Direct Link Communication II: Wireless Media

Current Trend

• WLAN explosion (also called WiFi)

 \rightarrow took most by surprise

- cellular telephony: 3G/4G
 - \rightarrow cellular providers/telcos/data in the same mix
- self-organization by citizens for local access
 - \rightarrow free WiFi hot spots
- large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 - \rightarrow part of everyday life
 - \rightarrow difficult to turn back

- boundary between local and wide area wireless blurring
 - \rightarrow cellular: long-distance vs. WLAN: local
 - \rightarrow 802.16 (WiMax): designed to compete with cellular
- also very short distances ("wireless personal area networks")
 - \rightarrow bluetooth, UWB, Zigbee: in general, 802.15
 - \rightarrow multi-use: cordless phones, WLANs, etc.
 - $\rightarrow 2.4$ and 5 GHz spectra: very busy

Integral part of the Internet: where it's happening

- \longrightarrow good news and bad news
- \longrightarrow good old #\$%&? radio technology

Basics of Wireless Communication

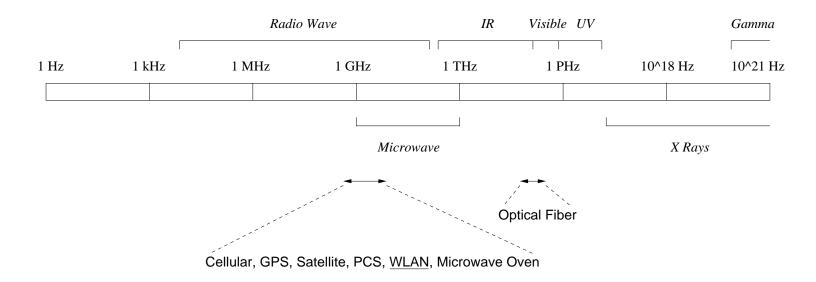
Use electromagnetic waves in wireless media (air/space) to transmit information.

 \longrightarrow NIC: air interface

- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna
 - \longrightarrow mainly: microwaves
 - \longrightarrow e.g., 2–66 GHz

Key differences with wired communication:

- increased exposure to interference and noise \rightarrow lack of physical shielding
- same frequency spectrum must be shared among all users
- inter-user interference cannot be localized at switch
 - \rightarrow cannot use buffering
 - \rightarrow problem for QoS (e.g., VoIP)
 - \longrightarrow information is inherently exposed
 - \longrightarrow bad for networking
 - \longrightarrow bad for security
 - \longrightarrow good for convenient access


• signal propagation and variation is more complex

- \longrightarrow attenuation
- \longrightarrow refraction, absorption, reflection, diffraction
- \longrightarrow multi-path fading
- \longrightarrow mobility

Network bandwidth: two extremes

- \longrightarrow high and low bandwidth coexist
- \longrightarrow e.g., 10 Gbps and 11 Mbps
- \longrightarrow here to stay
- \longrightarrow speed mismatch: makes things interesting

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz–300 GHz
- \longrightarrow Microwave: 1 GHz–1 THz
- \longrightarrow Wireless: concentration ~0.8 GHz–6 GHz
- \longrightarrow Optical fiber: ~200 THz; 25 THz bandwidth

Miscellaneous spectrum allocations (U.S.) & uses:

 \longrightarrow FCC (Federal Communications Commission)

- Voice: 300 Hz–3300 Hz
- \bullet AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz–216 MHz, 470 MHz–825 MHz

 \longrightarrow audio (FM), video (AM)

- GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz
 - \longrightarrow DS-CDMA
 - \longrightarrow 24 satellites (DoD), 10900 miles
 - \longrightarrow navigation service: trilateration

- Cellular telephone: 824 MHz–849 MHz (upstream), 869 MHz–894 MHz (downstream)
 - \longrightarrow AMPS: FDM, analog
 - \longrightarrow GSM: TDMA, digital
 - \longrightarrow IS-95: CDMA, digital
- PCS: 1.85 GHz–1.99 GHz

 \longrightarrow CDMA, TDMA

• WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz

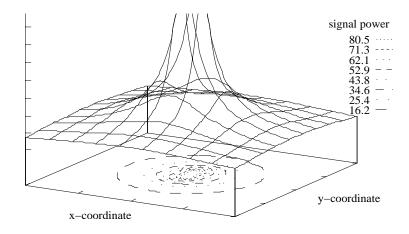
\longrightarrow DSSS or FHSS with CSMA/CA

- \longrightarrow same frequency range for 802.11g
- \bullet WLAN: Bluetooth 2.4 GHz–2.4835 GHz
 - \longrightarrow FH with TDD
- \bullet WLAN: IEEE 802.11a 5.725 GHz–5.850 GHz
 - \longrightarrow OFDM with CSMA/CA
- WiMax: IEEE 802.16 2 GHz–66 GHz
 - \longrightarrow TDMA based

• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925 GHz–6.425 GHz (uplink)

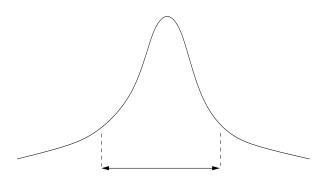
 \rightarrow FDMA/TDMA

- Satellite: Ku-band 11.7 Ghz–12.2 Ghz (downlink), 14 GHz–14.5 GHz (uplink)
- Many other frequency bands


 \rightarrow cf. FCC chart

Free space loss:

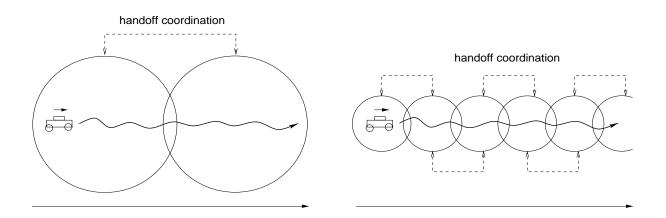
- transmitting antenna: signal power $P_{\rm in}$
- \bullet receiving antenna: signal power $P_{\rm out}$
- distance: d
- frequency: f


$$P_{
m out} \propto P_{
m in} rac{1}{d^2 f^2}$$

 \rightarrow quadratic decrease in distance & frequency

Design implications:

- effective coverage limited by distance
 - \longrightarrow SNR: signal-to-noise ratio
 - \longrightarrow SIR: signal-to-interference ratio


spatial coverage by one high-power antenna

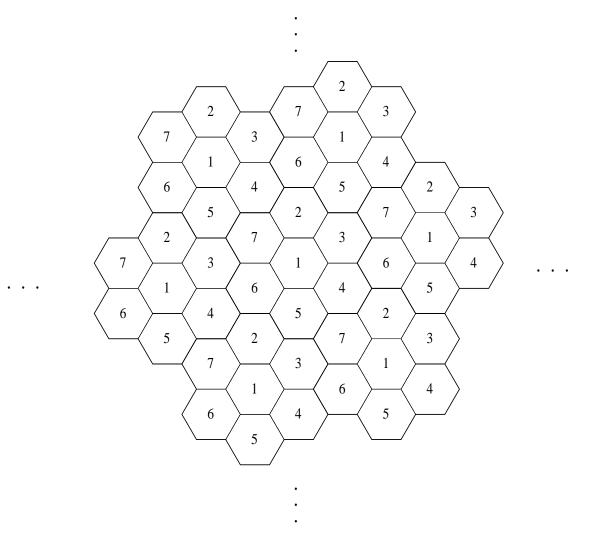
overlap region

spatial coverage by two low-power antennas

pros & cons? \rightarrow

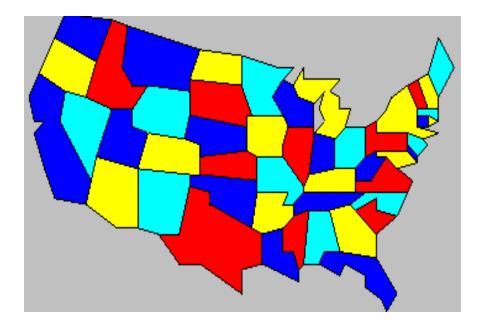
- low power output decreases cell size
 - \longrightarrow increased battery life
 - \longrightarrow enables frequency reuse
 - \longrightarrow more antennas required
 - \longrightarrow handoff coordination overhead
 - \longrightarrow e.g., I65 from Lafayette to Indy

Hexagonal cells:


0	0	0	
0	0	0	
0	0	0	

- \longrightarrow both affect tiling of the plane
- \longrightarrow why hexagonal?

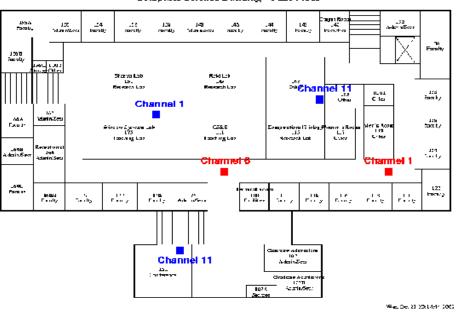
Frequency reuse: adjacent cells do not use common carrier frequency.


- \longrightarrow avoid interference
- \longrightarrow how many frequencies are required?

