QoS routing:

Given two or more performance metrics—e.g., delay and bandwidth—find path with delay less than target delay D(e.g., 100 ms) and bandwidth greater than target bandwidth B (e.g., 1.5 Mbps)

- $\longrightarrow$  from shortest path to best QoS path
- $\longrightarrow$  multi-dimensional QoS metric
- $\longrightarrow$  other: delay, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

- Enumerate all possible paths
- Rank them

• If there are n nodes, there can be up to

$$\frac{n(n-1)}{2}$$

undirected links

 $\bullet$  Hence, from source S there can be up to

$$(n-1)(n-2)\cdots 3\,2\,1 = (n-1)!$$

paths

• By Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

- $\rightarrow$  superexponential
- $\rightarrow$  too many for brute-force

Is there a more clever or better algorithm?

- $\longrightarrow$  as of Apr. 13, 2004: unknown
- $\longrightarrow$  specifically: QoS routing is NP-complete
- $\longrightarrow$  strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete

- $\longrightarrow$  e.g., scheduling, control, ...
- $\longrightarrow$  "P = NP" problem
- $\longrightarrow$  one of the hardest problems in science ever

Doesn't matter too much for QoS routing

 $\longrightarrow$  little demand for very good algorithm

Policy routing:

- $\longrightarrow$  "policy" is not precisely defined
- $\longrightarrow$  anything goes

Routing criteria include

- Performance
  - $\rightarrow$  e.g., shortest path
- Trust
  - $\rightarrow$  what in the world is it?
- Economics
  - $\rightarrow$  pricing
  - $\rightarrow$  flexibility through multiple providers
- Politics, social issues, etc.

## Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
  - $\rightarrow$  also called "distance vector"
  - $\rightarrow$  metric: hop count

 $\rightarrow \text{UDP}$ 

- $\rightarrow$  nearest neighbor advertisement
- $\rightarrow$  popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
  - $\rightarrow$  also called "link state"
  - $\rightarrow$  metric: average delay
  - $\rightarrow$  directly over IP: protocol number 89
  - $\rightarrow$  broadcasting via flooding
  - $\rightarrow$  popular in larger intra-domain networks

Park

- IS-IS: intra-domain, Dijkstra
  - $\rightarrow$  "link state"
  - $\rightarrow$  directly over link layer (e.g., Ethernet)
  - $\rightarrow$  more recently: also available over IP
  - $\rightarrow$  flooding
  - $\rightarrow$  popular in larger intra-domain networks
- Source routing: packet specifies path
  - $\rightarrow$  implemented in various link layer protocols
  - $\rightarrow$  ATM call set-up: circuit-switching
  - $\rightarrow$  IPv4/v6: option field
  - $\rightarrow$  mostly disabled
  - $\rightarrow$  large ISPs: sometimes used internally for diagnosis

- Inter-domain routing
  - $\rightarrow$  border routers vs. backbone routers



- $\longrightarrow$  peering between two AS's
- $\longrightarrow$  exchanges: peering between multiple AS's

• CIDR addressing

 $\rightarrow$  i.e., a.b.c.d/x

- Routing table look-up: maximum prefix matching
  - $\rightarrow$  e.g., route aggregation
- Metric: policy
  - $\rightarrow$  e.g., shortest-path, trust, pricing
  - $\rightarrow$  meaning of "shortest"
  - $\rightarrow$  mechanism: path vector routing
  - $\rightarrow$  BPG update message





 $\longrightarrow$  AS-PATH (path vector)

BGP-update procedure:

Upon receiving BGP update message from neighbor to target  ${\cal A}$ 

- 1. Store AS-PATH reachability info for target A
- 2. Determine if new path to A should be adopted

 $\rightarrow$  policy

- $\rightarrow$  path should be unique
- $\rightarrow$  BPG table & IP routing table update
- 3. Determine who to advertise reachability for target A
  - $\rightarrow$  selective advertisement

Note: if shortest-path then same as Dijkstra in-reverse

 $\longrightarrow$  global advertisement advertisement

- 1. Use BGP keep-alive message to sense/prompt neighbor
- 2. If keep-alive does not arrive within certain time, assume node is down
- 3. Send BGP withdraw message for neighbor who is deemed down
  - $\rightarrow$  may trigger further updates

Other BGP features:

- BGP runs over TCP
  - $\rightarrow$  port number 179
  - $\rightarrow$  i.e., "application layer" protocol
- BPG-4 (1995); secure BGP

## Performance

Route update frequency:

- $\longrightarrow$  routing table stability vs. responsiveness
- $\longrightarrow$  rule: not too frequently
- $\longrightarrow$  30 seconds
- $\longrightarrow$  stability wins
- $\longrightarrow$  hard lesson learned from the past (sub-second)
- $\longrightarrow$  e.g., TTL

Other factors for route instability:

- $\longrightarrow$  selfishness (e.g., fluttering)
- $\longrightarrow$  BGP's vector path routing
- $\longrightarrow$  inherently unstable: chain reaction
- $\longrightarrow$  more frequent: slow convergence
- $\longrightarrow$  target of denial-of-service (DoS) attack

- $\longrightarrow$  shortest AS path  $\neq$  shortest router path
- $\longrightarrow$  e.g., may be several router hops longer
- $\longrightarrow$  AS graph vs. router graph
- $\longrightarrow$  inter- vs. intra-domain routing: separate subsystems

Route asymmetry:

- $\longrightarrow$  routes are not symmetric
- $\longrightarrow$  estimate: > 50%
- $\longrightarrow$  mainly artifact of inter-domain policy routing
- $\longrightarrow$  also intra-domain: e.g., hot potato
- $\longrightarrow$  various performance implications

Black holes:

- $\longrightarrow$  persistent unreachable destination prefixes
- $\longrightarrow$  BGP routing problems
- $\longrightarrow$  further aggrevated by DNS
- $\longrightarrow$  purely application layer: end system problem

Topology:

