
SIAM J. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 45, No. 3, pp. 763–810

THE FAST CAUCHY TRANSFORM AND FASTER ROBUST
LINEAR REGRESSION∗

KENNETH L. CLARKSON† , PETROS DRINEAS‡ , MALIK MAGDON-ISMAIL‡ ,
MICHAEL W. MAHONEY§, XIANGRUI MENG¶, AND DAVID P. WOODRUFF†

Abstract. We provide fast algorithms for overconstrained �p regression and related prob-
lems: for an n × d input matrix A and vector b ∈ R

n, in O(nd logn) time we reduce the problem
minx∈Rd ‖Ax− b‖p to the same problem with input matrix Ã of dimension s× d and corresponding

b̃ of dimension s× 1. Here, Ã and b̃ are a coreset for the problem, consisting of sampled and rescaled
rows of A and b; and s is independent of n and polynomial in d. Our results improve on the best
previous algorithms when n � d for all p ∈ [1,∞) except p = 2; in particular, they improve the
O(nd1.376+) running time of Sohler and Woodruff [Proceedings of the 43rd Annual ACM Sympo-
sium on Theory of Computing, 2011, pp. 755–764] for p = 1, which uses asymptotically fast matrix
multiplication, and the O(nd5 logn) time of Dasgupta et al. [SIAM J. Comput., 38 (2009), pp. 2060–
2078] for general p, which uses ellipsoidal rounding. We also provide a suite of improved results for
finding well-conditioned bases via ellipsoidal rounding, illustrating tradeoffs between running time
and conditioning quality, including a one-pass conditioning algorithm for general �p problems. To
complement this theory, we provide a detailed empirical evaluation of implementations of our algo-
rithms for p = 1, comparing them with several related algorithms. Among other things, our empirical
results clearly show that, in the asymptotic regime, the theory is a very good guide to the practical
performance of these algorithms. Our algorithms use our faster constructions of well-conditioned
bases for �p spaces and, for p = 1, a fast subspace embedding of independent interest that we call the
Fast Cauchy transform: a distribution over matrices Π : Rn �→ R

O(d log d), found obliviously to A,
that approximately preserves the �1 norms, that is, with large probability, simultaneously for all x,
‖Ax‖1 ≈ ‖ΠAx‖1, with distortion O(d2+η), for an arbitrarily small constant η > 0; and, moreover,
ΠA can be computed in O(nd log d) time. The techniques underlying our Fast Cauchy transform
include Fast Johnson–Lindenstrauss transforms, low-coherence matrices, and rescaling by Cauchy
random variables.
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1. Introduction. Random sampling, random projection, and other embedding
methods have proven to be very useful in recent years in the development of improved
worst-case algorithms for a range of linear algebra problems. For example, Gaussian
random projections provide low-distortion subspace embeddings in the �2 norm, map-
ping an arbitrary d-dimensional subspace in R

n into a d-dimensional subspace in R
r,

with r = O(d), and distorting the �2 norm of each vector in the subspace by at most
a constant factor. Importantly for many applications, the embedding is oblivious in
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the sense that it is implemented by a linear mapping chosen from a distribution on
mappings that is independent of the input subspace. Such low-distortion embeddings
can be used to speed up various geometric algorithms if they can be computed suf-
ficiently quickly. As an example, the Fast Johnson–Lindenstrauss transform (FJLT)
is one such embedding; the FJLT is computable in O(n log d) time, using a variant
of the Fast Hadamard transform [1]. Among other things, use of the FJLT leads to
faster algorithms for constructing orthonormal bases, �2 regression, and �2 subspace
approximation, which in turn lead to faster algorithms for a range of related problems
including low-rank matrix approximation [12, 20, 10].

In this paper, we use �1 and �p extensions of these methods to provide faster
algorithms for the classical �p regression problem and several other related problems.
Recall the overconstrained �p regression problem.

Definition 1. Given a matrix A ∈ R
n×d, with n > d, a vector b ∈ R

n, and a
norm ‖ · ‖p, the �p regression problem is to find an optimal solution to

(1) min
x∈Rd

‖Ax− b‖p.

In this paper, we are most interested in the case p = 1, although many of our
results hold more generally, and so we state several of our results for general p. The �1
regression problem, also known as the least absolute deviations or least absolute errors
problem, is especially of interest as a more robust alternative to the �2 regression or
least squares approximation problem.

It is well known that for p ≥ 1, the �p regression problem is a convex optimiza-
tion problem; and for p = 1 and p = ∞, it is an instance of linear programming.
Recent work has focused on using sampling, projection, and other embedding meth-
ods to solve these problems more quickly than with general convex programming or
linear programming methods. Most relevant for our work is the work of Clarkson [6]
on solving the �1 regression problem with subgradient and sampling methods; the
work of Dasgupta et al. [7] on using well-conditioned bases and subspace-preserving
sampling algorithms to solve general �p regression problems; and the work of Sohler
and Woodruff [24] on using the Cauchy transform to obtain improved �1 embeddings,
thereby leading to improved algorithms for the �1 regression problem. The Cauchy
transform of [24] provides low-distortion embeddings for the �1 norm, and thus it is an
�1 analogue of the Gaussian projection for �2. It consists of a dense matrix of Cauchy
random variables, and so it is “slow” to apply to an arbitrary matrix A; but since it
provides the first analogue of the Johnson–Lindenstrauss embedding for the �1 norm,
it can be used to speed up randomized algorithms for problems such as �1 regression
and �1 subspace approximation [24].

In this paper, we provide fast algorithms for overconstrained �p regression and sev-
eral related problems. Our algorithms use our faster constructions of well-conditioned
bases for �p spaces; and, for p = 1, our algorithms use a fast subspace embedding of
independent interest that we call the Fast Cauchy transform (FCT). We also provide a
detailed empirical evaluation of the FCT and its use at computing �1 well-conditioned
bases and solving �1 regression problems.

