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Abstract Least squares approximation is a technique to find an approximate
solution to a system of linear equations that has no exact solution. In a typical set-
ting, one lets n be the number of constraints and d be the number of variables, with
n � d. Then, existing exact methods find a solution vector in O(nd2) time. We pres-
ent two randomized algorithms that provide accurate relative-error approximations to
the optimal value and the solution vector of a least squares approximation problem
more rapidly than existing exact algorithms. Both of our algorithms preprocess the
data with the Randomized Hadamard transform. One then uniformly randomly sam-
ples constraints and solves the smaller problem on those constraints, and the other
performs a sparse random projection and solves the smaller problem on those pro-
jected coordinates. In both cases, solving the smaller problem provides relative-error
approximations, and, if n is sufficiently larger than d, the approximate solution can
be computed in O(nd ln d) time.
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220 P. Drineas et al.

1 Introduction

In many applications in mathematics and statistical data analysis, it is of interest to
find an approximate solution to a system of linear equations that has no exact solution.
For example, let a matrix A ∈ R

n×d and a vector b ∈ R
n be given. If n � d, there

will not in general exist a vector x ∈ R
d such that Ax = b, and yet it is often of

interest to find a vector x such that Ax ≈ b in some precise sense. The method of least
squares, whose original formulation is often credited to Gauss and Legendre [26],
accomplishes this by minimizing the sum of squares of the elements of the residual
vector, i.e., by solving the optimization problem

Z = min
x∈Rd

‖Ax − b‖2 . (1)

It is well-known that the minimum �2-norm vector among those satisfying Eq. (1) is

xopt = A†b, (2)

where A† denotes the Moore-Penrose generalized inverse of the matrix A [6,16]. This
solution vector has a very natural statistical interpretation as providing an optimal
estimator among all linear unbiased estimators, and it has a very natural geometric
interpretation as providing an orthogonal projection of the vector b onto the span of
the columns of the matrix A.

Recall that to minimize the quantity in Eq. (1), we can set the derivative of
‖Ax − b‖2

2 = (Ax − b)T (Ax − b) with respect to x equal to zero, from which it
follows that the minimizing vector xopt is a solution of the so-called normal equations

AT Axopt = AT b. (3)

Geometrically, this means that the residual vector b⊥ = b − Axopt is required to be

orthogonal to the column space of A, i.e., b⊥T
A = 0. While solving the normal equa-

tions squares the condition number of the input matrix (and thus is not recommended
in practice), direct methods (such as the QR decomposition [16]) solve the problem of
Eq. (1) in O(nd2) time assuming that n ≥ d. Finally, an alternative expression for the
vector xopt of Eq. (2) emerges by leveraging the singular value decomposition (SVD)
of A. If A = UA�AV T

A denotes the SVD of A, then

xopt = VA�−1
A U T

A b.

1.1 Our results

In this paper, we describe two randomized algorithms that will provide accurate
relative-error approximations to the minimal �2-norm solution vector xopt of Eq. (2)
faster than existing exact algorithms for a large class of overconstrained least-squares
problems. In particular, we will prove the following theorem.
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Faster least squares approximation 221

Theorem 1 Suppose A ∈ R
n×d , b ∈ R

n, and let ε ∈ (0, 1). Then, there exists a
randomized algorithm that returns a vector x̃opt ∈ R

d such that, with probability at
least 0.8, the following two claims hold: first, x̃opt satisfies

∥
∥Ax̃opt − b

∥
∥

2 ≤ (1 + ε)Z; (4)

and, second, if κ(A) is the condition number of A and if we assume that
γ ∈ [0, 1] is the fraction of the norm of b that lies in the column space of A (i.e.,
γ = ∥

∥UAU T
A b
∥
∥

2 / ‖b‖2, where UA is an orthogonal basis for the column space of
A), then x̃opt satisfies

∥
∥xopt − x̃opt

∥
∥

2 ≤ √
ε

(

κ(A)

√

γ −2 − 1

)
∥
∥xopt

∥
∥

2 . (5)

Finally, the solution x̃opt can be computed in O(nd ln d) time if n is sufficiently larger

than d and less than ed .

We will provide a precise statement of the running time for our two algorithms
(including the ε-dependence) in Theorems 2 (Sect. 4) and 3 (Sect. 5), respectively.
It is worth noting that the claims of Theorem 1 can be made to hold with probability
1 − δ, for any δ > 0, by repeating the algorithm 
ln(1/δ)/ ln(5)� times. For example,
one could run ten independent copies of the algorithm and keep the vector x̃opt that
minimizes the residual. This clearly does not increase the running time of the algo-
rithm by more than a constant factor, while driving the failure probability down to
(approximately) 10−7. Also, we will assume that n is a power of two and that the rank
of the n × d matrix A equals d. (We note that padding A and b with all-zero rows
suffices to remove the first assumption.)

We now provide a brief overview of our main algorithms. Let the matrix product
H D denote the n × n Randomized Hadamard transform (see also Sect. 2.4). Here the
n × n matrix H denotes the (normalized) matrix of the Hadamard transform and the
n × n diagonal matrix D is formed by setting its diagonal entries to +1 or −1 with
equal probability in n independent trials. This transform has been used as one step
in the development of a “fast” version of the Johnson-Lindenstrauss lemma [1,18].
Our first algorithm is a random sampling algorithm. After premultiplying A and b
by H D, this algorithm samples uniformly at random r constraints from the prepro-
cessed problem. (See Eq. (22), as well as the remarks after Theorem 2 for the precise
value of r .) Then, this algorithm solves the least squares problem on just those sam-
pled constraints to obtain a vector x̃opt ∈ R

d such that Theorem 1 is satisfied. Note
that applying the randomized Hadamard transform to the matrix A and vector b only
takes O(nd ln r) time. This follows since we will actually sample only r of the con-
straints from the Hadamard-preprocessed problem [2]. Then, exactly solving the r × d
sampled least-squares problem will require only O(rd2) time. Assuming that ε is a
constant and n ≤ ed , it follows that the running time of this algorithm is O(nd ln d)

when n
ln n = �(d2).

In a similar manner, our second algorithm also initially premultiplies A and b by
H D. This algorithm then multiplies the result by a k × n sparse projection matrix T ,
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222 P. Drineas et al.

where k = O(d/ε). This matrix T is described in detail in Sect. 5.2. Its construction
depends on a sparsity parameter, and it is identical to the “sparse projection” matrix
in Matoušek’s version of the Ailon–Chazelle result [1,18]. Finally, our second algo-
rithm solves the least squares problem on just those k coordinates to obtain x̃opt ∈ R

d

such that the three claims of Theorem 1 are satisfied. Assuming that ε is a constant
and n ≤ ed , it follows that the running time of this algorithm is O(nd ln d) when
n = �(d2).

It is worth noting that our second algorithm has a (marginally) less restrictive
assumption on the connection between n and d. However, the first algorithm is sim-
pler to implement and easier to describe. Clearly, an interesting open problem is to
relax the above constraints on n for either of the proposed algorithms.

1.2 Related work

We should note several lines of related work.

• First, techniques such as the “method of averages” [10] preprocess the input into
the form of Eq. (6) of Sect. 3 and can be used to obtain exact or approximate
solutions to the least squares problem of Eq. (1) in o(nd2) time under strong sta-
tistical assumptions on A and b. To the best of our knowledge, however, the two
algorithms we present and analyze are the first algorithms to provide nontrivial
approximation guarantees for overconstrained least squares approximation prob-
lems in o(nd2) time, while making no assumptions at all on the input data.

• Second, Ibarra et al. [17] provide a reduction of the least squares approxima-
tion problem to the matrix multiplication problem. In particular, they show that
M M(d)O(n/d) time, where M M(d) is the time needed to multiply two d × d
matrices, is sufficient to solve this problem. All of the running times we report in
this paper assume the use of standard matrix multiplication algorithms, since o(d3)

matrix multiplication algorithms are almost never used in practice. Moreover, even
with the current best value for the matrix multiplication exponent, ω ≈ 2.376 [9],
our algorithms are still faster.

• Third, motivated by our preliminary results as reported in [12] and [24], both
Rokhlin and Tygert [22] as well as Avron et al. [4,5] have empirically evaluated
numerical implementations of variants of one of the algorithms we introduce. We
describe this in more detail below in Sect. 1.3.

• Fourth, very recently, Clarkson and Woodruff proved space lower bounds on related
problems [8]; and Nguyen et al. [20] achieved a small improvement in the sampling
complexity for related problems.

