DIRECT LINK COMMUNICATION II: WIRELESS MEDIA

Motivation

- WLAN explosion
- cellular telephony: 3G/4G
 - \rightarrow cellular providers/telcos in the mix
- self-organization by citizens for local access
- large-scale hot spots: Starbucks, airport lounges, trains, university/enterprise campuses, etc.
- integral part of global IP Internet
 - \rightarrow where it's happening
 - \longrightarrow good news: good old radio technology!
 - \longrightarrow bad news: radio technology #\$\%\&!

Basics of Wireless Communication

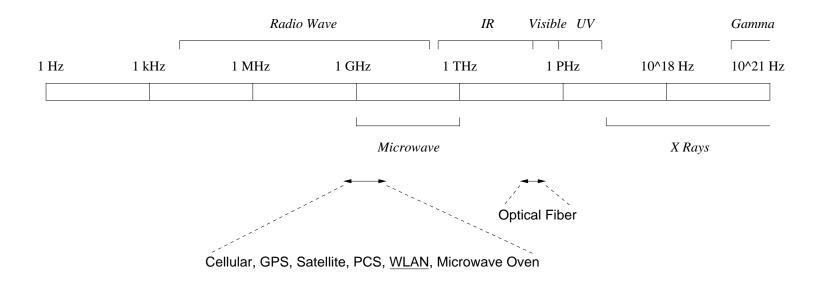
Use electromagnetic waves in wireless media (air/space) to transmit information.

- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna
 - → mainly: microwaves
 - \longrightarrow e.g., 2.4 GHz for IEEE 802.11b WLAN
 - → also, microwave oven, cordless phones, etc.

Key differences with wired communication:

- Increased exposure to interference and noise
- Same frequency spectrum must be shared among all users
 - → lack of physical shielding
- Inter-user interference cannot be localized at switch
 - → cannot use buffering
 - → problem for QoS (e.g., VoIP)

•	Signal p	ropagation and variation is more complex
	\longrightarrow	attenuation
	\longrightarrow	refraction, absorption, reflection, diffraction
	$\xrightarrow{\hspace*{1cm}}$	multi-path fading


Good sides: mobility, low deployment cost, and frequency reuse

 \longrightarrow once tasted, difficult to turn back

 \longrightarrow mobility

→ key technology for LAN connectivity

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz-300 GHz
- → Microwave: 1 GHz-1 THz
- \longrightarrow Wireless: concentration \sim 0.8 GHz–6 GHz
- \longrightarrow Optical fiber: \sim 200 THz; 25 THz bandwidth

Miscellaneous spectrum allocations (U.S.) & uses:

→ FCC (Federal Communications Commission)

- Voice: 300 Hz-3300 Hz
- AM Radio: 0.535 MHz-1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz-216 MHz, 470 MHz-825 MHz
 - \longrightarrow audio (FM), video (AM)
- GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz
 - \longrightarrow DS-CDMA
 - → 24 satellites (DoD), 10900 miles
 - → navigation service: trilateration

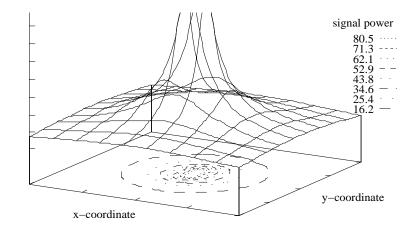
• Cellular telephone: 824 MHz–849 MHz (upstream), 869 MHz–894 MHz (downstream)

- → AMPS: FDM, analog
- \longrightarrow GSM: TDMA, digital
- \longrightarrow IS-95: CDMA, digital
- PCS: 1.85 GHz-1.99 GHz
 - \longrightarrow CDMA, TDMA

- WLAN: IEEE 802.11b 2.4 GHz-2.4835 GHz
 - → DSSS or FHSS with CSMA/CA
- WLAN: Bluetooth 2.4 GHz–2.4835 GHz
 - \longrightarrow FH with TDD
- WLAN: IEEE 802.11a 5.725 GHz-5.850 GHz
 - \longrightarrow OFDM with CSMA/CA