The FCT is our main technical result, and it is essentially an �1 analogue of
the FJLT. The FCT can be represented by a distribution over matrices Π : Rn �→
R

O(d log d), found obliviously to A (in the sense that its construction does not depend
on any information in A), that approximately preserves the �1 norms of all vectors
in {Ax | x ∈ R

d}. That is, with large probability, simultaneously for all x, ‖Ax‖1 ≈
‖ΠAx‖1, with distortion O(d2+η log d), for an arbitrarily small constant η > 0 (see
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Theorem 2); and, moreover, ΠA can be computed in O(nd log d) time. We actually
provide two related constructions of the FCT (see Theorems 1 and 2). The techniques
underlying our FCTs include FJLTs, low-coherence matrices, and rescaling by Cauchy
random variables.

Our main application of the FCT embedding is to constructing the current fastest
algorithm for computing a well-conditioned basis for �1 (see Theorem 4). Such a basis
is an analogue for the �1 norm of what an orthonormal basis is for the �2 norm, and
our result improves the result in [24]. We also provide a generalization of this result
to constructing �p well-conditioned bases (see Theorem 11). The main application
for well-conditioned bases is to regression: if the rows of A are sampled according to
probabilities derived from the norms of the rows of such a basis, the resulting sample
of rows (and corresponding entries of b) are with high probability a coreset for the
regression problem; see, e.g., [7]. That is, for an n × d input matrix A and vector
b ∈ R

n, we can reduce an �p regression problem to another �p regression problem with

input matrix Ã of dimension s× d and corresponding b̃ of dimension s × 1. Here, Ã
and b̃ consist of sampled and rescaled rows of A and b; and s is independent of n and
polynomial in d. We point out that our construction uses as a black box an FJLT,
which means that any improvement in the running time of the FJLT (for example,
exploiting the sparsity of A) results in a corresponding improvement to the running
times of our �p regression.

Based on our constructions of well-conditioned bases, we give the fastest known
construction of coresets for �p regression for all p ∈ [1,∞) except p = 2. In particular,
for �1 regression, we construct a coreset of size 1

ε2 poly(d, log
1
ε ) that achieves a (1+ε)-

approximation guarantee (see Theorem 5). Our construction runs in O(nd log n) time,
improving the previous best algorithm of Sohler and Woodruff [24], which has an
O(nd1.376+) running time. Our extension to finding an �p well-conditioned basis also
leads to an O(nd log n) time algorithm for a (1+ε)-approximation to the �p regression
problem (see Theorem 12), improving theO(nd5 log n) algorithm of Dasgupta et al. [7].
For p = 1, extensions of our basic methods yield improved algorithms for several
related problems. For example, we actually further optimize the running time for
p = 1 to O(nd log(ε−1d logn)) (see Theorem 6). In addition, we generalize our �1
result to solving the multiple regression problem (see Theorem 7); and we use this to
give the current fastest algorithm for computing a (1 + ε)-approximation for the �1
subspace approximation problem (see Theorem 8).

In addition to our construction of �p well-conditioned bases (see Theorem 11)
and their use in providing a (1 + ε)-approximation to the �p regression problem (see
Theorem 12), we also provide a suite of improved results for finding well-conditioned
bases via ellipsoidal rounding for general �p problems, illustrating tradeoffs between
running time and conditioning quality. These methods complement the FCT-based
methods in the sense that the FCT may be viewed as a tool to compute a good basis
in an oblivious manner, and the ellipsoid-based methods provide an alternate way to
compute a good basis in a data-dependent manner. In particular, we prove that we
can obtain an ellipsoidal rounding matrix in at most O(nd3 logn) time that provides a
2d-rounding (see Theorem 10). This is much faster than the algorithm of Lovász [19]
that computes a (d(d + 1))1/2-rounding in O(nd5 logn) time. We also present an
optimized algorithm that uses an FJLT to compute a well-conditioned basis of A in
O(nd log n) time (see Theorem 11). When p = 1, these �p rounding algorithms are
competitive with or better than previous algorithms that were developed for �1.

Finally, we also provide the first empirical evaluation for this class of randomized
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algorithms. In particular, we provide a detailed evaluation of a numerical implemen-
tation of both FCT constructions, and we compare the results with an implementation
of the (slow) Cauchy transform, as well as a Gaussian transform and an FJLT. These
latter two are �2-based projections. We evaluate the quality of the �1 well-conditioned
basis, the core component in all our geometric algorithms, on a suite of matrices de-
signed to test the limits of these randomized algorithms, and we also evaluate how the
method performs in the context of �1 regression. This latter evaluation includes an
implementation on a nearly terabyte-scale problem, where we achieve a 10−3 relative-
error approximation to the optimal solution, a task that was infeasible prior to our
work. Among other things, our empirical results clearly show that, in the asymp-
totic regime, the theory is a very good guide to the practical performance of these
algorithms.

Since this paper is long and detailed, we provide here a brief outline. We start in
section 2 with some preliminaries, including several technical results that we will use
in our analysis and that are of independent interest. Then, in section 3, we will present
our main technical results for the FCT; and in section 4, we will describe applications
of it to �1 well-conditioned basis construction and �1 leverage score approximation, to
solving the �1 regression problem, and to solving the �1 norm subspace approximation
problem. Then, in section 5, we describe extensions of these ideas to general �p
problems. Section 6 will contain a detailed empirical evaluation of our algorithms for
�1-based problems, including the construction of �1 well-conditioned bases and both
small-scale and large-scale �1 regression problems. Section 7 will then contain a brief
conclusion. For simplicity of presentation, the proofs of many of our results have been
moved to Appendices A through H.