1.3 Empirical performance of our randomized algorithms

In prior work we have empirically evaluated randomized algorithms that rely on the
ideas that we introduce in this paper in several large-scale data analysis tasks. Never-
theless, it is a fair question to ask whether our “random perspective” on linear algebra
will work well in numerical implementations of interest in scientific computation.
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Faster least squares approximation 223

We address this question here. Although we do not provide an empirical evaluation
in this paper, in the wake of the original Technical Report version of this paper in
2007 [14], two groups of researchers have demonstrated that numerical implementa-
tions of variants of the algorithms we introduce in this paper can perform very well in
practice.

• In 2008, Rokhlin and Tygert [22] describe a variant of our random projection
algorithm, and they demonstrate that their algorithm runs in time

O(ln(�) + κ ln(1/ε)nd + d2�),

where � is an “oversampling” parameter and κ is a condition number. Importantly
(at least for very high-precision applications of this random sampling methodol-
ogy), they reduce the dependence on ε from 1/ε to ln(1/ε). Moreover, by choosing
� ≥ 4d2, they demonstrate that κ ≤3. Although this bound is inferior to ours, they
also consider a class of matrices for which choosing � = 4d empirically produced
a condition number κ <3, which means that for this class of matrices their running
time is

O(ln(d) + κ ln(1/ε)nd + d3).

Their numerical experiments on this class of matrices clearly indicate that their
implementations of variants of our algorithms perform well for certain matrices as
small as thousands of rows by hundreds of columns.

• In 2009, Avron et al. [4,5] introduced a randomized least-squares solver based
directly on our algorithms. They call it Blendenpik, and by considering a much
broader class of matrices, they demonstrate that their solver “beats LAPACK’s
direct dense least-sqares solver by a large margin on essentially any dense tall
matrix.” Beyond providing additional theoretical analysis, including backward
error analysis bounds for our algorithm, they consider five (and numerically imple-
ment three) random projection strategies (i.e., discrete Fourier transform, discrete
Cosine transform, discrete Hartely transform, Walsh-Hadamard transform, and a
Kac random walk), and they evaluate their algorithms on a wide range of matrices
of various sizes and various “localization ” or “coherence” properties. Based on
these results that empirically show the superior performance of randomized algo-
rithms such as those we introduce and analyze in this paper on a wide class of
matrices, they go so far as to “suggest that random-projection algorithms should
be incorporated into future versions of LAPACK.”

1.4 Outline

After a brief review of relevant background in Sect. 2, Sect. 3 presents a structural
result outlining conditions on preconditioner matrices that are sufficient for rela-
tive-error approximation. Then, we present our main sampling-based algorithm for
approximating least squares approximation in Sect. 4 and in Sect. 5 we present a sec-
ond projection-based algorithm for the same problem. Preliminary versions of parts of
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this paper have appeared as conference proceedings in the 17th ACM-SIAM
Symposium on Discrete Algorithms [12] and in the 47th IEEE Symposium on Foun-
dations of Computer Science [24]; and the original Technical Report version of this
journal paper has appeared on the arXiv [14]. In particular, the core of our analysis in
this paper was introduced in [12], where an expensive-to-compute probability distri-
bution was used to construct a relative-error approximation sampling algorithm for the
least squares approximation problem. Then, after the development of the Fast Johnson-
Lindenstrauss transform [1,24] proved that similar ideas could be used to improve the
running time of randomized algorithms for the least squares approximation problem.
In this paper, we have combined these ideas, treated the two algorithms in a manner to
highlight their similarities and differences, and considerably simplified the analysis.

2 Preliminaries

2.1 Notation

We let [n] denote the set {1, 2, . . . , n}; ln x denotes the natural logarithm of x and
log2 x denotes the base two logarithm of x . For any matrix A ∈ R

n×d , A(i), i ∈ [n]
denotes the i-th row of A as a row vector and A( j), j ∈ [d] denotes the j-th column
of A as a column vector. Also, given a random variable X , we let E [X ] denote its
expectation and Var [X ] denote its variance.

We will make frequent use of matrix and vector norms. More specifically, we let

‖A‖2
F =

n
∑

i=1

d
∑

j=1

A2
i j

denote the square of the Frobenius norm of A, and we let

‖A‖2 = sup
x∈Rd , ‖x‖2=1

‖Ax‖2

denote the spectral norm of A. For any vector x ∈ R
n , its �2-norm (or Euclidean norm)

is equal to the square root of the sum of the squares of its elements, while its �∞ norm
is defined as ‖x‖∞ = maxi∈[n] |xi |.

2.2 Linear Algebra background

We now review relevant definitions and facts from linear algebra; for more details,
see [7,6,16,25]. Let the rank of A ∈ R

n×d be ρ ≤ min{n, d}. The Singular Value
Decomposition (SVD) of A is denoted by A = UA�AV T

A , where UA ∈ R
n×ρ

is the matrix of left singular vectors, �A ∈ R
ρ×ρ is the diagonal matrix of non-

zero singular values, and VA ∈ R
d×ρ is the matrix of right singular vectors. Let

σi (A), i ∈ [ρ], denote the i th non-zero singular value of A, and σmax(A) and σmin(A)

denote the maximum and minimum singular value of A. The condition number of A is
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Faster least squares approximation 225

κ(A) = σmax(A)/σmin(A). The Moore-Penrose generalized inverse, or pseudoinverse,
of A may be expressed in terms of the SVD as A† = VA�−1

A U T
A [6]. Finally, for any

orthogonal matrix U ∈ R
n×�, let U⊥ ∈ R

n×(n−�) denote an orthogonal matrix whose
columns are an orthonormal basis spanning the subspace of R

n that is orthogonal to
the column space of U . In terms of U⊥

A , the optimal value of the least squares residual
of Eq. (1) is

Z = min
x∈Rd

‖Ax − b‖2 =
∥
∥
∥U⊥

A U⊥
A

T
b
∥
∥
∥

2
.

2.3 Markov’s inequality and the union bound

We will make frequent use of the following fundamental result from probability theory,
known as Markov’s inequality [19]. Let X be a random variable assuming non-negative
values with expectation E [X ]. Then, for all t > 0,

X ≤ t · E [X ]

with probability at least 1 − t−1.
We will also need the so-called union bound. Given a set of random events

E1, E2, . . . , En holding with respective probabilities p1, p2, . . . , pn , the probability
that all events hold (i.e., the probability of the union of those events) is upper bounded
by
∑n

i=1 pi .

2.4 The randomized Hadamard transform

The randomized Hadamard transform was introduced in [1] as one step in the devel-
opment of a fast version of the Johnson-Lindenstrauss lemma [1,18]. Recall that the
(non-normalized) n × n matrix of the Hadamard transform Hn may be defined recur-
sively as follows:

Hn =
[

Hn/2 Hn/2
Hn/2 −Hn/2

]

, with H2 =
[+1 +1

+1 −1

]

.

The n × n normalized matrix of the Hadamard transform is equal to 1√
n

Hn ; here-
after, we will denote this normalized matrix by H . Now consider a diagonal matrix
D ∈ R

n×n such that the diagonal entries Dii are set to +1 with probability 1/2 and
to −1 with probability 1/2 in n independent trials. The product H D is the Random-
ized Hadamard Transform and has two useful properties. First, when applied to a
vector, it “spreads out” its energy, in the sense of providing a bound for its infinity
norm (see Sect. 4.2). Second, computing the product H Dx for any vector x ∈ R

n

takes O(n log2 n) time. Even better, if we only need to access, say, r elements in the
transformed vector, then those r elements can be computed in O(n log2 r) time [2].
We will expand on the latter observation in the proofs of Theorems 2 and 3.
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3 Our algorithms as preconditioners

Both of our algorithms may be viewed as preconditioning the input matrix A and
the target vector b with a carefully-constructed data-independent random matrix X .
For our random sampling algorithm, we let X = ST H D, where S is a matrix that
represents the sampling operation and H D is the Randomized Hadamard Transform,
while for our random projection algorithm, we let X = T H D, where T is a random
projection matrix. Thus, we replace the least squares approximation problem of Eq. (1)
with the least squares approximation problem

Z̃ = min
x∈Rd

‖X (Ax − b)‖2 . (6)

We explicitly compute the solution to the above problem using a traditional determin-
istic algorithm [16], e.g., by computing the vector

x̃opt = (X A)† Xb. (7)

Alternatively, one could use standard iterative methods such as the the Conjugate
Gradient Normal Residual method (CGNR, see [16] for details), which can produce
an ε-approximation to the optimal solution of Eq. (6) in O(κ(X A)rd ln(1/ε)) time,
where κ(X A) is the condition number of X A and r is the number of rows of X A.

