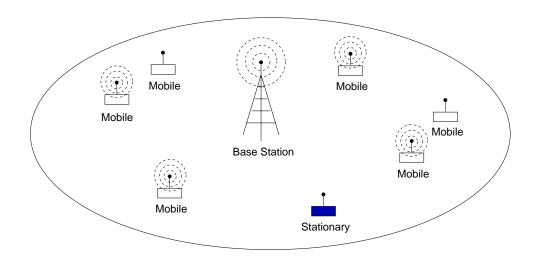

Long Distance Wireless Communication

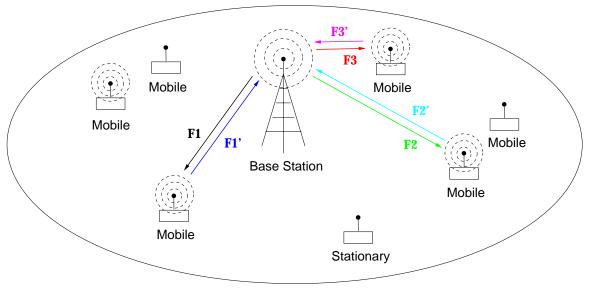
Principally satellite communication:

- LOS (line of sight) communication
 - \rightarrow satellite base station is relay
- Effective for broadcast
- Limited bandwidth for multi-access
 - \rightarrow not scalable


- FDM + TDMA: dominant
 - \longrightarrow broadband
 - \longrightarrow GSM cellular
- CDMA: e.g., GPS and defense related systems
 - \longrightarrow CDMA cellular (Qualcomm)
- CSMA/CA: impractical due to large RTT
 - \longrightarrow low utilization/throughput

Long-distance wireless communication: effective when broadcasting

- \longrightarrow special applications
- \longrightarrow e.g., TV, GPS, digital radio, atomic clock


Short Distance Wireless Communication

- very short: wireless PAN
- short: wireless LAN
- medium: wireless MAN

- \longrightarrow TDMA, FDMA, CDMA, polling
- \longrightarrow contention-based multiple access w/o priority

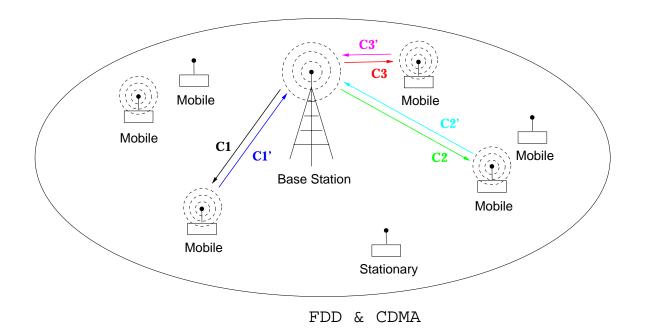
Cellular telephony: frequency & time division

FDD & TDMA

Ex.: GSM (U.S. IS-136) with 25 MHz frequency band

- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow separation needed due to cross-carrier interference
 - \rightarrow FDM portion

- 8 time slots within each channel
 - \rightarrow TDM portion
- \bullet total of 1000 possible user channels

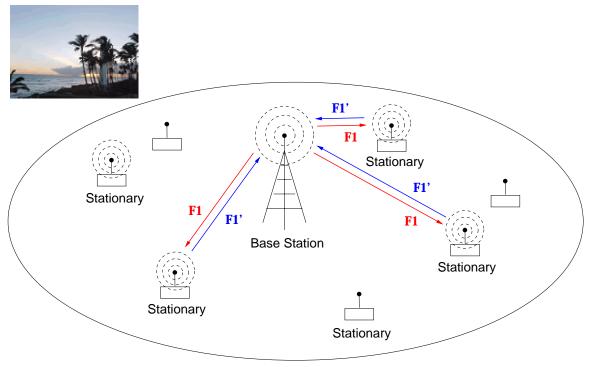

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder: 13.4 kb/s
- compare with T1 standard
 - $\rightarrow 24$ users at 64 kb/s data rate each

Dedicated channels workable because data traffic is speech:

- Low bit rate & approximately CBR (constant bit rate)
 - \rightarrow flat
 - \rightarrow good/bad?
- Not so for:
 - \rightarrow different for compressed video (e.g., MPEG, H.261)
 - \rightarrow cf. Terminator video
 - \rightarrow VBR (variable bit rate)
 - \rightarrow data files?

