Information transmission under noise

How much throughput can we get in a network link that is subject to noise

- \rightarrow reliable throughput
- \rightarrow different models of noise

Set-up:

To communicate symbol $a \in \Sigma$ send code word w_a :

$$a \mapsto w_a \mapsto w \mapsto ?$$

- $\rightarrow w_a$ gets corrupted and becomes w
- \rightarrow if $w = w_b$ for $b \neq a$, incorrectly conclude b was sent

Want F^{-1} :

- \bullet detect w has been corrupted
 - \rightarrow error detection
- correct w back to w_a
 - \rightarrow error correction

Coding theory

- \rightarrow error model
- \rightarrow e.g., how many bit flips, bit flip pattern

Examples:

- 1-bit flip detection: parity bit
- 1-bit flip correction: majority vote
 - \rightarrow 3-fold redundancy

Error detection:

• to communicate symbol $a \in \Sigma$, code word w_a is transmitted

- k bit flips change w_a into w
- to detect k-bit error, $w \neq w_b$ for any $b \in \Sigma$
 - \rightarrow i.e., w must not be a valid code word

Conceptually: code words live in higher dimensional space than symbols

 \rightarrow e.g., if a is n bits long, w_a is m bits long where m > n

Distance between code words $d(w_a, w_b) > k$

- \rightarrow Hamming distance (e.g., d(0001, 0100) = 2)
- \rightarrow detect up to k bit flips
- \rightarrow necessary and sufficient condition

Error correction: to correct k-bit error, $d(w, w_a) < d(w, w_b)$ for any $b \neq a$

- \rightarrow although w_a distorted into w, w most resembles w_a
- \rightarrow minimum distance matching

Geometrically: balls of radius k centered at code words must not intersect

$$\rightarrow B_k(w_a) \cap B_k(w_b) = \emptyset$$

 \rightarrow necessary and sufficient

Error detecting and correcting code constructed using algebra over finite fields

→ e.g., CRC (cyclic redundancy check)

Shannon's result on reliable communication

- \rightarrow fundamental limit
- \rightarrow upper bound on bps
- → depends only on bandwidth of physical link (Hz) and relative noise (dB)

Channel Coding Theorem (Shannon's 2nd Theorem): Given bandwidth W of physical link, signal power P_S , noise power P_N , link subject to white noise,

$$C = W \log \left(1 + \frac{P_S}{P_N} \right) \text{ bps}$$

- $\rightarrow P_S/P_N$: signal-to-noise ratio (SNR)
- \rightarrow increasing power yields logarithmic gain

Implications for networking:

ullet increase bandwidth W (Hz) to proportionally increase reliable throughput

- \rightarrow e.g., FDM, OFDM
- \rightarrow width not absolute frequency
- \rightarrow what about AM (or PCM)?
- power control (e.g., handheld devices)
 - \rightarrow logarithmic gain
 - \rightarrow accelerates battery power depletion
 - → multi-user interference: doesn't work if everyone increases power
 - \rightarrow signal-to-interference ratio (SIR)
 - \rightarrow in general: SINR

Signal-to-noise ratio (SNR) expressed as

$$dB = 10 \log_{10}(P_S/P_N)$$

Example: assuming a decibel level of 30, what is the channel capacity of a telephone line?

First, W = 3000 Hz, $P_S/P_N = 1000$. Using Channel Coding Theorem,

$$C = 3000 \log 1001 \approx 30 \text{ Kbps.}$$

- \rightarrow compare against 28.8 Kbps modems
- \rightarrow what about 56 Kbps modems?
- \rightarrow incorrect assumptions

Last but not least: bandwidth (Hz) of signal s(t)

 \rightarrow e.g., audio

Application: digitize analog signal

- \rightarrow discrete time: sampling
- → discrete amplitude: quantization

Focus: digitize time so that fidelity is preserved

- \rightarrow continuous time signal to discrete time samples
- \rightarrow from discrete time samples back to continuous time signal
- \rightarrow original replica

Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with bandwidth W (Hz), s(t) can be reconstructed from its samples if

$$\nu > 2W$$

where ν is the sampling rate (unit: samples per second).

Human auditory system:

- \rightarrow sensitivity: 20 Hz-20 KHz range (roughly 20 KHz)
- \rightarrow voice: 300 Hz-3.3 KHz (roughly 4 KHz)
- \rightarrow 8000 samples per second
- \rightarrow note T1 line

CD quality audio: 44100 samples per second

 \rightarrow also denoted Hz (44.1 KHz)