For example, using seven frequencies:

- \longrightarrow why does it work?
- \longrightarrow in general, coloring problem

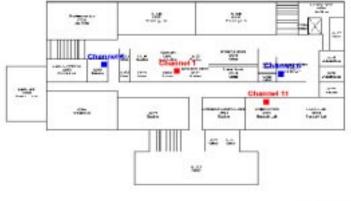
4-coloring of U.S. map:



 \rightarrow Y. Kanada, Y. Sato; Univ. of Tokyo

CS Building:

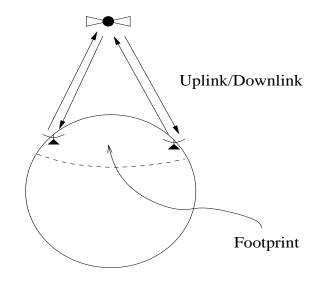
First floor frequency reuse:


Computer Science Building - First Floor

Compress Science Rabbing - Second Floor 124 12. -----27 -Ш Mark C A DECK BC.D. 1.1 - 78 e.ite of Chan s. 0111 100 . 14 31 TR 32 42 3. ×. 1K 10 and the second , and , 12

Second floor frequency reuse:

Ground floor frequency reuse:

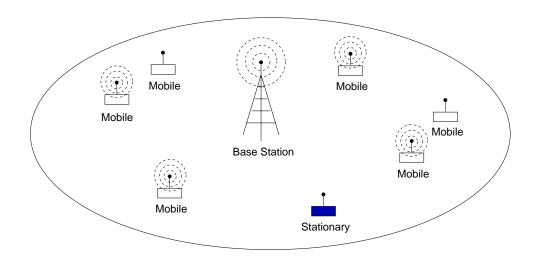

Computer Science Building - Ground Floor

4.0.01200230

Long Distance Wireless Communication

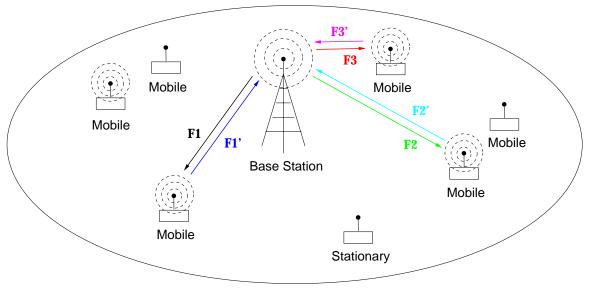
Principally satellite communication:

- LOS (line of sight) communication
 - \rightarrow satellite base station is relay
- Effective for broadcast
- Limited bandwidth for multi-access
 - \rightarrow not scalable


- FDM + TDMA: dominant
 - \longrightarrow broadband
 - \longrightarrow GSM cellular
- CDMA: e.g., GPS and defense related systems
 - \longrightarrow CDMA cellular (Qualcomm)
- CSMA/CA: impractical due to large RTT
 - \longrightarrow low utilization/throughput

Long-distance wireless communication: effective when broadcasting

- \longrightarrow special applications
- \longrightarrow e.g., TV, GPS, digital radio, atomic clock


Short Distance Wireless Communication

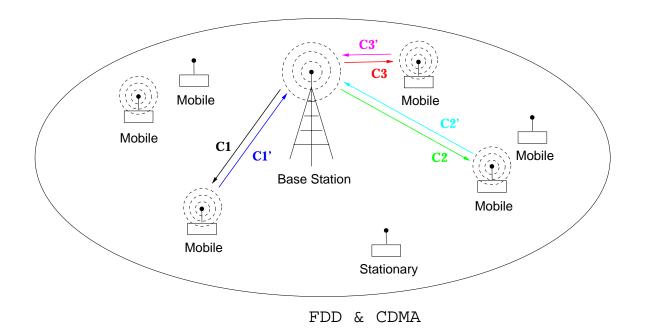
- very short: wireless PAN
- short: wireless LAN
- medium: wireless MAN

- \longrightarrow TDMA, FDMA, CDMA, polling
- \longrightarrow contention-based multiple access w/o priority

Cellular telephony: frequency & time division

FDD & TDMA

Ex.: GSM (U.S. IS-136) with 25 MHz frequency band

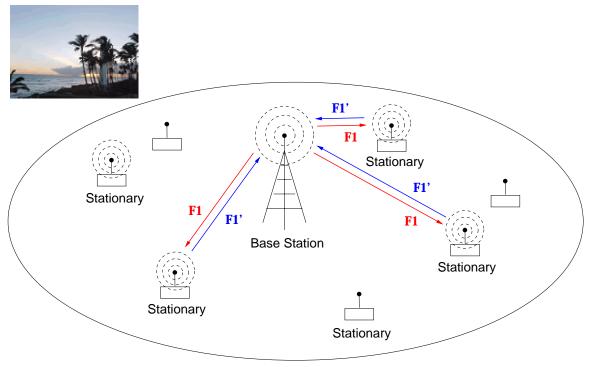

- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow separation needed due to cross-carrier interference
 - \rightarrow FDM portion