2. Preliminaries. Let A ∈ R
n×d be an n × d input matrix, where we assume

n 	 d and A has full column rank. The task of linear regression is to find a vector
x∗ ∈ R

d that minimizes ‖Ax− b‖ with respect to x for a given b ∈ R
n and norm

‖ · ‖. In this paper, our focus is mostly on the �1 norm, although we also discuss
extensions to �p for any p ≥ 1. Recall that, for p ∈ [1,∞], the �p norm of a vector

x is ‖x‖p = (
∑

i |xi|p)1/p, defined to be maxi |xi| for p = ∞. Let [n] denote the set

{1, 2, . . . , n}; and let A(i) and A(j) be the ith row vector and jth column vector of

A, respectively. For matrices, we use the Frobenius norm ‖A‖2F =
∑n

i=1

∑d
j=1 A

2
ij ,

the �2-operator (or spectral) norm ‖A‖2 = sup ‖x‖2=1 ‖Ax‖2, and the entrywise �p

norm ‖X‖p = (
∑

i,j |Xij |p)1/p. (The exception to this is p = 2, where this notation is
used for the spectral norm and the entrywise 2-norm is the Frobenius norm.) Finally,
the standard inner product between vectors x, y is 〈x, y〉 = xT y; ei are standard basis
vectors of the relevant dimension; In denotes the n × n identity matrix; and c refers
to a generic constant whose specific value may vary throughout the paper.

Two useful tail inequalities. The following two Bernstein-type tail inequalities
are useful because they give tail bounds without reference to the number of indepen-
dent and identically distributed (i.i.d.) trials. The first bound is due to Maurer [22],
and the second is an immediate application of the first.

Lemma 1 (see [22]). Let Xi ≥ 0 be independent random variables with
∑

i E[X
2
i ]

<∞, and define X =
∑

i Xi. Then, for any t > 0,

Pr[X ≤ E[X ]− t] ≤ exp

( −t2
2
∑

iE[X2
i ]

)
.
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Lemma 2. Let xi be i.i.d. Bernoulli random variables with probability p, and let
X =

∑
i∈[n] ξixi, where ξi ≥ 0, with

∑
i∈[n] ξi = ξ and

∑
i∈[n] ξ

2
i ≤ ξ2/β2. Then, for

any t > 0,

Pr[X ≥ ξ(p+ t)] ≤ exp

(
− β2t2

2(1− p)

)
.

Proof. The proof is a straightforward application of Lemma 1 to Z =
∑

i∈[n] ξi(1−
xi).

Sums of Cauchy random variables. The Cauchy distribution, having density
p(x) = 1

π
1

1+x2 , is the unique 1-stable distribution. If C1, . . . , CM are independent
Cauchys, then

∑
i∈[M ] γiCi is distributed as a Cauchy scaled by γ =

∑
i∈[M ] |γi|.

The Cauchy distribution will factor heavily in our discussion, and bounds for sums
of Cauchy random variables will be used throughout. We note that the Cauchy
distribution has undefined expectation and infinite variance.

The following upper and lower tail inequalities for sums of Cauchy random vari-
ables are proved in Appendix A. The proof of Lemma 3 is similar to an argument of
Indyk [15], though in that paper the Cauchy random variables are independent. As in
that paper, our argument follows by a Markov bound after conditioning on the mag-
nitudes of the Cauchy random variable summands not being too large, so that their
conditional expectations are defined. However, in this paper, the Cauchy random
variables are dependent, and so after conditioning on a global event, the expectations
of the magnitudes need not be the same as after this conditioning in the independent
case. Lemma 4 is a simple application of Lemma 1, while Lemma 5 was shown in [7];
we include the proofs for completeness.

Lemma 3 (Cauchy upper tail inequality). For i ∈ [m], let Ci be m (not nec-
essarily independent) Cauchy random variables, and γi > 0 with γ =

∑
i∈[m] γi. Let

X =
∑

i∈[m] γi|Ci|. Then, for any t ≥ 1,

Pr [X > γt] ≤ 1

πt

(
log(1 + (2mt)2)

1− 1/(πt)
+ 1

)
=

log(mt)

t
(1 + o(1)) .

Remark. The bound has only logarithmic dependence on the number of Cauchy
random variables and does not rely on any independence assumption among the ran-
dom variables. Even if the Cauchys are independent, one cannot substantially improve
on this bound due to the nature of the Cauchy distribution. This is because, for inde-
pendent Cauchys,

∑
i γi|Ci| ≥ |

∑
i γiCi|, and the latter sum is itself distributed as a

Cauchy scaled by γ. Hence for independent Cauchys, Pr[X ≥ γt] = 2
π tan−1 t = Ω(1t ).

Lemma 4 (Cauchy lower tail inequality). For i ∈ [r], let Ci be independent
Cauchy random variables, and γi ≥ 0 with γ =

∑
i∈[r] γi and

∑
i∈[r] γ

2
i ≤ γ2/β2. Let

X =
∑

i∈[r] γi|Ci|. Then, for any t ≥ 0,

Pr [X ≤ γ(1− t)] ≤ exp

(
−β2t2

3

)
.

An �1 sampling lemma. We will also need an “�1-sampling lemma,” which
is an application of Bernstein’s inequality. This lemma bounds how �1 norms get
distorted under sampling according to �1 probabilities. The proof of this lemma is
also given in Appendix A.

Lemma 5 (�1 sampling lemma). Let Z ∈ R
n×k, and suppose that for i ∈ [n],

ti ≥ a‖Z(i)‖1/‖Z‖1. For s > 0, define p̂i = min{1, s · ti}, and let D ∈ R
n×n be a
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random diagonal matrix with Dii = 1/p̂i with probability p̂i, and 0 otherwise. Then,
for any (fixed) x ∈ R

k, with probability at least 1− δ,

(1− ε)‖Zx‖1 ≤ ‖DZx‖1 ≤ (1 + ε)‖Zx‖1,

where δ ≤ 2 exp
( −asε2‖Zx‖1

(2+ 2
3 ε)‖Z‖1‖x‖∞

)
.