3.1 A structural result sufficient for relative-error approximation

In this subsection, we will state and prove a lemma that establishes sufficient condi-
tions on any matrix X such that the solution vector x̃opt to the least squares problem of
Eq. (6) will satisfy relative-error bounds of the form (4) and (5). Recall that the SVD

of A is A = UA�AV T
A . In addition, for notational simplicity, we let b⊥ = U⊥

A U⊥
A

T
b

denote the part of the right hand side vector b lying outside of the column space of A.
The two conditions that we will require of the matrix X are:

σ 2
min (XUA) ≥ 1/

√
2; and (8)

∥
∥
∥U T

A X T Xb⊥
∥
∥
∥

2

2
≤ εZ2/2, (9)

for some ε ∈ (0, 1). Several things should be noted about these conditions. First,
although condition (9) depends on the right hand side vector b, Algorithms 1 and 2
will satisfy it without using any information from b. Second, although condition (8)
only states that σ 2

i (XUA) ≥ 1/
√

2, for all i ∈ [d], for both of our randomized algo-
rithms we will show that

∣
∣1 − σ 2

i (XUA)
∣
∣ ≤ 1 − 2−1/2, for all i ∈ [d]. Thus, one

should think of XUA as an approximate isometry. Third, condition (9) simply states

that Xb⊥ = XU⊥
A U⊥

A
T

b remains approximately orthogonal to XUA. Finally, note that
the following lemma is a deterministic statement, since it makes no explicit reference
to either of our randomized algorithms. Failure probabilities will enter later when we
show that our randomized algorithms satisfy conditions (8) and (9).

123
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Lemma 1 Consider the overconstrained least squares approximation problem of
Eq. (1) and let the matrix UA ∈ R

n×d contain the top d left singular vectors of A.
Assume that the matrix X satisfies conditions (8) and (9) above, for some ε ∈ (0, 1).
Then, the solution vector x̃opt to the least squares approximation problem (6) satisfies:

∥
∥Ax̃opt − b

∥
∥

2 ≤ (1 + ε)Z, and (10)
∥
∥xopt − x̃opt

∥
∥

2 ≤ 1

σmin(A)

√
εZ. (11)

Proof Let us first rewrite the down-scaled regression problem induced by X as

min
x∈Rd

∥
∥
∥Xb − X Ax

∥
∥
∥

2

2
= min

y∈Rd

∥
∥
∥X (Axopt + b⊥) − X A(xopt + y)

∥
∥
∥

2

2
(12)

= min
y∈Rd

∥
∥
∥Xb⊥ − X Ay

∥
∥
∥

2

2

= min
z∈Rd

∥
∥
∥Xb⊥ − XUAz

∥
∥
∥

2

2
. (13)

(12) follows since b = Axopt + b⊥ and (13) follows since the columns of the matrix
A span the same subspace as the columns of UA. Now, let zopt ∈ R

d be such that
UAzopt = A(xopt − x̃opt), and note that zopt minimizes Eq. (13). The latter fact follows
since

∥
∥
∥Xb⊥ − X A(xopt − x̃opt)

∥
∥
∥

2

2
=
∥
∥
∥Xb⊥ − X (b − b⊥) + X Ax̃opt

∥
∥
∥

2

2

= ∥
∥X Ax̃opt − Xb

∥
∥2

2 .

Thus, by the normal Eq. (3), we have that

(XUA)T XUAzopt = (XUA)T Xb⊥.

Taking the norm of both sides and observing that under condition (8) we have
σi ((XUA)T XUA) = σ 2

i (XUA) ≥ 1/
√

2, for all i , it follows that

∥
∥zopt

∥
∥

2
2 /2 ≤

∥
∥
∥(XUA)T XUAzopt

∥
∥
∥

2

2
=
∥
∥
∥(XUA)T Xb⊥

∥
∥
∥

2

2
. (14)

Using condition (9) we observe that

∥
∥zopt

∥
∥2

2 ≤ εZ2. (15)
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228 P. Drineas et al.

To establish the first claim of the lemma, let us rewrite the norm of the residual vector as

∥
∥b − Ax̃opt

∥
∥

2
2 = ∥

∥b − Axopt + Axopt − Ax̃opt
∥
∥

2
2

= ∥
∥b − Axopt

∥
∥2

2 + ∥
∥Axopt − Ax̃opt

∥
∥2

2 (16)

= Z2 + ∥
∥UAzopt

∥
∥2

2 (17)

≤ Z2 + εZ2, (18)

where (16) follows by Pythagoras, since b − Axopt = b⊥, which is orthogonal to A,
and consequently to A(xopt − x̃opt); (17) follows by the definition of zopt and Z; and
(18) follows by (15) and the orthogonality of UA. The first claim of the lemma follows
since

√
1 + ε ≤ 1 + ε.

To establish the second claim of the lemma, recall that A(xopt − x̃opt) = UAzopt. If
we take the norm of both sides of this expression, we have that

∥
∥xopt − x̃opt

∥
∥

2
2 ≤

∥
∥UAzopt

∥
∥2

2

σ 2
min(A)

(19)

≤ εZ2

σ 2
min(A)

, (20)

where (19) follows since σmin(A) is the smallest singular value of A and since the rank
of A is d; and (20) follows by (15) and the orthogonality of UA. Taking the square
root, the second claim of the lemma follows. 
�

If we make no assumption on b, then (11) from Lemma 1 may provide a weak
bound in terms of

∥
∥xopt

∥
∥

2. If, on the other hand, we make the additional assumption
that a constant fraction of the norm of b lies in the subspace spanned by the columns
of A, then (11) can be strengthened. Such an assumption is reasonable, since most
least-squares problems are practically interesting if at least some part of b lies in the
subspace spanned by the columns of A.

Lemma 2 Using the notation of Lemma 1 and assuming that
∥
∥UAU T

A b
∥
∥

2 ≥ γ ‖b‖2,
for some fixed γ ∈ (0, 1] it follows that

∥
∥xopt − x̃opt

∥
∥

2 ≤ √
ε

(

κ(A)

√

γ −2 − 1

)
∥
∥xopt

∥
∥

2 . (21)

Proof Since
∥
∥UAU T

A b
∥
∥

2 ≥ γ ‖b‖2, it follows that

Z2 = ‖b‖2
2 −

∥
∥
∥UAU T

A b
∥
∥
∥

2

2

≤ (γ −2 − 1)

∥
∥
∥UAU T

A b
∥
∥
∥

2

2

≤ σ 2
max(A)(γ −2 − 1)

∥
∥xopt

∥
∥2

2 .
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This last inequality follows from UAU T
A b = Axopt, which implies

∥
∥
∥UAU T

A b
∥
∥
∥

2
= ∥
∥Axopt

∥
∥

2 ≤ ‖A‖2

∥
∥xopt

∥
∥

2 = σmax (A)
∥
∥xopt

∥
∥

2 .

By combining this with Eq. (11) of Lemma 1, the lemma follows. 
�

4 A sampling-based randomized algorithm

In this section, we present our randomized sampling algorithm for the least squares
approximation problem of Eq. (1). We also state and prove an associated quality-
of-approximation theorem.

4.1 The main algorithm and main theorem

Algorithm 1 takes as input a matrix A ∈ R
n×d , a vector b ∈ R

n , and an error param-
eter ε ∈ (0, 1). This algorithm starts by preprocessing the matrix A and the vector b
with the Randomized Hadamard Transform. It then constructs a smaller problem by
sampling uniformly at random a small number of constraints from the preprocessed
problem. Our main quality-of-approximation theorem (Theorem 2 below) states that
with constant probability over the random choices made by the algorithm, the vector
x̃opt returned by this algorithm will satisfy the relative-error bounds of Eqs. (4) and (5)
and will be computed quickly.

Input: A ∈ R
n×d , b ∈ R

n , and an error parameter ε ∈ (0, 1).

Output: x̃opt ∈ R
d .

1. Let r assume the value of Eq. (22).
2. Let S be an empty matrix.
3. For t = 1, . . . , r (i.i.d. trials with replacement) select uniformly at random an integer from

{1, 2, . . . , n}.
• If i is selected, then append the column vector

(√
n/r

)

ei to S, where ei ∈ R
n is an

all-zeros vector except for its i-th entry which is set to one.