- 8 time slots within each channel
 - \rightarrow TDM portion
- \bullet total of 1000 possible user channels

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder: 13.4 kb/s
- compare with T1 standard
 - $\rightarrow 24$ users at 64 kb/s data rate each

Cellular telephony: code division multiplexing

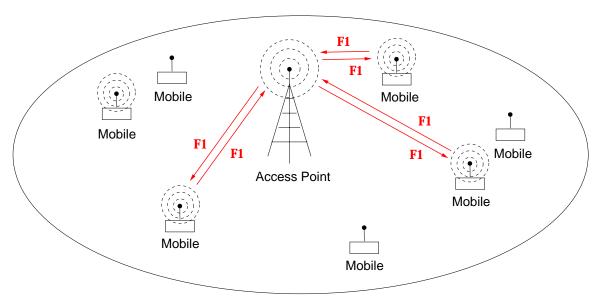


 \rightarrow same frequency band; different codes

Ex.: IS-95 CDMA with 25 MHz frequency band

- uplink: 824–849 MHz; downlink: 869–894 MHz
 - \rightarrow downlink: prepared; uplink: physical diversity
 - \rightarrow capture effect: closer station has advantage
- codec: 9.6 kb/s

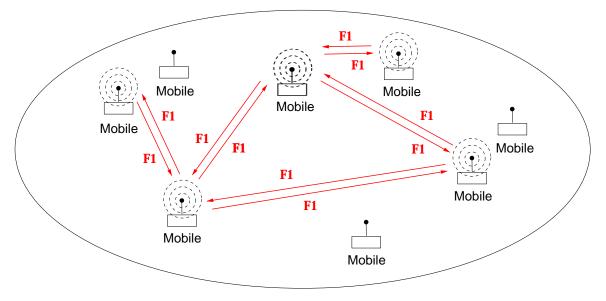
Packet radio: ALOHA


- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'
- \longrightarrow both baseband

Ex.: ALOHANET

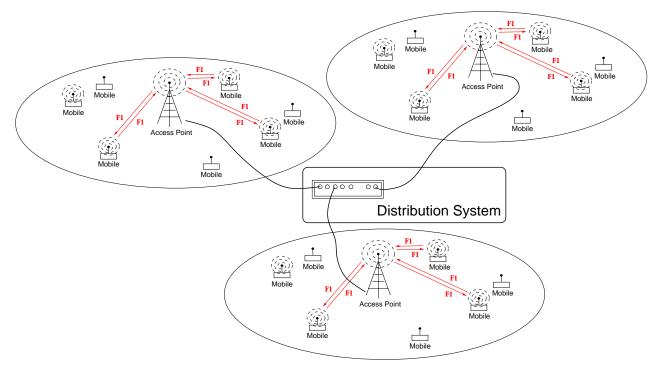
- \bullet data network over radio
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to packet switching technology
- FM radio carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- \bullet bit rate: 9.6 kb/s
- contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames
 - \rightarrow ALOHA


Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- \rightarrow single baseband channel
- basic service set (BSS)
- base station: access point (AP)
- mobile stations must communicate through AP


WLAN: ad hoc mode

WLAN: Ad Hoc Network

- \longrightarrow homogeneous: no base station
- \longrightarrow everyone is the same
- \longrightarrow share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

 \longrightarrow internetworking between BSS's through APs

 \longrightarrow mobility and handoff

- extended service set (ESS)
- APs are connected by distribution system (DS)

• DS: wireline or wireless

 \rightarrow common: Ethernet switch

- How do APs and Ethernet switches know where to forward frames?
 - \rightarrow bridge: link layer forwarding device
 - \rightarrow i.e., switch using MAC address relay
 - \rightarrow learning bridge: source address discovery
 - \rightarrow spanning tree: IEEE 802.1 (Perlman's algorithm)
 - \rightarrow distributed ST & leader election

Additional headache: mobility

- \longrightarrow how to perform handoff
- \longrightarrow mobility management at MAC
- \longrightarrow mobility management at IP (Mobile IP)

Mobility between BSSes in an ESS

- association
 - \rightarrow registration process
 - \rightarrow mobile station (MS) associates with one AP
- disassociation
 - \rightarrow upon permanent departure: notification
- reassociation
 - \rightarrow movement of MS from one AP to another
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames

WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz

Non-interference specification:

- \bullet each channel has 22 MHz bandwidth
- \bullet require 25 MHz channel separation
 - \longrightarrow thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...