3. Main technical result: The Fast Cauchy transform. In this section,
we present the Fast Cauchy transform (FCT), which is an �1-based analogue of the
Fast Johnson–Lindenstrauss transform (FJLT). We will actually present two related
constructions, one based on using a quickly constructable low-coherence matrix and
one based on using a version of the FJLT. In both cases, these matrices will be
rescaled by Cauchy random variables (hence the name Fast Cauchy transform). We
will also state our main results, Theorems 1 and 2, which provide running times and
quality-of-approximation guarantees for these two FCT embeddings.

3.1. FCT1 construction: Via a low-coherence matrix. This FCT con-
struction first preprocesses by a deterministic low-coherence “spreading matrix,” then
rescales by Cauchy random variables, and finally samples linear combinations of the
rows. Let δ ∈ (0, 1] be a parameter governing the failure probability of our algorithm.
Then, we construct Π1 as

Π1 ≡ 4BCH̃,

where the following hold:
B ∈ R

r1×2n has each column chosen independently and uniformly from the r1 stan-
dard basis vectors for R

r1 ; we will set the parameter r1 = αd log d
δ , where

δ controls the probability that our algorithms fail and α is a suitably large
constant.

C ∈ R
2n×2n is a diagonal matrix with diagonal entries chosen independently from a
Cauchy distribution.

H̃ ∈ R
2n×n is a block-diagonal matrix comprised of n/s blocks along the diagonal.
Each block is the 2s × s matrix Gs ≡

[
Hs

Is

]
, where Is is the s × s identity

matrix, and Hs is the normalized Hadamard matrix. We will set s = r61 .
(Here, for simplicity, we assume s is a power of two and n/s is an integer.)

H̃ ≡

⎡
⎢⎢⎢⎣
Gs

Gs

. . .

Gs

⎤
⎥⎥⎥⎦ .

(For completeness, we remind the reader that the (nonnormalized) n × n matrix of
the Hadamard transform Hn may be defined recursively as follows:

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
, with H2 =

[
+1 +1
+1 −1

]
.

The n × n normalized matrix of the Hadamard transform is then equal to 1√
n
Hn;

hereafter, we will denote this normalized matrix by Hn.)
Remark. Heuristically, the effect of H̃ in the above FCT construction is to spread

the weight of a vector, so that H̃y has many entries that are not too small. (This is
discussed in Lemma 6 in the proof of Theorem 1 below.) This means that the vector
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CH̃y comprises Cauchy random variables with scale factors that are not too small;
and finally these variables are summed up by B, yielding a vector BCH̃y, whose �1
norm will not be too small relative to ‖y‖1.

For this version of the FCT, we have the following theorem. The proof of this
theorem may be found in section 3.3.

Theorem 1 (Fast Cauchy transform (FCT1)). There is a distribution (given
by the above construction) over matrices Π1 ∈ R

r1×n, with r1 = O(d log d + d log 1
δ ),

such that for an arbitrary (but fixed) A ∈ R
n×d, and for all x ∈ R

d, the inequalities

(2) ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1

hold with probability 1− δ, where

κ = O

(
d
√
s

δ
log(r1d)

)
.

Further, for any y ∈ R
n, the product Π1y can be computed in O(n log r1) time.

Setting δ to a small constant, since
√
s = r31 and r1 = O(d log d), it follows that

κ = O(d4 log4 d) in the above theorem.
Remark. The existence of such a Π1 satisfying bounds of the form (2) was estab-

lished by Sohler and Woodruff [24]. Here, our contribution is to show that Π1 can
be factored into structured matrices so that the product Π1A can be computed in
O(nd log d) time. We also remark that, in additional theoretical bounds provided by
the FJLT, high-quality numerical implementations of variants of the Hadamard trans-
form exist, which is an additional plus for our empirical evaluations of Theorems 1
and 2.

Remark. Our proof of this theorem uses a tail bound for ‖Bg‖22 in terms of ‖g‖2
and ‖g‖1, where g is any positive vector in R

n, and B is the matrix used in our

FCT construction. ‖Bg‖22 =
∑

j γ
2
j , where γj =

∑
iBjigi are anticorrelated random

variables. To get concentration, we independently bounded γ2
j in our proof which

required s = r61 to obtain the high probability result; this resulted in the bound
κ = O(d4 log4 d).

3.2. FCT2 construction: Via a Fast Johnson–Lindenstrauss transform.
This FCT construction first preprocesses by a FJLT and then rescales by Cauchy ran-
dom variables. Recall that δ ∈ (0, 1] is a parameter governing the failure probability
of our algorithm; and let η > 0 be a generic arbitrarily small positive constant (whose
value may change from one formula to another). Let r1 = c ·d log d

δ , s = c′ ·(d+log n
δ ),

and t = s2+η, where the parameters c, c′ > 0 are appropriately large constants. Then,
we construct Π1 ∈ R

r1×n as

Π1 ≡ 8

r1

√
πt

2s
· CH̃,

where the following hold:
C ∈ R

r1×ns/t is a matrix of independent Cauchy random variables.
H̃ ∈ R

ns/t×n is a block-diagonal matrix comprising n/t blocks along the diagonal.
Each block is the s×t Fast Johnson–Lindenstrauss matrix G. (The important
property that Gmust satisfy is given by Lemmas 8 and 9 in the proofs below.)
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Here, for simplicity, we assume that n/t is an integer.

H̃ ≡

⎡
⎢⎢⎢⎣
G

G
. . .

G

⎤
⎥⎥⎥⎦ .

