Good: simple
- Bad: may not make efficient use of resources
\rightarrow utilization

Some pitfalls of user optimal routing:
\longrightarrow stemming from selfishness

- Fluttering or ping pong effect
- Braess paradox

Braess paradox example:

- 6 users sending 1 Mbps traffic
- Delay on shared link increases with traffic volume x
- Users make routing decisions one after the other

- 3 users will take $A \rightarrow B \rightarrow D$
- 3 users will take $A \rightarrow C \rightarrow D$
- total delay per user: $(5 \cdot 3+1)+(3+25)=44$

Resource provisioning:
\longrightarrow high bandwidth link is added between B and C

- User 1: $A \rightarrow B \rightarrow C \rightarrow D$ (13)
- User 2: $A \rightarrow B \rightarrow C \rightarrow D$ (23)
- User 3: $A \rightarrow B \rightarrow C \rightarrow D$ (33)
- User 4: $A \rightarrow B \rightarrow C \rightarrow D$ (43)
- User 5: $A \rightarrow B \rightarrow D$ (52)
- User 6: $A \rightarrow C \rightarrow D$ (52)

Adding extra link should improve things, but has the opposite effect
\longrightarrow paradox possible due to selfishness
\longrightarrow D. Braess (1969)
\longrightarrow cannot arise in system optimal routing
\longrightarrow i.e., cooperative routing

Adam Smith: let the "invisible hand" do its work \longrightarrow doesn't always lead to best outcome \longrightarrow capitalism vs. communism

Modus operandi of the Internet: user optimal routing \longrightarrow simplicity wins the day

Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

- Assume p is a shortest path from S to D
$\rightarrow S \xrightarrow{p} D$
- Pick any intermediate node X on the path
- Consider the two segments p_{1} and p_{2}
$\rightarrow S \xrightarrow{p_{1}} X \xrightarrow{p_{2}} D$
- The path p_{1} from S to X is a shortest path, and so is the path p_{2} from X to D

Illustration:

shortest path shortest path
\longrightarrow reverse implication need not hold

Procedure: Grow a routing tree \mathcal{T} rooted at source S
\longrightarrow initially \mathcal{T} only contains S

1. Find a node X with shortest path from S
\rightarrow there may be more than one such node
\rightarrow add X (and path $S \stackrel{p}{\sim} X$) to routing tree \mathcal{T}
2. Find node Y with shortest path from \mathcal{T}
\rightarrow update existing paths if going through Y is shorter
\rightarrow uses shortest path decomposition property
3. Repeat step two until no more nodes left to add

Observations:
\longrightarrow once node is added, it's final (no backtracking)
\longrightarrow builds minimum spanning tree routed at S
\longrightarrow Dijkstra's algorithm

Remarks:

- Running time: $O\left(n^{2}\right)$ time complexity $\rightarrow n$: number of nodes
- Can also be run "backwards"
\rightarrow start from destination D and go to all sources
\rightarrow single-destination/all-source shortest path
- Source S requires global link distance knowledge
\rightarrow centralized algorithm (center: source S)
\rightarrow every router runs Dijkstra with itself as source
- Internet protocol implementation
\rightarrow OSPF (Open Shortest Path First)
\rightarrow link state algorithm
- Minimum spanning tree routed at S :
\rightarrow multicasting: multicast tree
\rightarrow standardized but not implemented on Internet

Distributed/decentralized shortest path algorithm:

\longrightarrow Bellman-Ford algorithm
\longrightarrow based on shortest path decomposition property

Key procedure:

- Each node X maintains current shortest distance to all other nodes
\rightarrow a distance vector
- Each node advertises to neighbors its current best distance estimates
- A node X, upon receiving an update from neighbor Y, performs update: for all Z

$$
d(X, Z) \leftarrow \min \{d(X, Z), d(Y, Z)+\ell(X, Y)\}
$$

... same criterion as Dijkstra's algorithm

Remarks:

- Running time: $O\left(n^{3}\right)$
- Each source or router only talks to neighbors
\rightarrow local interaction
\rightarrow no need to send update if no change
\rightarrow if change, entire distance vector must be sent
- Knows shortest distance, but not path
\rightarrow just the next hop is known
- Elegant but additional issues compared to Dijkstra's algorithm
\rightarrow e.g., stability
- Internet protocol implementation
\rightarrow RIP (Routing Information Protocol)