• Satellite: C-band 3.7 GHz-4.2 GHz (downlink), 5.925 GHz-6.425 GHz (uplink)

- \rightarrow FDMA/TDMA
- Satellite: Ku-band 11.7 Ghz-12.2 Ghz (downlink), 14 GHz-14.5 GHz (uplink)
- Many other frequency bands
 - \rightarrow cf. FCC chart

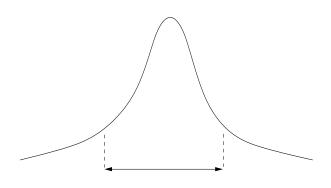

Signal propagation and power

Free space loss:

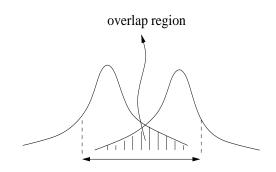
- ullet transmitting antenna: signal power P_{in}
- ullet receiving antenna: signal power P_{out}
- \bullet distance: d
- \bullet frequency: f

$$P_{
m out} \, \propto \, P_{
m in} \, rac{1}{d^2 f^2}$$

→ quadratic decrease in distance & frequency

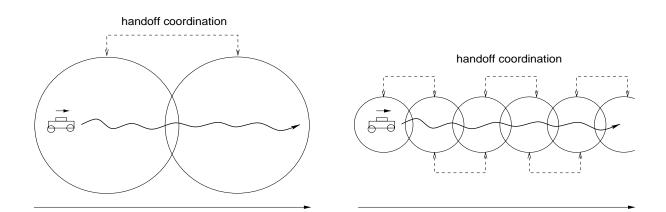


Design implications:

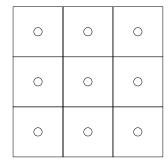

• effective coverage limited by distance

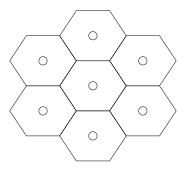
→ SNR: signal-to-noise ratio

→ SIR: signal-to-interference ratio


spatial coverage by one high-power antenna

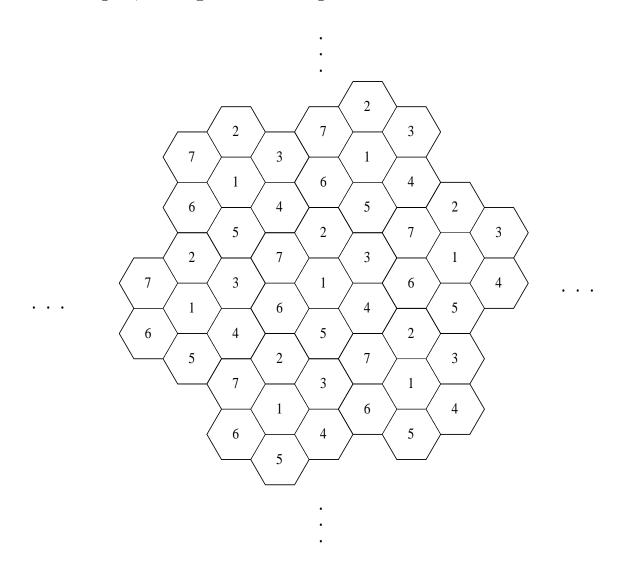
spatial coverage by two low-power antennas


 \longrightarrow pros & cons?


- low power output decreases cell size
 - \longrightarrow increased battery life
 - enables frequency reuse
 - → more antennas required
 - → handoff coordination overhead
 - \longrightarrow e.g., I65 from Lafayette to Indy

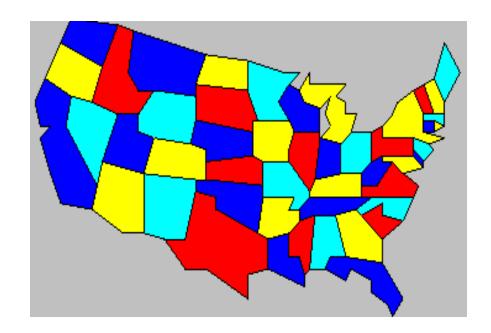
Cellular networks

Hexagonal cells:



- → both affect tiling of the plane
- \longrightarrow why hexagonal?