4. Let H ∈ R
n×n be the normalized Hadamard transform matrix.

5. Let D ∈ R
n×n be a diagonal matrix with

Dii =
{+1, with probability 1/2

−1, with probability 1/2

6. Compute and return x̃opt =
(

ST H D A
)†

ST H Db.

Algorithm 1: A fast random sampling algorithm for least squares approximation

In more detail, after preprocessing with the Randomized Hadamard Transform
of Sect. 2.4, Algorithm 1 samples exactly r constraints from the preprocessed least
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squares problem, rescales each sampled constraint by
√

n/r , and solves the least
squares problem induced on just those sampled and rescaled constraints. (Note that
the algorithm explicitly computes only those rows of H D A and only those elements
of H Db that need to be accessed.) More formally, we will let S ∈ R

n×r denote a
sampling matrix specifying which of the n constraints are to be sampled and how they
are to be rescaled. This matrix is initially empty and is constructed as described in
Algorithm 1. Then, we can consider the problem

Z̃ = min
x∈Rd

∥
∥
∥ST H D Ax − ST H Db

∥
∥
∥

2
,

which is just a least squares approximation problem involving the r constraints sampled
from the matrix A after the preprocessing with the Randomized Hadamard Transform.
The minimum �2-norm vector x̃opt ∈ R

d among those that achieve the minimum value
Z̃ in this problem is

x̃opt =
(

ST H D A
)†

ST H Db,

which is the output of Algorithm 1.

Theorem 2 Suppose A ∈ R
n×d , b ∈ R

n, and let ε ∈ (0, 1). Run Algorithm 1 with

r = max
{

482d ln (40nd) ln
(

1002d ln (40nd)
)

, 40d ln(40nd)/ε
}

(22)

and return x̃opt. Then, with probability at least 0.8, the following two claims hold:
first, x̃opt satisfies

∥
∥Ax̃opt − b

∥
∥

2 ≤ (1 + ε)Z;

and, second, if we assume that
∥
∥UAU T

A b
∥
∥

2 ≥ γ ‖b‖2 for some γ ∈ (0, 1], then
x̃opt satisfies

∥
∥xopt − x̃opt

∥
∥

2 ≤ √
ε

(

κ(A)

√

γ −2 − 1

)
∥
∥xopt

∥
∥

2 .

Finally,

n(d + 1) + 2n(d + 1) log2 (r + 1) + O
(

rd2
)

time suffices to compute the solution x̃opt.

Remark Assuming that d ≤ n ≤ ed , and using max{a1, a2} ≤ a1 + a2, we get that

r = O

(

d(ln d)(ln n) + d ln n

ε

)

.
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Thus, the running time of Algorithm 1 becomes

O

(

nd ln
d

ε
+ d3(ln d)(ln n) + d3 ln n

ε

)

.

Assuming that n
ln n = �(d2), the above running time reduces to

O

(

nd ln
d

ε
+ nd ln d

ε

)

.

It is worth noting that improvements over the standard O(nd2) time could be derived
with weaker assumptions on n and d. However, for the sake of clarity of presentation,
we only focus on the above setting.

Remark The assumptions in our theorem have a natural geometric interpretation.1 In
particular, they imply that our approximation becomes worse as the angle between the
vector b and the column space of A increases. To see this, let Z = ||Axopt − b||2, and
note that ||b||22 = ||UAU T

A b||22 + Z2. Hence the assumption ||UAU T
k b||2 ≥ γ ||b||2

can be simply stated as

Z ≤
√

1 − γ 2||b||2.

The fraction Z/||b||2 is the sine of the angle between b and the column space of A;
see page 242 of [16]. Thus,

√

γ −2 − 1 is a bound on the tangent between b and the
column space of A; see page 244 of [16]. This means that the bound for ||xopt − x̃opt||2
is proportional to this tangent.

4.2 The effect of the Randomized Hadamard Transform

In this subsection, we state a lemma that quantifies the manner in which H D approx-
imately “uniformizes” information in the left singular subspace of the matrix A. We
state the lemma for a general n × d orthogonal matrix U such that U T U = Id ,
although we will be interested in the case when n � d and U consists of the top d
left singular vectors of the matrix A.

Lemma 3 Let U be an n × d orthogonal matrix and let the product H D be the n × n
Randomized Hadamard Transform of Sect. 2.4. Then, with probability at least 0.95,

∥
∥(H DU )(i)

∥
∥2

2 ≤ 2d ln(40nd)

n
, for all i ∈ [n]. (23)

Proof We follow the proof of Lemma 2.1 in [1]. In that lemma, the authors essentially
prove that the Randomized Hadamard Transform H D “spreads out” input vectors.

1 We would like to thank Ilse Ipsen for pointing out to us this geometric interpretation.
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More specifically, since the columns of the matrix U (denoted by U ( j) for all j ∈ [d])
are unit vectors, they prove that for fixed j ∈ [d] and fixed i ∈ [n],

Pr
[∣
∣
∣

(

H DU ( j)
)

i

∣
∣
∣ ≥ s

]

≤ 2e−s2n/2.

(Note that we consider d vectors in R
n whereas [1] considered n vectors in R

d and
thus the roles of n and d are inverted in our proof.) Let s = √

2n−1 ln(40nd) to get

Pr
[∣
∣
∣

(

H DU ( j)
)

i

∣
∣
∣ ≥

√

2n−1 ln(40nd)
]

≤ 1

20nd
.

From a standard union bound, this immediately implies that with probability at least
1 − 1/20,

∣
∣
∣

(

H DU ( j)
)

i

∣
∣
∣ ≤

√

2n−1 ln(40nd) (24)

holds for all i ∈ [n] and j ∈ [d]. Using

∥
∥(H DU )(i)

∥
∥

2
2 =

d
∑

j=1

(

H DU ( j)
)2

i
≤ 2d ln(40nd)

n
(25)

for all i ∈ [n], we conclude the proof of the lemma. 
�

4.3 Satisfying condition (8)

We now establish the following lemma which states that all the singular values of
ST H DUA are close to one. The proof of Lemma 4 depends on a bound for approxi-
mating the product of a matrix times its transpose by sampling (and rescaling) a small
number of columns of the matrix. This bound appears as Theorem 4 in the Appendix
and is an improvement over prior work of ours in [13].

Lemma 4 Assume that Eq. (23) holds. If

r ≥ 482d ln (40nd) ln
(

1002d ln (40nd)
)

(26)

then, with probability at least 0.95,

∣
∣
∣1 − σ 2

i

(

ST H DUA

)∣
∣
∣ ≤ 1 − 1√

2
,

holds for all i ∈ [d].
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Proof Note that for all i ∈ [d]
∣
∣
∣1 − σ 2

i

(

ST H DUA

)∣
∣
∣ =

∣
∣
∣σi

(

U T
A DH T H DUA

)

− σi

(

U T
A DH T SST H DUA

)∣
∣
∣

≤
∥
∥
∥U T

A DH T H DUA − U T
A DH T SST H DUA

∥
∥
∥

2
. (27)

In the above, we used the fact that U T
A DH T H DUA = Id . We now can view U T

A DSST

H T H DUA as an approximation to the product of two matricesU T
A DH T = (H DUA)T

and H DUA by randomly sampling and rescaling columns of (H DUA)T . Thus, we
can leverage Theorem 4 from the Appendix. More specifically, consider the matrix
(H DUA)T . Obviously, since H , D, and UA are orthogonal matrices, ‖H DUA‖2 = 1
and ‖H DUA‖F = ‖UA‖F = √

d . Let β = (2 ln(40nd))−1; since we assumed that
Eq. (23) holds, we note that the columns of (H DUA)T , which correspond to the rows
of H DUA, satisfy

1

n
≥ β

∥
∥(H DUA)(i)

∥
∥

2
2

‖H DUA‖2
F

, for all i ∈ [n]. (28)

Thus, applying Theorem 4 with β as above, ε = 1 −
(

1/
√

2
)

, and δ = 1/20 implies

that

∥
∥
∥U T

A DH T HUA − U T
A DH T SST H DUA

∥
∥
∥

2
≤ 1 − 1√

2

holds with probability at least 1−1/20 = 0.95. For the above bound to hold, we need
r to assume the value of Eq. (26). Finally, we note that since ‖H DUA‖2

F = d ≥ 1,
the assumption of Theorem 4 on the Frobenius norm of the input matrix is always
satisfied. Combining the above with inequality (27) concludes the proof of the lemma.


