Information transmission under noise How much throughput can we get in a network link that is subject to noise - \rightarrow reliable throughput - \rightarrow different models of noise Set-up: To communicate symbol $a \in \Sigma$ send code word w_a : $$a \mapsto w_a \mapsto w \mapsto ?$$ - $\rightarrow w_a$ gets corrupted and becomes w - \rightarrow if $w = w_b$ for $b \neq a$, incorrectly conclude b was sent ## Want F^{-1} : - \bullet detect w has been corrupted - \rightarrow error detection - correct w back to w_a - \rightarrow error correction ## Coding theory - \rightarrow error model - \rightarrow e.g., how many bit flips, bit flip pattern # Examples: - 1-bit flip detection: parity bit - 1-bit flip correction: majority vote - \rightarrow 3-fold redundancy #### Error detection: • to communicate symbol $a \in \Sigma$, code word w_a is transmitted - k bit flips change w_a into w - to detect k-bit error, $w \neq w_b$ for any $b \in \Sigma$ - \rightarrow i.e., w must not be a valid code word Conceptually: code words live in higher dimensional space than symbols \rightarrow e.g., if a is n bits long, w_a is m bits long where m > n Distance between code words $d(w_a, w_b) > k$ - \rightarrow Hamming distance (e.g., d(0001, 0100) = 2) - \rightarrow detect up to k bit flips - \rightarrow necessary and sufficient condition Error correction: to correct k-bit error, $d(w, w_a) < d(w, w_b)$ for any $b \neq a$ - \rightarrow although w_a distorted into w, w most resembles w_a - \rightarrow minimum distance matching Geometrically: balls of radius k centered at code words must not intersect $$\rightarrow B_k(w_a) \cap B_k(w_b) = \emptyset$$ \rightarrow necessary and sufficient Error detecting and correcting code constructed using algebra over finite fields → e.g., CRC (cyclic redundancy check) Shannon's result on reliable communication - \rightarrow fundamental limit - \rightarrow upper bound on bps - → depends only on bandwidth of physical link (Hz) and relative noise (dB) Channel Coding Theorem (Shannon's 2nd Theorem): Given bandwidth W of physical link, signal power P_S , noise power P_N , link subject to white noise, $$C = W \log \left(1 + \frac{P_S}{P_N} \right) \text{ bps}$$ - $\rightarrow P_S/P_N$: signal-to-noise ratio (SNR) - \rightarrow increasing power yields logarithmic gain ## Implications for networking: ullet increase bandwidth W (Hz) to proportionally increase reliable throughput - \rightarrow e.g., FDM, OFDM - \rightarrow width not absolute frequency - \rightarrow what about AM (or PCM)? - power control (e.g., handheld devices) - \rightarrow logarithmic gain - \rightarrow accelerates battery power depletion - → multi-user interference: doesn't work if everyone increases power - \rightarrow signal-to-interference ratio (SIR) - \rightarrow in general: SINR Signal-to-noise ratio (SNR) expressed as $$dB = 10 \log_{10}(P_S/P_N)$$ Example: assuming a decibel level of 30, what is the channel capacity of a telephone line? First, W = 3000 Hz, $P_S/P_N = 1000$. Using Channel Coding Theorem, $$C = 3000 \log 1001 \approx 30 \text{ Kbps.}$$ - \rightarrow compare against 28.8 Kbps modems - \rightarrow what about 56 Kbps modems? - \rightarrow incorrect assumptions Last but not least: bandwidth (Hz) of signal s(t) \rightarrow e.g., audio Application: digitize analog signal - \rightarrow discrete time: sampling - → discrete amplitude: quantization Focus: digitize time so that fidelity is preserved - \rightarrow continuous time signal to discrete time samples - \rightarrow from discrete time samples back to continuous time signal - \rightarrow original replica Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with bandwidth W (Hz), s(t) can be reconstructed from its samples if $$\nu > 2W$$ where ν is the sampling rate (unit: samples per second). Human auditory system: - \rightarrow sensitivity: 20 Hz-20 KHz range (roughly 20 KHz) - \rightarrow voice: 300 Hz-3.3 KHz (roughly 4 KHz) - \rightarrow 8000 samples per second - \rightarrow note T1 line CD quality audio: 44100 samples per second \rightarrow also denoted Hz (44.1 KHz)