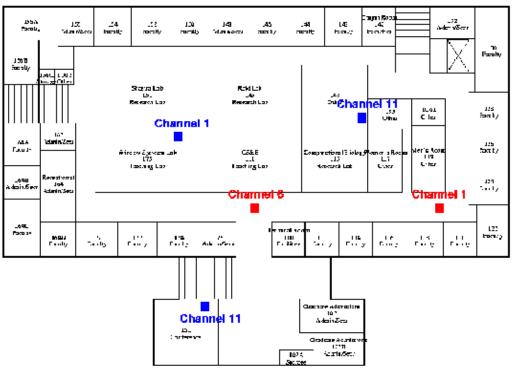
Frequency reuse: adjacent cells do not use common carrier frequency.


- → avoid interference
- → how many frequencies are required?

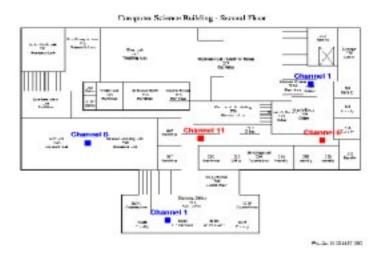
For example, using seven frequencies:

- \longrightarrow why does it work?
- \longrightarrow in general, coloring problem

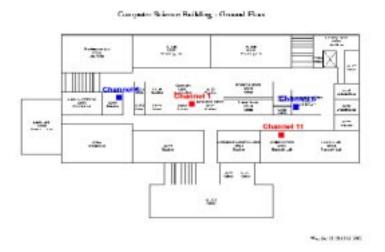
4-coloring of U.S. map:


→ Y. Kanada, Y. Sato; Univ. of Tokyo

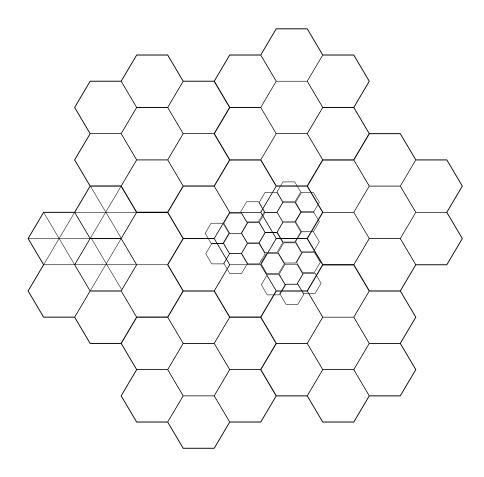
CS Building:


First floor frequency reuse:

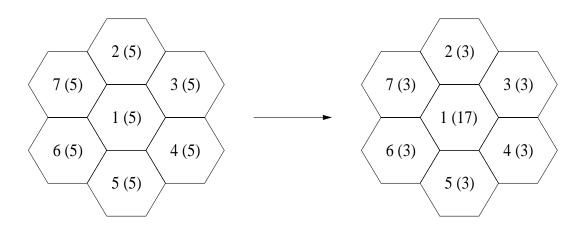
Computer Science Building - First Floor



Web Det 21 30:1444-1003


Second floor frequency reuse:

Ground floor frequency reuse:


Non-uniform covering:

- → directional antenna
- → non-uniform density

Non-uniform frequency allocation:

- → total carrier frequency budget: 35
- → frequency borrowing

uniform frequency allocation

non-uniform frequency allocation

Cell sizes:

- Macrocell: < 35 km; < 10 W
- Microcell: < 1 km; < 3 W
- Picocell: < 100 m; < 100 mW
- \bullet Satellite footprint: e.g., 30–40 % (GEO); 4000 km (LEO)
 - \longrightarrow e.g., GEO satellites at 35786 km
 - \longrightarrow e.g., LEO satellites at ~ 1000 km

Note: 2-way propagation delay (RTT)

 $2 \times 35786/300000 \approx 0.24 \text{ sec}$

 \longrightarrow optimistic based on closest distance

 \longrightarrow RTT can be: ~ 500 msec