�

4.4 Satisfying condition (9)

We next prove the following lemma, from which it will follow that condition (9) is
satisfied by Algorithm 1. The proof of this lemma depends on bounds for randomized
matrix multiplication algorithms that appeared in [11].

Lemma 5 If Eq. (23) holds and r ≥ 40d ln(40nd)/ε, then with probability at least 0.9,

∥
∥
∥
∥

(

ST H DUA

)T
ST H Db⊥

∥
∥
∥
∥

2

2
≤ εZ2/2.

Proof Recall that b⊥ = U⊥
A U⊥

A
T

b and that Z = ∥
∥b⊥∥∥

2. We start by noting that since
∥
∥U T

A DH T H Db⊥∥∥2
2 = ∥

∥U T
A b⊥∥∥2

2 = 0 it follows that
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∥
∥
∥
∥

(

ST H DUA

)T
ST H Db⊥

∥
∥
∥
∥

2

2
=
∥
∥
∥U T

A DH T SST H Db⊥ − U T
A DH T H Db⊥

∥
∥
∥

2

2
.

Thus, we can view
(

ST H DUA
)T

ST H Db⊥ as approximating the product of two
matrices (H DUA)T and H Db⊥ by randomly sampling columns from (H DUA)T and
rows/elements from H Db⊥. Note that the sampling probabilities are uniform and do
not depend on the norms of the columns of (H DUA)T or the rows of Hb⊥. However,
we can still apply the results of Table 1 (second row) in page 150 of [11]. More
specifically, since we condition on Eq. (23) holding, the rows of H DUA (which of
course correspond to columns of (H DUA)T ) satisfy

1

n
≥ β

∥
∥(H DUA)(i)

∥
∥2

2

‖H DUA‖2
F

, for all i ∈ [n], (29)

for β = (2 ln(40nd))−1. Applying the result of Table 1 (second row) of [11] we get

E

[∥
∥
∥
∥

(

ST H DUA

)T
ST H Db⊥

∥
∥
∥
∥

2

2

]

≤ 1

βr
‖H DUA‖2

F

∥
∥
∥H Db⊥

∥
∥
∥

2

2
= dZ2

βr
.

In the above we used ‖H DUA‖2
F = d. Markov’s inequality now implies that with

probability at least 0.9,

∥
∥
∥
∥

(

ST H DUA

)T
ST H Db⊥

∥
∥
∥
∥

2

2
≤ 10dZ2

βr
.

Setting r ≥ 20β−1d/ε and using the value of β specified above concludes the proof
of the lemma. 
�

4.5 Completing the proof of Theorem 2

We now complete the proof of Theorem 2. First, let E(23) denote the event that
Eq. (23) holds; clearly, Pr [E (23)] ≥ 0.95. Second, let E4,5|(23) denote the event that both
Lemmas 4 and 5 hold conditioned on E (23) holding. Then,

E4,5|(23) = 1 − E4,5|(23)

= 1−Pr [(Lemma 4 does not hold | E(23)) OR (Lemma 5 does not hold | E(23))]

≥ 1 − Pr [Lemma 4 does not hold | E(23)]

−Pr [Lemma 5 does not hold | E(23)]

≥ 1 − 0.05 − 0.1 = 0.85.
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In the above, E denotes the complement of event E . In the first inequality we used
the union bound and in the second inequality we leveraged the bounds for the failure
probabilities of Lemmas 4 and 5 given that Eq. (23) holds. We now let E denote the
event that both Lemmas 4 and 5 hold, without any a priori conditioning on event E (23);
we will bound Pr [E] as follows:

Pr [E] = Pr [E |E (23)] · Pr [E (23)] + Pr
[E |E (23)

] · Pr
[E (23)

]

≥ Pr [E |E (23)] · Pr [E (23)]

= Pr [E4,5| (23)|E (23)] · Pr [E (23)]

≥ 0.85 · 0.95 ≥ 0.8.

In the first inequality we used the fact that all probabilities are positive. The above
derivation immediately bounds the success probability of Theorem 2. Combining
Lemmas 4 and 5 with the structural results of Lemma 1 and setting r as in Eq. (22)
concludes the proof of the accuracy guarantees of Theorem 2.

We now discuss the running time of Algorithm 1. First of all, by the construction of
S, the number of non-zero entries in S is r . In Step 6 we need to compute the products
ST H D A and ST H Db. Recall that A has d columns and thus the running time of
computing both products is equal to the time needed to apply ST H D on (d + 1) vec-
tors. First, note that in order to apply D on (d + 1) vectors in R

n , n(d + 1) operations
suffice. In order to estimate how many operations are needed to apply ST H on (d +1)

vectors, we use the results of Theorem 2.1 (see also Sect. 7) of Ailon and Liberty [2],
which state that at most 2n(d + 1) log2 (|S| + 1) operations are needed for this oper-
ation. Here |S| denotes the number of non-zero elements in the matrix S, which is at
most r . After this preprocessing, Algorithm 1 must compute the pseudoinverse of an
r × d matrix, or, equivalently, solve a least-squares problem on r constraints and d
variables. This operation can be performed in O(rd2) time since r ≥ d. Thus, the
entire algorithm runs in time

n(d + 1) + 2n(d + 1) log2 (r + 1) + O
(

rd2
)

.

5 A projection-based randomized algorithm

In this section, we present a projection-based randomized algorithm for the least
squares approximation problem of Eq. (1). We also state and prove an associated
quality-of-approximation theorem.

5.1 The main algorithm and main theorem

Algorithm 2 takes as input a matrix A ∈ R
n×d , a vector b ∈ R

n , and an error param-
eter ε ∈ (0, 1/2). This algorithm also starts by preprocessing the matrix A and right
hand side vector b with the Randomized Hadamard Transform. It then constructs a
smaller problem by performing a “sparse projection” on the preprocessed problem.
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Our main quality-of-approximation theorem (Theorem 3 below) will state that with
constant probability (over the random choices made by the algorithm) the vector x̃opt
returned by this algorithm will satisfy the relative-error bounds of Eqs. (4) and (5) and
will be computed quickly.

Input: A ∈ R
n×d , b ∈ R

n , and an error parameter ε ∈ (0, 1/2).

Output: x̃opt ∈ R
d .

1. Let q and k assume the values of Eqs. (30) and (31).
2. Let T ∈ R

k×n be a random matrix with

Ti j =

⎧

⎪⎪⎨

⎪⎪⎩

+
√

1
kq , with probability q/2

−
√

1
kq , with probability q/2

0, with probability 1 − q,

for all i, j independently.
3. Let H ∈ R

n×n be the normalized Hadamard transform matrix.
4. Let D ∈ R

n×n be a diagonal matrix with

Dii =
{+1, with probability 1/2

−1, with probability 1/2

5. Compute and return x̃opt = (T H D A)† T H Db.

Algorithm 2: A fast random projection algorithm for least squares approximation

In more detail, Algorithm 2 begins by preprocessing the matrix A and right hand
side vector b with the Randomized Hadamard Transform H D of Sect. 2.4. This algo-
rithm explicitly computes only those rows of H D A and those elements of H Db that
need to be accessed to perform the sparse projection. After this initial preprocessing,
Algorithm 2 will perform a “sparse projection” by multiplying H D A and H Db by
the sparse matrix T (described in more detail in Sect. 5.2). Then, we can consider the
problem

Z̃ = min
x∈Rd

∥
∥
∥T H D Ax − T H Db

∥
∥
∥

2
,

which is just a least squares approximation problem involving the matrix T H D A ∈
R

k×d and the vector T H Db ∈ R
k . The minimum �2-norm vector x̃opt ∈ R

d among
those that achieve the minimum value Z̃ in this problem is

x̃opt = (T H D A)† T H Db,

which is the output of Algorithm 2.
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Theorem 3 Suppose A ∈ R
n×d , b ∈ R

n, and let ε ∈ (0, 1/2). Run Algorithm 2 with2

q ≥ Cqd ln(40nd)

n
(2 ln n + 16d + 16) (30)

k ≥ max

{

Ck

(

1182d + 982
)

,
60d

ε

}

(31)

and return x̃opt. Then, with probability at least 0.8, the following two claims hold:
first, x̃opt satisfies

∥
∥Ax̃opt − b

∥
∥

2 ≤ (1 + ε)Z;

and, second, if we assume that
∥
∥UAU T

A b
∥
∥

2 ≥ γ ‖b‖2 for some γ ∈ (0, 1] then x̃opt
satisfies

∥
∥xopt − x̃opt

∥
∥

2 ≤ √
ε

(

κ(A)

√

γ −2 − 1

)
∥
∥xopt

∥
∥

2 .