Remark. Informally, the matrix H̃ reduces the dimensionality of the input space
by a very small amount such that the “slow” Cauchy transform C of [24] can be
applied in the allotted time. Then, since we are ultimately multiplying by C, the
results of [24] still hold; but since the dimensionality is slightly reduced, the running
time is improved.

For this version of the FCT, we have the following theorem. The proof of this
theorem may be found in section 3.4.

Theorem 2 (Fast Cauchy transform (FCT2)). There is a distribution (given by
the above construction) over matrices Π1 ∈ R

r1×n, with r1 = O(d log d
δ ), such that for

arbitrary (but fixed) A ∈ R
n×d, and for all x ∈ R

d, the inequalities

‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1
hold with probability 1 − δ, where κ = O(dδ (d + log n

δ )
1+η log d). Further, for any

y ∈ R
n, the product Π1y can be computed in O(n log d

δ ) time.

Setting δ as a small constant and for logn < d, r1 = O(d log d), κ = O(d2+η log d),
and Π1A can be computed in O(nd log d) time. Thus, we have a fast linear oblivious

mapping from �n1 �→ �
O(d log d)
1 that has distortion O(d2+η log d) on any (fixed) d-

dimensional subspace of Rn.
Remark. For logn < d, FCT2 gives a better dependence of the distortion on d,

but more generally FCT2 has a dependence on logn. This dependence arises because
the random FJLT matrix does not give a deterministic guarantee for spreading out
a vector, whereas the low-coherence matrix used in FCT1 does give a deterministic
guarantee. This means that in using the union bound, we need to overcome a factor
of n.

Remark. The requirement t ≥ s2+η is set by the restriction in Lemma 8 in the
proof of Theorem 2. In the bound of Theorem 2, κ = κ′√t, where κ′ = O(d log(r1d))
arises from Theorem 3, which originally appeared in [24]. If a stronger version of
Lemma 8 can be proved that relaxes the restriction t ≥ s2+η, then correspondingly
the bound of Theorem 2 will improve.

Remark. This second construction has the benefit of being easily extended to
constructing well-conditioned bases of �p for p > 1; see section 5.

3.3. Proof of Theorem 1 (Fast Cauchy transform (FCT1)).

Preliminaries. Before presenting the proof, we describe the main idea. It follows
a similar line of reasoning to [24], and it uses an “uncertainty principle” (which we
state as Lemma 6 below).

The uncertainty principle we prove follows from the fact that the concatenation
of the Hadamard matrix with the identity matrix is a dictionary of low coherence. For
background, and arguments similar to those we use in Lemma 6 below, see section 4
of [16]. In particular, see Claim 4.1 and Lemma 4.2 of that section.

To prove the upper bound, we use the existence of a (d, 1)-conditioned basis U
and apply Π1 to this basis to show that ‖Π1Ux‖1 cannot expand too much, which in
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turn means that ‖Π1Ax‖1 cannot expand too much (for any x). To prove the lower
bound, we show that the inequality holds with exponentially high probability for a
particular y; and we then use a suitable γ-net to obtain the result for all y.

Main proof. We now proceed with the proof of Theorem 1. We will first prove
an upper bound (Proposition 1) and then a lower bound (Proposition 2); the theorem
follows by combining Propositions 1 and 2.

Proposition 1. With probability at least 1 − δ, for all x ∈ R
d, ‖Π1Ax‖1 ≤

κ‖Ax‖1, where κ = O(d
√
s

δ log(r1d)).

Proof. Let U ∈ R
n×d be a (d, 1)-conditioned basis (see Definition 3 below) for

the column space of A, which implies that for some Z ∈ R
d×d we can write A = UZ.

Since ‖Π1Ax‖1 ≤ κ‖Ax‖1 if and only if ‖Π1UZx‖1 ≤ κ‖UZx‖1, it suffices to prove
the proposition for U . By construction of U , for any x ∈ R

d, ‖x‖∞ ≤ ‖Ux‖1, and so

‖Π1Ux‖1 ≤ ‖Π1U‖1‖x‖∞ ≤ ‖Π1U‖1‖Ux‖1.
Thus it is enough to show that ‖Π1U‖1 ≤ κ. We have

‖Π1U‖1 = 4‖BCH̃U‖1 = 4
∑
j∈[d]

‖BCH̃U (j)‖1 = 4
∑
j∈[d]

‖BCÛ (j)‖1,

where Û ≡ H̃U . We will need bounds for ‖Û (j)‖1, for j ∈ [d], and ‖Û‖1. For
any vector y ∈ R

n, we represent y by its n/s blocks of size s, so zi ∈ R
s and

yT = [zT1 , z
T
2 , . . . , z

T
n/s]. Recall that Gs ≡

[
Hs

Is

]
, and observe that ‖Gs‖2 =

√
2.

By explicit calculation,

‖H̃y‖1 =
∑

i∈[n/s]

‖Gszi‖1.

Since ‖Gszi‖1 ≤
√
2s‖Gszi‖2 ≤

√
4s‖zi‖2 ≤

√
4s‖zi‖1, it follows that

‖H̃y‖1 ≤
√
4s
∑

i∈[n/s]

‖zi‖1 =
√
4s‖y‖1.

Applying this to y = U (j) for j ∈ [d] yields

(3) ‖Û (j)‖1 ≤
√
4s‖U (j)‖1 and ‖Û‖1 =

∑
j∈[d]

‖Û (j)‖1 ≤
√
4s‖U‖1 ≤ d

√
4s,

since ‖U‖1 ≤ d because U is (d, 1)-conditioned.
The (i, j) entry of BCÛ is

∑
k BikCkkÛkj , which is a Cauchy scaled by γij =∑

k |BikÛkj |. So,
‖BCÛ‖1 =

∑
i∈[r1],j∈[d]

γijC̃ij ,

where C̃ij are dependent Cauchy random variables. Using
∑

i Bik = 1, we obtain∑
i,j

γij =
∑
i,j,k

|BikÛkj | =
∑
j,k

|Ûkj |
∑
i

Bik =
∑
j,k

|Ûkj | = ‖Û‖1.