Cellular telephony: code division multiplexing



 \rightarrow same frequency band; different codes

Ex.: IS-95 CDMA with 25 MHz frequency band

- uplink: 824–849 MHz; downlink: 869–894 MHz
 - \rightarrow downlink: prepared; uplink: physical diversity
 - \rightarrow capture effect: closer station has advantage
- codec: 9.6 kb/s

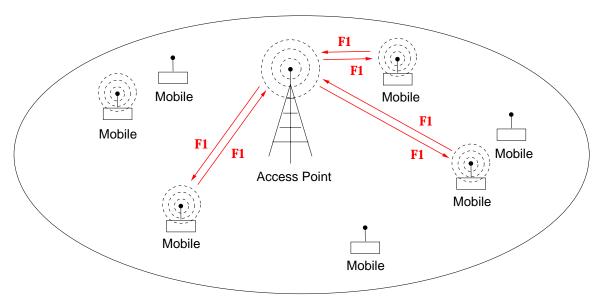
Packet radio: ALOHA

- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'
- \longrightarrow both baseband

Ex.: ALOHANET

- \bullet data network over radio
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

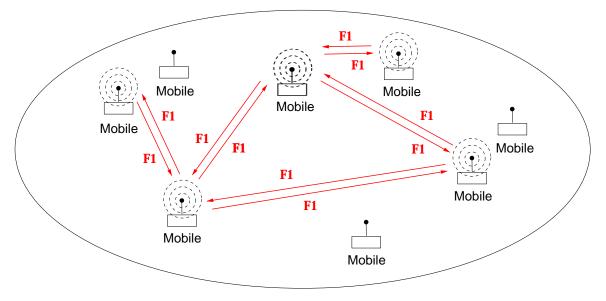
- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to packet switching technology
- FM radio carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- \bullet bit rate: 9.6 kb/s
- contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames
 - \rightarrow ALOHA


ALOHA protocol:

- send frame (no carrier sense)
- wait for ACK

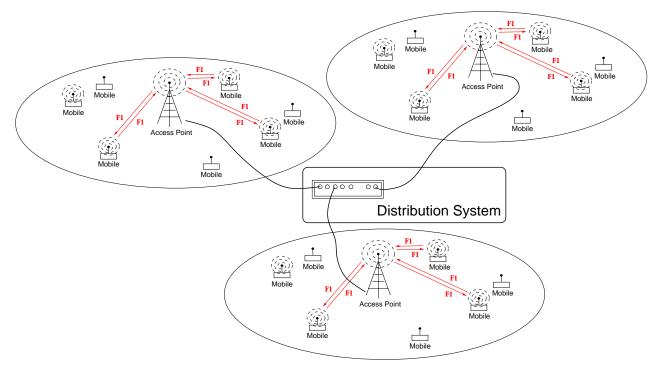
 \rightarrow collision detection through explicit ACK

- \bullet if time out, retry with probability p
 - \longrightarrow looks familiar...
 - \longrightarrow pure vs. slotted ALOHA


Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- \rightarrow single baseband channel
- basic service set (BSS)
- base station: access point (AP)
- mobile stations must communicate through AP


WLAN: ad hoc mode

WLAN: Ad Hoc Network

- \longrightarrow homogeneous: no base station
- \longrightarrow everyone is the same
- \longrightarrow share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

 \longrightarrow internetworking between BSS's through APs

 \longrightarrow mobility and handoff

- extended service set (ESS)
- APs are connected by distribution system (DS)

• DS: wireline or wireless

 \rightarrow common: Ethernet switch

- How do APs and Ethernet switches know where to forward frames?
 - \rightarrow bridge: link layer forwarding device
 - \rightarrow i.e., switch using MAC address relay
 - \rightarrow learning bridge: source address discovery
 - \rightarrow spanning tree: IEEE 802.1 (Perlman's algorithm)
 - \rightarrow distributed ST & leader election

Additional headache: mobility

- \longrightarrow how to perform handoff
- \longrightarrow mobility management at MAC
- \longrightarrow mobility management at IP (Mobile IP)

