END-TO-END TRAFFIC CONTROL

Goal: Facilitate efficient usage of network resources and satisfy user requirement from edge of network.

 \longrightarrow view network as black box

Components:

- Reliability
- Congestion control
- QoS control

Reliability:

- ARQ and window control
- realization in TCP
- complications due to integration with congestion control
 - \longrightarrow congestion control on top of window control

Congestion Control

Goal: Speedy and efficient transport of data to maximize throughput

 \longrightarrow reliable & unreliable

Throughput maximization:

 \rightarrow relationship between rate of influx/outflux

 \longrightarrow e.g., output link at single router

Zero buffer case:

Nonzero buffer case:

Components:

- buffer occupancy trace
- "remembering" (i.e., memory) helps

Influx rate/outflux rate relation:

\longrightarrow fixed link bandwidth or service rate

When is unimodal or "bell-shaped" curve possible?

Example:

effective throughput = throughput $\times (1-c)^k$

- c: packet loss rate; $0 \leq c \leq 1$
- k: penalty exponent; $k \ge 0$

When the network is a general internetwork:

Unimodal shape:

- reliable throughput
- what about "pure" outflux rate?

 \longrightarrow monotonicity property

How does actual traffic look like?

 \longrightarrow depends

Two main cases

- \bullet telephone traffic
- data traffic (i.e., Internet)

 \longrightarrow Poisson vs. self-similar/fractal

Implications to traffic management:

1. Easier to manage Poisson traffic than fractal traffic

 \longrightarrow closer to CBR

- 2. Pronounced trade-off between utilization and quality of service (QoS)
 - a. utilization \uparrow implies QoS \downarrow
 - b. QoS \uparrow implies utilization \downarrow
- 3. Sensitive trade-off between different QoS indicators

Packet loss vs. queueing delay trade-off:

- $\alpha \approx 1$ means more self-similar
- $\alpha \approx 2$ means less self-similar

Perform observation and record time interval between successive packet arrivals

 \longrightarrow interarrival time

- If $T1 = T2 = \cdots$ then CBR
- If not, then VBR

But, assuming VBR, what if T1, T2, ... are consistent with outcome of sampling from (negative) exponential distribution? I.e.,

$$p(T) = \lambda e^{-\lambda T}$$

Then the total arrival process is called Poisson

 \rightarrow counting process

$$\longrightarrow$$
 total number of packets until time t

Definition of Self-similar Traffic:

"Packet train" notion of ON and OFF periods \longrightarrow ON/OFF model

Don't care about OFF periods

If ON periods T1, T2, \ldots are consistent with outcome of sampling from a *heavy-tailed* distribution? I.e.,

$$p(T) = T^{-\lambda}$$

Then the total arrival process is called self-similar (a specific form)

 \longrightarrow most commonly used data traffic model

Why should ON periods be heavy-tailed?

- \longrightarrow physical modeling
- \longrightarrow Web application: workload modeling

Definition of "congestion":

I. Delay perspective:

II. Throughput perspective:

influx rate (offered load)

What is "optimal" operating point?

- Delay:
 - may be user given
 - point where slope sharply increases

• Throughput:

- may be user given
- maximum point

A compromise:

power = throughput/delay

Goal of congestion control:

 \rightarrow achieve optimal/target operating point

Means: adjustment of influx rate