Hence, we can apply Lemma 3 with γ = ‖Û‖1 and m = r1d to obtain

Pr
[
‖BCÛ‖1 > t‖Û‖1

]
≤ (log(r1d) + log t)

t
(1 + o(1)) .
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Setting the right-hand side (RHS) to δ, it suffices that t = O(1δ log(dr1)). Thus, with
probability at least 1− δ,

‖BCÛ‖1 = O

(
1

δ
log(dr1)‖Û‖1

)
= O

(
d

δ

√
s log(dr1)

)
.

Before we prove the lower bound, we need the following lemma, which is derived
using a sparsity result for matrices with unit norm rows and low “coherence,” as
measured by the maximum magnitude of the inner product between distinct rows
(Gs is a matrix with low coherence). This result mimics results in [9, 8, 13, 27, 16].

Lemma 6. For G =
[
Hs

Is

]
and any z ∈ R

s, ‖Gz‖1 ≥ 1
2s

1/4‖z‖2.
Proof. We can assume ‖z‖2 = 1, and so ‖Gz‖22 = 2. Let G(S′) be k rows of G,

with κ of them coming from Hs and k − κ from Is. G(S′)G
T
(S′) = I +Λ, where Λ is a

symmetric 2× 2 block matrix [
0 1√

s
Q

1√
s
QT 0

]
,

where the entries in Q ∈ R
κ×(k−κ) are ±1, and so ‖Q‖2 ≤

√
κ(k − κ) ≤ 1

2k.

‖G(S′)‖22 = ‖G(S′)G
T
(S′)‖2 ≤ 1 + ‖Λ‖2 = 1 +

1√
s
‖Q‖2 ≤ 1 +

k

2
√
s
.

Now, given any z, we set k = 2β
√
s with β = 2

5 , and choose G(S′) to be the rows cor-
responding to the k components of Gz having largest magnitude, with G(S) being the
rows with indices in [s]\S′. Then, ‖G(S′)z‖22 ≤ 1+β, and so the entry in G(S′)z with

smallest magnitude has magnitude at most a =
√
(1 + β)/k =

√
(1 + β)/2βs−1/4.

We now consider G(S)z. Since ‖Gz‖22 = 2, ‖G(S)z‖22 ≥ 1− β; further, all components
have magnitude at most a (as all the components of G(S)z have smaller magnitude
than those of G(S′)z). ‖G(S)z‖1 is minimized by concentrating all the entries into
as few components as possible. Since the number of nonzero components is at least
(1− β)/a2 = 2βs1/2(1− β)/(1 + β), giving these entries the maximum possible mag-
nitude results in

‖G(S)z‖1 ≥ a× (1 − β)

a2
= (1− β)

√
2β(1 + β)s1/4 ≥ 0.63s1/4

(where we used β = 2
5 ). We are done because ‖Gz‖1 ≥ ‖G(S)z‖1.

We now prove the lower bound. We assume that Proposition 1 holds for Π1,
which is true with probability at least 1− δ for κ as defined in Proposition 1. Then,
by a union bound, Propositions 1 and 2 both hold with probability at least

1− δ − exp
(
− r1
48

+ d log(2dκ)
)
− exp

(
−s1/2

8r21
+ log r1 + d log(2dκ)

)

(δ and κ are from Proposition 1). Since s1/2 = r31 , by choosing r1 = αd log d
δ for large

enough α, the final probability of failure is at most 2δ because κ = O(d
√
s

δ log(r1d)) =
O(poly(d)).

Proposition 2. Assume Proposition 1 holds. Then, for all x ∈ R
d, ‖Π1Ax‖1 ≥

‖Ax‖1 holds with probability at least

1− exp
(
− r1
48

+ d log(2dκ)
)
− exp

(
−s1/2

8r21
+ log r1 + d log(2dκ)

)
.
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Proof. First we will show a result for fixed y ∈ R
n, summarized in the next lemma.

Lemma 7. Pr [‖Π1y‖1 < 2‖y‖1] ≤ exp
(− r1

48

)
+ exp

(− s1/2

8r21
+ log r1

)
.

Given this lemma, the proposition follows by putting a γ-net Γ on the range of
A (observe that the range of A has dimension at most d). This argument follows the
same line as in sections 3 and 4 of [24]. Specifically, let L be any fixed (at most)
d-dimensional subspace of Rn (in our case, L is the range of A). Consider the γ-
net on L with cubes of side γ/d. There are (2d/γ)d such cubes required to cover
the hypercube ‖y‖∞ ≤ 1; and, for any two points y1, y2 inside the same γ/d-cube,
‖y1− y2‖1 ≤ γ. From each of the γ/d-cubes, select a fixed representative point which
we will generically refer to as y∗; select the representative to have ‖y∗‖1 = 1 if possible.
By a union bound and Lemma 7,

Pr

[
min
y∗ ‖Π1y

∗‖1/‖y∗‖1 < 2

]
≤ (2d/γ)d

(
exp
(
− r1
48

)
+ exp

(
−s1/2

8r21
+ log r1

))
.

We will thus condition on the high probability event that ‖Π1y
∗‖1 ≥ 2‖y∗‖ for all y∗.

For any y ∈ L with ‖y‖1 = 1, let y∗ denote the representative point for the cube in
which y resides (‖y∗‖1 = 1 as well). Then, ‖y − y∗‖ ≤ γ.