Mobility between BSSes in an ESS

- association
 - \rightarrow registration process
 - \rightarrow mobile station (MS) associates with one AP
- disassociation
 - \rightarrow upon permanent departure: notification
- reassociation
 - \rightarrow movement of MS from one AP to another
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames

Association, disassociation, reassociation provides necessary information for distribution service within ESS

 \longrightarrow distribution service implemented in AP

Compatibility with non-802.11 devices in ESS:

- \longrightarrow integration service: portal abstraction
- \longrightarrow translation service

Complicated 802.11 frame format

- \longrightarrow 30-byte MAC header
- \longrightarrow four 48-bit address fields
- \longrightarrow 16-bit frame control field: 11 fields
- \longrightarrow e.g., version, type, subtype, to DS, from DS, ...
- \longrightarrow type (2-bit): mgt (00), control (01), data (10)
- \longrightarrow subtype (4-bit): association (mgt), ACK (ctl)
- \longrightarrow payload: 0–2313 bytes

WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz

Non-interference specification:

- \bullet each channel has 22 MHz bandwidth
- require 25 MHz channel separation
 - \longrightarrow thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

Examples:

Purdue Univ.: IEEE 802.11b (11 Mbps) WLAN network

- \longrightarrow PAL (Purdue Air Link)
- \longrightarrow partial mobility: MAC roaming (within ESS)
- \longrightarrow no mobile IP
- \longrightarrow but football scores at Ross-Ade through PDAs

Dartmouth College: IEEE 802.11b WLAN (500 + APs)

- \longrightarrow full VoIP
- \longrightarrow free long distance

Seattle, SF, San Diego, Boston, etc.: WiFi communities

- \longrightarrow free Internet access
- \longrightarrow roof-top mesh networks
- \longrightarrow cable & DSL companies don't like it

Graffiti: warchalking

- \longrightarrow some cities
- \longrightarrow benevolent kids with lots of free time

Soon: integrated WLAN + cellular phones

- \longrightarrow use VoIP when near WLAN network
- \longrightarrow use cellular when outside WLAN coverage
- \longrightarrow automatic switch-over

<u>IEEE 802.11 MAC</u>

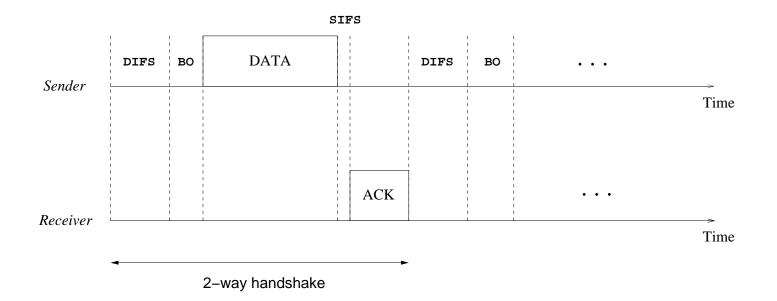
- \longrightarrow CSMA/CA with exponential backoff
- \longrightarrow almost like CSMA/CD
- \longrightarrow drop CD
- \longrightarrow CSMA with explicit ACK frame
- \longrightarrow added optional feature: CA (collision avoidance)

Two modes for MAC operation:

- Distributed coordination function (DCF)
 - \rightarrow multiple access
- Point coordination function (PCF)
 - \rightarrow polling-based priority
- ... neither PCF nor CA used in practice

CSMA: (i) explicit ACK and (ii) exponential backoff

Sender:

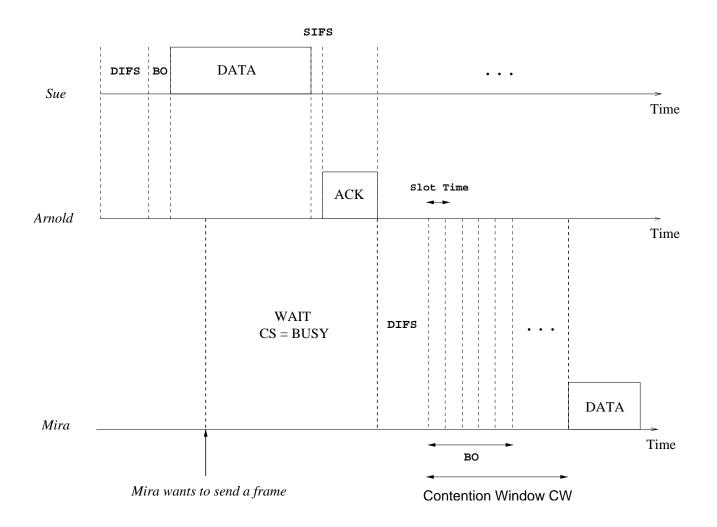

- MAC (firmware in NIC) receives frame from upper layer (i.e., device driver)
- Goto Backoff procedure
- Transmit frame
- Wait for ACK
- If timeout, goto **Backoff** procedure

Receiver:

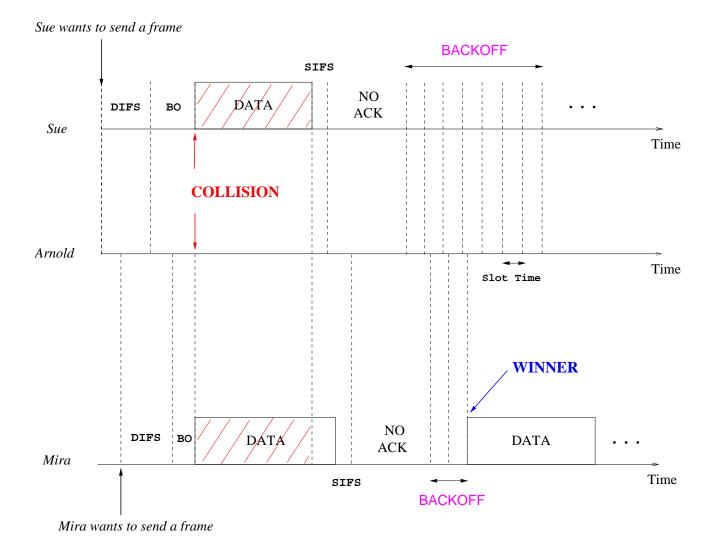
- Check if received frame is ok
- Wait for SIFS
- Transmit ACK

- If due to timeout, double contention window (CW)
- Else wait until channel is idle plus an additional DIFS
- Choose random waiting time between [1, CW]
 - \rightarrow CW is in units of slot time
- \bullet Decrement CW when channel is idle
- Return when CW = 0

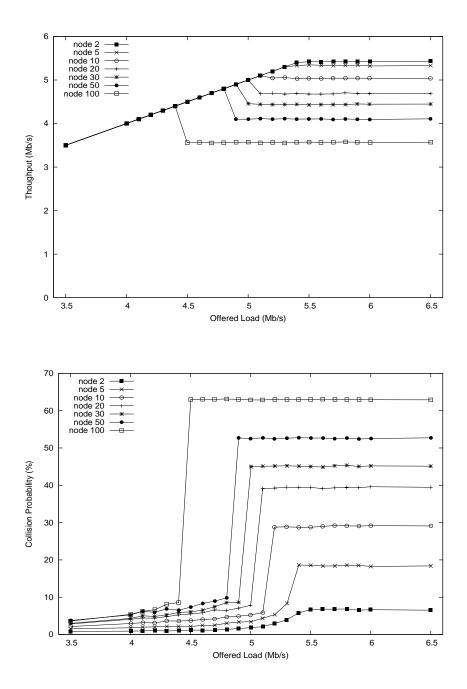
Timeline without collision:



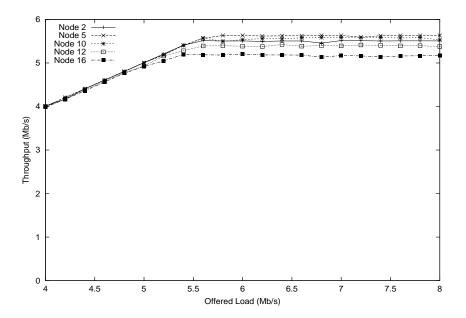
- SIFS (short interframe space): 10 $\mu \rm s$
- Slot Time: 20 μ s
- DIFS (distributed interframe space): 50 μ s
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)