Finally, the expected running time of the algorithm is (at most)

n(d + 1) + 2n(d + 1) log2 (nkq + 1) + O
(

kd2
)

.

Remark Assuming that d ≤ n ≤ ed we get that

q = O

(
d2 ln n

n

)

and k = O

(
d

ε

)

.

Thus, the expected running time of Algorithm 2 becomes

O

(

nd ln
d

ε
+ d3

ε

)

.

Finally, assuming n = �(d2), the above running time reduces to

O

(

nd ln
d

ε
+ nd

ε

)

.

It is worth noting that improvements over the standard O(nd2) time could be derived
with weaker assumptions on n and d.

2 Cq and Ck are the unspecified constants of Lemma 6.
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5.2 Sparse projection matrices

In this subsection, we state a lemma about the action of a sparse random matrix
operating on a vector. Recall that given any set of n points in Euclidean space, the
Johnson–Lindenstrauss lemma states that those points can be mapped via a linear
function to k = O(ε−2 ln n) dimensions such that the distances between all pairs of
points are preserved to within a multiplicative factor of 1 ± ε; see [18] and references
therein for details.

Formally, let ε ∈ (0, 1/2) be an error parameter, δ ∈ (0, 1) be a failure probability,
and α ∈ [1/

√
n, 1] be a “uniformity” parameter. In addition, let q be a “sparsity”

parameter defining the expected number of nonzero elements per row, and let k be
the number of rows in our matrix. Then, define the k × n random matrix T as in
Algorithm 2. Matoušek proved the following lemma, as the key step in his version of
the Ailon–Chazelle result [1,18].

Lemma 6 Let T be the sparse random matrix of Algorithm 2, where q = Cqα2 ln( n
εδ

)

for some sufficiently large constant Cq (but still such that q ≤ 1), and k = Ckε
−2 ln( 4

δ
)

for some sufficiently large constant Ck (but such that k is integral). Then for every
vector x ∈ R

n such that ‖x‖∞ / ‖x‖2 ≤ α, we have that with probability at least
1 − δ

| ‖T x‖2 − ‖x‖2| ≤ ε ‖x‖2 .

Remark In order to achieve sufficient concentration for all vectors x ∈ R
n , the linear

mapping defining the Johnson–Lindenstrauss transform is typically “dense,” in the
sense that almost all the elements in each of the k rows of the matrix defining the
mapping are nonzero. In this case, implementing the mapping on d vectors (in, e.g.,
a matrix A) via a matrix multiplication requires O(ndk) time. This is not faster than
the O(nd2) time required to compute an exact solution to the problem of Eq. (1) if k
is at least d. The Ailon–Chazelle result [1,18] states that the mapping can be “sparse,”
in the sense that only a few of the elements in each of the k rows need to be non-
zero, provided that the vector x is “well-spread,” in the sense that ‖x‖∞ / ‖x‖2 is
close to 1/

√
n. This is exactly what the preprocessing with the randomized Hadamard

transform guarantees.

5.3 Proof of Theorem 3

In this subsection, we provide a proof of Theorem 3. Recall that by the results of
Sect. 3.1, in order to prove Theorem 3, we must show that the matrix T H D con-
structed by Algorithm 2 satisfies conditions (8) and (9) with probability at least .5.
The next two subsections focus on proving that these conditions hold; the last subsec-
tion discusses the running time of Algorithm 2.
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5.3.1 Satisfying condition (8)

In order to prove that all the singular values of T H DUA are close to one, we start with
the following lemma which provides a means to bound the spectral norm of a matrix.
This lemma is an instantiation of lemmas that appeared in [3,15].

Lemma 7 Let M be a d × d symmetric matrix and define the grid

� =
{

x : x ∈ 1

2
√

d
Z

d , ‖x‖2 ≤ 1

}

. (32)

In words, � includes all d-dimensional vectors x whose coordinates are integer mul-

tiples of
(

2
√

d
)−1

and satisfy ‖x‖2 ≤ 1. Then, the cardinality of � is at most e4d . In

addition, if for every x, y ∈ � we have that
∣
∣xT My

∣
∣ ≤ ε′, then for every unit vector

x we have that
∣
∣xT Mx

∣
∣ ≤ 4ε′.

We next establish Lemma 8, which states that all the singular values of T H DUA

are close to one with constant probability. The proof of this lemma depends on the
bound provided by Lemma 7 and it immediately shows that condition (8) is satisfied
by Algorithm 2.

Lemma 8 Assume that Lemma 3 holds. If q and k satisfy:

q ≥ Cqd ln(40nd)

n
(2 ln n + 16d + 16) (33)

k ≥ Ck

(

1182d + 982
)

, (34)

then, with probability at least 0.95,

∣
∣
∣1 − σ 2

i (T H DUA)

∣
∣
∣ ≤ 1 − (1/

√
2)

holds for all i ∈ [d]. Here Cq and Ck are the unspecified constants of Lemma 6.

Proof Define the symmetric matrix M = U T
A DH T T T T H DUA − Id ∈ R

d×d , recall
that Id = U T

A DH T H DUA, and note that

∣
∣
∣1 − σ 2

i (T H DUA)

∣
∣
∣ ≤ ‖M‖2 (35)

holds for all i ∈ [d]. Consider the grid � of Eq. (32) and note that there are no more than
e8d pairs (x, y) ∈ � × �, since |�| ≤ e4d by Lemma 7. Since
‖M‖2 = sup‖x‖2=1

∣
∣xT Mx

∣
∣, in order to show that ‖M‖2 ≤ 1 − 2−1/2, it suffices by

Lemma 7 to show that
∣
∣xT My

∣
∣ ≤ (

1 − 2−1/2
)

/4, for all x, y ∈ �. To do so, first,
consider a single x, y pair.
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Let

�1 = ‖T H DUA(x + y)‖2
2 − ‖H DUA(x + y)‖2

2

�2 = ‖T H DUAx‖2
2 − ‖H DUAx‖2

2

�3 = ‖T H DUA y‖2
2 − ‖H DUA y‖2

2 ,

and note that

�1 = (x + y)T U T
A DH T T T T H DUA(x + y) − (x + y)T (x + y).

By multiplying out the right hand side of the above equation and rearranging terms, it
follows that

xT My = xT U T
A DH T T T T H DUA y − xT y = 1

2
(�1 + �2 + �3) . (36)

In order to use Lemma 6 to bound the quantities �1,�2, and �3, we need a bound on
the uniformity ratio ‖H DUAx‖∞ / ‖H DUAx‖2. To do so, note that

‖H DUAx‖∞
‖H DUAx‖2

= maxi∈[n]
∣
∣(H DUA)(i) x

∣
∣

‖H DUAx‖2
≤ maxi∈[n]

∥
∥(H DUA)(i)

∥
∥

2 ‖x‖2

‖x‖2

≤
√

2d ln(40nd)

n
.

The above inequalities follow by ‖H DUAx‖2 = ‖x‖2 and Lemma 3. This holds
for both our chosen points x and y and in fact for all x ∈ �. Let ε1 = 3/125 and
let δ = 1/(60e8d) (these choices will be explained shortly). Then, it follows from
Lemma 6 that by setting α = √

2d ln(40nd)/n and our choices for k and q, each of
the following three statements holds with probability at least 1 − δ:

|�1| ≤ ε1 ‖H DUA(x + y)‖2
2 = ε1 ‖x + y‖2

2 ≤ 4ε1

|�2| ≤ ε1 ‖H DUAx‖2
2 = ε1 ‖x‖2 ≤ ε1

|�3| ≤ ε1 ‖H DUA y‖2
2 = ε1 ‖y‖2 ≤ ε1.