‖Π1y‖1 = ‖Π1y
∗ +Π1(y − y∗)‖1 ≥ ‖Π1y

∗‖1 − ‖Π1(y − y∗)‖1 ≥ 2‖y∗‖1 − κ‖y − y∗‖1,

where the last inequality holds using Proposition 1. By choosing γ = 1/κ and recalling
that ‖y∗‖1 = 1, we have that ‖Π1y‖1 ≥ 1, with probability at least

1− exp(d log(2dκ))

(
exp
(
− r1
48

)
+ exp

(
−s1/2

8r21
+ log r1

))
.

All that remains is to prove Lemma 7. As in the proof of Proposition 1, we
represent any vector y ∈ R

n by its n/s blocks of size s, so zi ∈ R
s and yT =

[zT1 , z
T
2 , . . . , z

T
n/s]. Let g = H̃y, and

g =

⎡
⎣ Gsz1

Gsz2
...

Gszn/s

⎤
⎦ .

We have that ‖g‖22 =
∑

i ‖Gszi‖22 = 2
∑

i ‖zi‖22 = 2‖y‖22, and

‖g‖1 =
∑
i

‖Gszi‖1 ≥
1

2
s1/4

∑
i

‖zi‖2 ≥
1

2
s1/4

(∑
i

‖zi‖22
)1/2

=
1

2
s1/4‖y‖2.

We conclude that ‖g‖1 ≥ 1
2
√
2
s1/4‖g‖2, which intuitively means that g is “spread out.”

We now analyze ‖BCg‖1. (Recall that Π1y = 4BCg, where g = H̃y.)

(BCg)j =

2n∑
i=1

BjiCiigi

is a Cauchy random variable C̃j scaled by γj =
∑2n

i=1 Bji|gi|. Further, because each

column of B has exactly one nonzero element, the C̃j for j ∈ [r1] are independent.
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Thus, the random variables ‖BCg‖1 and
∑

j∈[r1]
|C̃j |γj have the same distribution.

To apply Lemma 4, we need to bound
∑

j γj and
∑

j γ
2
j . First,

∑
j∈[r1]

γj =
∑
j∈[r1]

∑
i∈[n]

Bji|gi| =
∑
i∈[n]

|gi|
∑
j∈[r1]

Bji =
2n∑
i=1

|gi| = ‖g‖1,

where the last inequality is because B(i) is a standard basis vector. To bound
∑

j γ
2
j ,

we will show that γj is nearly uniform. Since γj is a weighted sum of independent
Bernoulli random variables (because Bji and Bjk are independent for i �= k), we can
use Lemma 2 with ξi = |g|i and 1 − p = 1 − 1/r1 ≤ 1, and so

∑
i ξi = ‖g‖1 and∑

i ξ
2
i = ‖g‖22; setting t = 1/r1 in Lemma 2,

Pr

[
γj ≥ 2‖g‖1

r1

]
≤ exp

(
− ‖g‖21
2‖g‖22r21

)
≤ exp

(
−s1/2

8r21

)
.

By a union bound, none of the γj exceeds 2‖g‖1/r1 with probability at most
r1 exp

(−s1/2/8r21). We assume this high probability event, in which case
∑

j γ
2
j ≤

4‖g1‖21/r1. We can now apply Lemma 4 with β2 = r1/4 and t = 1
2 to obtain

Pr

⎡
⎣ ∑
j∈[r1]

|C̃j |γj ≤ 1
2‖g‖1

⎤
⎦ ≤ exp

(
− r1
48

)
.

By a union bound, ‖BCg‖1 ≥ 1
2‖g‖1 with probability at least 1 − exp

(− r1
48

) −
exp
(− s1/2

8r21
+ log r1

)
. Scaling both sides by 4 gives the lemma.

Running time. The running time follows from the time to compute the product
Hsx for a Hadamard matrix Hs, which is O(s log s) time. The time to compute H̃y is
dominated by n/s computations of Hszi, which is a total of O(ns ·s log s) = O(n log s)
time. Since C is diagonal, premultiplying by C is O(n) and further premultiplying by
B takes time O(nnz(B)), the number of nonzero elements in B (which is 2n). Thus
the total time is O(n log s+ n) = O(n log r1) as desired.

3.4. Proof of Theorem 2 (Fast Cauchy transform (FCT2)).

Preliminaries. We will need results from prior work, which we paraphrase in
our notation.

Definition 2 (Definition 2.1 of [2]). For ε ∈ (0, 1
2 ], a distribution on s× t real

matrices G (s ≤ t) has the Manhattan Johnson–Lindenstrauss property (MJLP) if
for any (fixed) vector x ∈ R

t the inequalities

(1− ε)‖x‖2 ≤ ‖Gx‖2 ≤ (1 + ε)‖x‖2,
c3
√
s(1 − ε)‖x‖2 ≤ ‖Gx‖1 ≤ c3

√
s(1 + ε)‖x‖2

hold with probability at least 1 − c1e
−c2kε

2

(with respect to G) for global constants
c1, c2, c3 > 0.

Remark. This is the standard Johnson–Lindenstrauss property with the addi-
tional requirement on ‖Gx‖1. Essentially it says that Gx is a nearly uniform, so that
‖Gx‖1 ≈

√
s‖Gx‖2 ≈

√
s‖x‖2.
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Lemma 8 (Theorem 2.2 of [2]). Let η > 0 be an arbitrarily small constant. For
any s, t satisfying s ≤ t1/2−η, there exists an algorithm that constructs a random s× t

matrix G that is sampled from an MJLP distribution with c3 =
√

2
π . Further, the

time to compute Gx for any x ∈ R
t is O(t log s).

We will need these lemmas to get a result for how an arbitrary subspace L behaves
under the action of G, extending Lemma 8 to every x ∈ L, not just a fixed x. In the
next lemma, the 2-norm bound can be derived using Lemma 8 (above) and Theorem
19 of [18] by placing a γ-net on L and bounding the size of this γ-net. (See Lemma
4 of [3].) The Manhattan norm bound is then derived using a second γ-net argument
together with an application of the 2-norm bound. The constants c1, c2, and c3 in
this lemma are from Definition 2; and the G in Lemmas 8 and 9, with the constants
c1, c2, and c3 from Definition 2, is the same G used in our FCT2 construction for H̃ .
We present the complete proof of Lemma 9 in Appendix H.