 \rightarrow CWmin: 31; CWmax: 1023

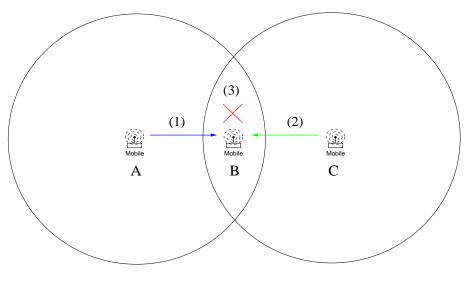
Time snapshot with Mira-come-lately:



Time snapshot with collision (Sue & Mira):

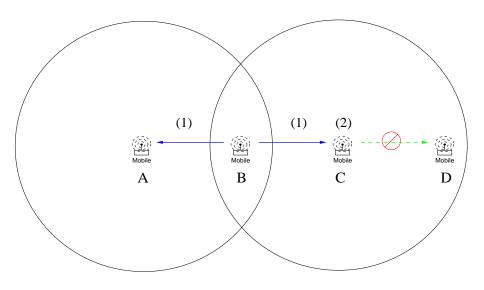


MAC throughput and collision (ns simulation):


MAC throughput:

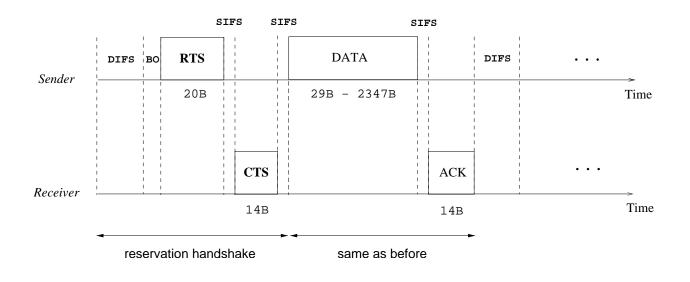
\rightarrow experiment: iPAQ running Linux

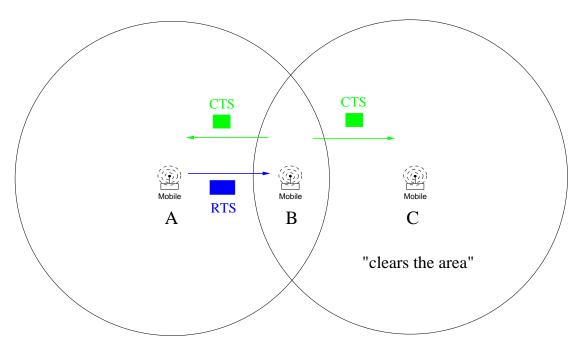
Additional issues with CSMA in wireless media:


Hidden station problem:

Hidden Station Problem

- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision


Exposed station problem:


Exposed Station Problem

- (1) B transmits to A
- (2) C wants to transmits to D but senses B
 - $\rightarrow C$ refrains from transmitting to D
 - \rightarrow omni-directional antenna

- \longrightarrow RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send

Hidden station problem: RTS/CTS handshake "clears" hidden area

RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold \longrightarrow why not for small data?

... feature available but not actively used

Additional optimization: virtual carrier sense

- transmit connection duration information
- stations maintain NAV (network allocation vector) \rightarrow decremented by clock
- if NAV > 0, then do not access even if physical CS says channel is idle

IEEE 802.11 wireless LAN standard:

- ratified in 1997: 1/2 Mbps using either DSSS or FHSS $\rightarrow 11$ bit chip sequence
- \bullet uses IEEE 802 address form at along with LLC
 - $\rightarrow 4$ address fields for forwarding/management
- \bullet uses 2.4–2.4835 GHz ISM band in radio spectrum
 - \rightarrow ISM (industrial, scientific and medical): unlicensed
- IEEE 802.11b ratified: 5.5/11 Mbps using DSSS only
 - \rightarrow less coding overhead: good for low BER
 - \rightarrow BER (bit error rate) and FER (frame error rate)
- \bullet others: e.g., IEEE 802.11a and 802.11g at 54 Mbps
 - \rightarrow 5.725–5.85 vs. 2.4–2.4835 GHz band
 - \rightarrow both use OFDM

Bluetooth, 802.16, etc.; uncertain future ...