Thus, combining the above with Eq. (36), for this single pair of vectors (x, y) ∈ � × �,

∣
∣
∣xT My

∣
∣
∣ =

∣
∣
∣xT U T

A DH T T T T H DUA y − xT y
∣
∣
∣ ≤ 1

2
6ε1 = 3ε1 (37)

holds with probability at least 1 − 3δ. Next, recall that there are no more than e8d

pairs of vectors (x, y) ∈ � × �, and we need Eq. (37) to hold for all of them. Since
we set δ = 1/(60e8d) then it follows by a union bound that Eq. (37) holds for all
pairs of vectors (x, y) ∈ � × � with probability at least 0.95. Additionally, let us set
ε1 = 3/125, which implies that

∣
∣xT My

∣
∣ ≤ 9/125 ≤ (

1 − 2−1/2
)

/4 thus concluding
the proof of the lemma.

123



Faster least squares approximation 241

Finally, we discuss the values of the parameters q and k. Since δ = 1/(60e8d),
ε1 = 3/125, and α = √

2d ln(40nd)/n, the appropriate values for q and k emerge
after elementary manipulations from Lemma 6. 
�

5.3.2 Satisfying condition (9)

In order to prove that condition (9) is satisfied, we start with Lemma 9. In words,
this lemma states that given vectors x and y we can use the random sparse projection
matrix T to approximate

∣
∣xT y

∣
∣ by

∣
∣xT T T T y

∣
∣, provided that ‖x‖∞ (or ‖y‖∞, but not

necessarily both) is bounded. The proof of this lemma is elementary but tedious and
is deferred to Sect. 6.2 of the Appendix.

Lemma 9 Let x, y be vectors in R
n such that ‖x‖∞ ≤ α. Let T be the k × n sparse

projection matrix of Sect. 5.2, with sparsity parameter q. If q ≥ α2, then

E
[∣
∣
∣xT T T T y − xT y

∣
∣
∣

2
]

≤ 2

k

∥
∥
∥x
∥
∥
∥

2

2

∥
∥
∥y
∥
∥
∥

2

2
+ 1

k

∥
∥
∥y
∥
∥
∥

2

2
.

The following lemma proves that condition (9) is satisfied by Algorithm 2. The proof of

this lemma depends on the bound provided by Lemma 9. Recall that b⊥ = U⊥
A U⊥

A
T

b

and thus
∥
∥b⊥∥∥

2 =
∥
∥
∥U⊥

A U⊥
A

T
b
∥
∥
∥

2
= Z .

Lemma 10 Assume that Eq. (23) holds. If k ≥ 60d/ε and q ≥ 2n−1 ln(40nd), then,
with probability at least 0.9,

∥
∥
∥(T H DUA)T T H Db⊥

∥
∥
∥

2

2
≤ εZ2/2.

Proof We first note that since U T
A b⊥ = 0, it follows that U ( j)

A

T
b⊥ = U ( j)

A

T
DH T

H Db⊥ = 0, for all j ∈ [d]. Thus, we have that

∥
∥
∥U T

A DH T T T T H Db⊥∥∥
∥

2

2
=

d
∑

j=1

((

(H DUA)( j)
)T

T T T H Db⊥ − U ( j)
A

T
DH T H Db⊥

)2
.

(38)

We now bound the expectation of the left hand side of Eq. (38) by using Lemma 9 to
bound each term on the right hand side of Eq. (38). Using Eq. (24) of Lemma 3 we
get that

∥
∥
∥(H DUA)( j)

∥
∥
∥∞ ≤

√

2n−1 ln(40nd)
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holds for all j ∈ [d]. By our choice of the sparsity parameter q the conditions of
Lemma 9 are satisfied. It follows from Lemma 9 that

E
[ ∥
∥
∥U T

A DH T T T T H Db⊥
∥
∥
∥

2

2

]

=
d
∑

j=1

E

[((

(H DUA)( j)
)T

T T T H Db⊥ − U ( j)
A

T
DH T H Db⊥

)2
]

≤
d
∑

j=1

(
2

k

∥
∥
∥(H DUA)( j)

∥
∥
∥

2

2

∥
∥
∥H Db⊥

∥
∥
∥

2

2
+ 1

k

∥
∥
∥H Db⊥

∥
∥
∥

2

2

)

= 3d

k

∥
∥
∥H Db⊥

∥
∥
∥

2

2
= 3d

k
Z2.

The last line follows since
∥
∥(H DUA)( j)

∥
∥

2 = 1, for all j ∈ [d]. Using Markov’s
inequality, we get that with probability at least 0.9,

∥
∥
∥U T

A DH T T T T H Db⊥
∥
∥
∥

2

2
≤ 30d

k
Z2.

The proof of the lemma is concluded by using the assumed value of k. 
�

5.3.3 Proving Theorem 3

By our choices of k and q as in Eqs. (31) and (30), it follows that both conditions (8)
and (9) are satisfied. Combining with Lemma 1 we immediately get the accuracy guar-
antees of Theorem 3. The failure probability of Algorithm 2 can be bounded using an
argument similar to the one used in Sect. 4.5.

In order to complete the proof we discuss the running time of Algorithm 2. First
of all, by the construction of T , the expected number of non-zero entries in T is kqn.
In Step 5 we need to compute the products T H D A and T H Db. Recall that A has d
columns and thus the running time of computing both products is equal to the time
needed to apply T H D on (d +1) vectors. First, note that in order to apply D on (d +1)

vectors in R
n , n(d + 1) operations suffice. In order to estimate how many operations

are needed to apply T H on (d +1) vectors, we use the results of Theorem 2.1 (see also
Sect. 7) of Ailon and Liberty [2], which state that at most 2n(d + 1) log2 (|T | + 1)

operations are needed for this operation. Here |T | denotes the number of non-zero
elements in the matrix T , which – in expectation – is nkq. After this preprocessing,
Algorithm 2 must compute the pseudoinverse of a k × d matrix, or, equivalently,
solve a least-squares problem on k constraints and d variables. This operation can be
performed in O(kd2) time since k ≥ d. Thus, the entire algorithm runs in expected
time

n(d + 1) + 2n(d + 1)E
[

log2 (|T | + 1)
]+ O

(

kd2
)

≤ n(d + 1)

+2n(d + 1) log2 (nkq + 1) + O
(

kd2
)

.
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6 Appendix

6.1 Approximating matrix multiplication

Let A ∈ R
m×n be any matrix. Consider the following algorithm (which is essen-

tially the algorithm in page 876 of [13]) that constructs a matrix C ∈ R
m×c consist-

ing of c rescaled columns of A. We will seek a bound on the approximation error
∥
∥AAT − CCT

∥
∥

2, which we will provide in Theorem 4. A variant of this theorem
appeared as Theorem 7 in [13]; this version modifies and supersedes Eq. (47) of The-
orem 7 in the following manner: first, we will assume that the spectral norm of A is
bounded and is at most one (this is a minor normalization assumption). Second, and
most importantly, we will need to set c to be at least the value of Eq. (40) for the
theorem to hold. This second assumption was omitted from the statement of Eq. (47)
in Theorem 7 of [13].

Data : A ∈ R
m×n , pi ≥ 0, i ∈ [n] s.t.

∑

i∈[n] pi = 1, positive integer c ≤ n.

Result : C ∈ R
m×c

Initialize S ∈ R
m×c to be an all-zero matrix.

for t = 1, . . . , c do
Pick it ∈ [n], where Pr(it = i) = pi ;
Sit t = 1/

√
cpit ;

end
Return C = AS;

Algorithm 3: The Exactly(c) algorithm.

Theorem 4 Let A ∈ R
m×n with ‖A‖2 ≤ 1. Construct C using the Exactly(c)

algorithm and let the sampling probabilities pi satisfy

pi ≥ β

∥
∥A(i)

∥
∥

2
2

‖A‖2
F

(39)

for all i ∈ [n] for some constant β ∈ (0, 1]. Let ε ∈ (0, 1) be an accuracy parameter
and assume ‖A‖2

F ≥ 1/24. If

c ≥ 96 ‖A‖2
F

βε2 ln

(

96 ‖A‖2
F

βε2
√

δ

)

(40)

then, with probability at least 1 − δ,

∥
∥
∥AAT − CCT

∥
∥
∥

2
≤ ε.
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Proof Consider the Exactly(c) algorithm. Then

AAT =
n
∑

i=1

A(i) A(i)T
.

Similar to [23] we shall view the matrix AAT as the true mean of a bounded operator
valued random variable, whereas CCT = AS(AS)T = ASST AT will be its empirical
mean. Then, we will apply Lemma 1 of [21]. To this end, define a random vector
y ∈ R

m as

Pr
[

y = 1√
pi

A(i)
]

= pi

for i ∈ [n]. The matrix C = AS has columns 1√
c

y1, 1√
c

y2, . . . , 1√
c

yc, where

y1, y2, . . . , yc are c independent copies of y. Using this notation, it follows that

E
[

yyT
]

= AAT (41)

and

CCT = ASST AT = 1

c

c
∑

t=1

yt yt T
.

Finally, let

M = ‖y‖2 = 1√
pi

∥
∥
∥A(i)

∥
∥
∥

2
. (42)

We can now apply Lemma 1, p. 3 of [21]. Notice that from Eq. (41) and our assumption
on the spectral norm of A, we immediately get that

∥
∥
∥E
[

yyT
]∥
∥
∥

2
=
∥
∥
∥AAT

∥
∥
∥

2
≤ ‖A‖2

∥
∥
∥AT

∥
∥
∥

2
≤ 1.

Then, Lemma 1 of [21] implies that

∥
∥
∥CCT − AAT

∥
∥
∥

2
< ε, (43)

with probability at least 1 − (2c)2 exp
(

− cε2

16M2 + 8M2ε

)

. Let δ be the failure proba-

bility of Theorem 4; we seek an appropriate value of c in order to guarantee (2c)2
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exp
(

− cε2

16M2 + 8M2ε

)

≤ δ. Equivalently, we need to satisfy

c

ln
(

2c/
√

δ
) ≥ 2

ε2

(

16M2 + 8M2ε
)

.

Recall that ε < 1, and combine Eqs. (42) and (39) to get M2 ≤ ‖A‖2
F /β. Combining

with the above equation, it suffices to choose a value of c such that

c

ln
(

2c/
√

δ
) ≥ 48

βε2
‖A‖2

F ,

or, equivalently,

2c/
√

δ

ln
(

2c/
√

δ
) ≥ 96

βε2
√

δ
‖A‖2

F .

We now use the fact that for any η ≥ 4, if x ≥ 2η ln η then x
ln x ≥ η. Let x = 2c

/√
δ,

let η = 96 ‖A‖2
F /
(

βε2
√

δ
)

, and note that η ≥ 4 if ‖A‖2
F ≥ 1/24, since β, ε, and δ

are at most one. Thus, it suffices to set

2c√
δ

≥ 2
96 ‖A‖2

F

βε2
√

δ
ln

(

96 ‖A‖2
F

βε2
√

δ

)

,

which concludes the proof of the theorem. 
�

6.2 The proof of Lemma 9

Let T ∈ R
k×n be the sparse projection matrix constructed via Algorithm 2 (see

Sect. 5.1), with sparsity parameter q. In addition, given x, y ∈ R
n , let � = xT T T T y−

xT y. We will derive a bound for

E
[

�2
]

= E
[(

xT T T T y − xT y
)2
]

.

Let t(i) be the i-th row of T as a row vector, for i ∈ [k], in which case

� =
k
∑

i=1

(

xT tT
(i)t(i)y − 1

k
xT y

)

.
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Rather than computing E
[

�2
]

directly, we will instead use that E
[

�2
] =

(E [�])2 + Var [�]. We first claim that E [�] = 0. By linearity of expectation,

E [�] =
k
∑

i=1

[

E
[

xT tT
(i)t(i)y

]

− 1

k
xT y

]

. (44)

We first analyze t(i) = t for some fixed i (w.l.o.g. i = 1). Let ti denote the i-th ele-
ment of the vector t and recall that E [ti ] = 0, E

[

ti t j
] = 0 for i �= j , and also that

E
[

t2
i

] = 1/k. Thus,

E
[

xT tT ty
]

= E

⎡

⎣

n
∑

i=1

n
∑

j=1

xi ti t j y j

⎤

⎦ =
n
∑

i=1

n
∑

j=1

xi E
[

ti t j
]

y j =
n
∑

i=1

xi E
[

t2
i

]

yi

= 1

k
xT y.

By combining the above with Eq. (44), it follows that E [�] = 0, and thus that
E
[

�2
] = Var [�]. In order to provide a bound for Var [�], note that

Var [�] =
k
∑

i=1

Var
[

xT tT
(i)t(i)y − 1

k
xT y

]

(45)

=
k
∑

i=1

Var
[

xT tT
(i)t(i)y

]

. (46)

Equation (45) follows since the k random variables xT tT
(i)t(i)y− 1

k xT y are independent

(since the elements of T are independent) and Eq. (46) follows since 1
k xT y is constant.

In order to bound Eq. (46), we first analyze t(i) = t for some i (w.l.o.g. i = 1). Then,

Var
[

xT tT ty
]

= E
[

(xT tT ty)2
]

−
(

E
[

xT tT ty
])2

= E
[

(xT tT ty)2
]

− 1

k2 (xT y)2. (47)

We will bound the E
[

(xT tT ty)2
]

term directly:

E

⎡

⎢
⎣

⎛

⎝

n
∑

i=1

n
∑

j=1

xi ti t j y j

⎞

⎠

2
⎤

⎥
⎦ = E

⎡

⎣

n
∑

i1=1

n
∑

i2=1

n
∑

j1=1

n
∑

j2=1

xi1 xi2 ti1 ti2 t j1 t j2 y j1 y j2

⎤

⎦

=
n
∑

i1=1

n
∑

i2=1

n
∑

j1=1

n
∑

j2=1

xi1 xi2 E
[

ti1 ti2 t j1 t j2

]

y j1 y j2 . (48)
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Notice that if any of the four indices i1, i2, j1, j2 appears only once, then the expec-
tation E

[

ti1 ti2 t j1 t j2

]

corresponding to those indices equals zero. This expectation is
non-zero if the four indices are paired in couples or if all four are equal. That is,
non-zero expectation happens if

(A) : i1 = i2 �= j1 = j2 (n2 − n terms)

(B) : i1 = j1 �= i2 = j2 (n2 − n terms)

(C) : i1 = j2 �= i2 = j1 (n2 − n terms)

(D) : i1 = i2 = j1 = j2 (n terms).

For case (A), let i1 = i2 = � and let j1 = j2 = p, in which case the corresponding
terms in Eq. (48) become:

n
∑

�=1

n
∑

p=1:p �=�

x2
� E
[

t2
� t2

p

]

y2
p =

n
∑

�=1

n
∑

p=1:p �=�

x2
� E
[

t2
�

]

E
[

t2
p

]

y2
p

= 1

k2

n
∑

�=1

n
∑

p=1:p �=�

x2
� y2

p

= 1

k2

n
∑

�=1

n
∑

p=1:p �=�

x2
� y2

p + 1

k2

n
∑

p=1

x2
p y2

p − 1

k2

n
∑

p=1

x2
p y2

p

= 1

k2
‖x‖2

2 ‖y‖2
2 − 1

k2

n
∑

p=1

x2
p y2

p.

Similarly, cases (B) and (C) give:

n
∑

�=1

n
∑

p=1:p �=�

x�x pE
[

t2
� t2

p

]

y�yp = 1

k2 (xT y)2 − 1

k2

n
∑

p=1

x2
p y2

p

(where i1 = j1 = � and i2 = j2 = p), and
n
∑

�=1

n
∑

p=1:p �=�

x�x pE
[

t2
� t2

p

]

y�yp = 1

k2 (xT y)2 − 1

k2

n
∑

p=1

x2
p y2

p

(where i1 = j2 = � and i2 = j1 = p).

Finally, for case (D), let i1 = i2 = j1 = j2 = �, in which case:

n
∑

�=1

x2
� E
[

t4
�

]

y2
� = 1

k2q

n
∑

�=1

x2
� y2

� ,
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where we have used that E
[

t4
�

] = 1/(k2q). By combining these four terms for each
of the k terms in the sum, it follows from Eqs. (46) and (47) that

E
[

�2
]

= k

⎛

⎝
1

k2
‖x‖2

2 ‖y‖2
2+ 2

k2 (xT y)2− 3

k2

n
∑

p=1

x2
p y2

p+ 1

k2q

n
∑

p=1

x2
p y2

p− 1

k2 (xT y)2

⎞

⎠

≤ 2

k
‖x‖2

2 ‖y‖2
2 + 1

kq

n
∑

p=1

x2
p y2

p. (49)

In the above we used (xT y)2 ≤ ‖x‖2
2 ‖y‖2

2. Since we assumed that ‖x‖∞ ≤ α, the

second term on the right hand side of Eq. (49) is bounded by α2

kq ‖y‖2
2 and the lemma

follows since we have assumed that q ≥ α2.
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