Lemma 9. Let L be any (fixed) d-dimensional subspace of Rt, and let G be an
s× t matrix sampled from a distribution having the MJLP property. Given ε ∈ (0, 13 ],

let s = 36(k + 8d
c3ε

+ log(2c1))/c2ε
2 = O( k

ε2 + d
ε3 ). Then, with probability at least

1− e−k, for every x ∈ R
t,

√
1− ε‖x‖2 ≤ ‖Gx‖2 ≤

√
1 + ε‖x‖2,

c3
√
s(1− ε)‖x‖2 ≤ ‖Gx‖1 ≤ c3

√
s(1 + ε)‖x‖2.

We also need a result on how the matrix of Cauchy random variables C behaves
when it hits a vector y. The next theorem is Theorem 5 of [24]. For completeness
and also to fix some minor errors in the proof of [24], we give a proof of Theorem 3
in Appendix G.

Theorem 3. Let L be an arbitrary (fixed) subspace of Rn having dimension at
most d, and let C be an r1 × n matrix of i.i.d. Cauchy random variables with r1 =
c · d log d

δ for large enough constant c. Then, with probability at least 1 − δ, and for
all y ∈ L,

‖y‖1 ≤ 4
r1
‖Cy‖1 ≤ κ′‖y‖1,

where κ′ = O(dδ log(r1d)).

Note that for δ fixed to some small error probability, r1 = O(d log d), and the
product Cy in the theorem above can be computed in time O(r1n) = O(nd log d).

Main proof. We now proceed with the proof of Theorem 2. We need to analyze
the product CH̃Ax for all x ∈ R

d. Let y = Ax ∈ R
n, so that y ∈ colspA ≡ {Az | z ∈

R
d}, and the column space colspA is a d-dimensional subspace of Rn. Partition the

coordinate set [n] into n/t contiguous groups of t coordinates. We will work with the
block representation of y, as defined by this partition, i.e., with yT = [zT1 , z

T
2 , . . . , z

T
n/t],

where zi = A({i})x and where A({i}) is the block of t rows in A corresponding to the
indices in zi. Then,

H̃y =

⎡
⎣ Gz1

Gz2
...

Gzn/t

⎤
⎦ .

The vector zi ∈ colspA({i}), noting that colspA({i}) is a subspace of Rt of dimension

at most d. Let Ui ∈ R
t×d be an orthonormal basis for colspA({i}), and let zi = Uiwi.

Setting ε = 1
2 in Lemma 9, and recalling that G is s×t, k in Lemma 9 can be expressed
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as k = c2s
144 − 16d

c3
− log(2c2). Applying a union bound, we have for all i ∈ [n/t] with

probability at least 1−2c1 · nt ·exp(− c2s
144 +

16d
c3

) that for all y = Ax (and corresponding

zi ∈ R
t), it holds that

√
1
2‖zi‖2 ≤ ‖Gzi‖2 ≤

√
3
2‖zi‖2,

1
2c3
√
s‖zi‖2 ≤ ‖Gzi‖1 ≤ 3

2c3
√
s‖zi‖2.

We will condition on this event, which occurs with high probability for the given
parameters. We can now bound ‖H̃y‖1 =

∑
i∈[n/t] ‖Gzi‖1 as follows:

‖H̃y‖1 =
∑

i∈[n/t]

‖Gzi‖1 ≤ 3
2c3
√
s
∑

i∈[n/t]

‖zi‖2 ≤ 3
2c3
√
s
∑

i∈[n/t]

‖zi‖1 = 3
2c3
√
s‖y‖1;

(4)

‖H̃y‖1 =
∑

i∈[n/t]

‖Gzi‖1 ≥ 1
2c3
√
s
∑

i∈[n/t]

‖zi‖2 ≥ 1
2c3

√
s
t

∑
i∈[n/t]

‖zi‖1 = 1
2c3

√
s
t ‖y‖1.

(5)

Since colsp H̃A has dimension at most d, we can apply Theorem 3 to it. We have
that with probability at least 1− δ, for all x ∈ R

d,

‖H̃Ax‖1 ≤ 4

r1
‖CH̃Ax‖1 ≤ κ′‖H̃Ax‖1,

where κ′ = O(dδ log(r1d)) from Theorem 3. Recall that Π1 ≡ 8
r1

√
πt
2sCH̃ . We now

use (4) and (5) with y = Ax, and after multiplying by 2
c3

√
t
s and setting c3 =

√
2/π,

we conclude that for all x ∈ R
d,

(6) ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ 3κ′√t‖Ax‖1
holds with probability at least 1− δ − 2c1 · nt exp(− c2s

144 + 16d
c3

) ≥ 1− 2δ (by choosing

s ≥ 144
c2

(16dc3
+ log 2c1n

δt )). The theorem follows because log n ≤ d, and hence κ′ =
O(dδ log d), s = O(d + log 1

δ ), and t = O(s2+η).

Running time. We now evaluate the time to compute Π1y for y ∈ R
n. We first

compute H̃y, which requires n/t computations of Gzi. Since s = t1/2−η/2, we can
invoke Lemma 8. The time to compute all Gzi is n

t · t log s = n log s. Since H̃y is

(ns/t)×1, it takesO(r1ns/t) time to compute CH̃y, which concludes the computation.
The total running time is O(n log s + nr1s/t). Using log n ≤ d, s = O(d), t = s2+η,
r1 = O(d log d

δ ) we need total time O(n log d
δ ). To compute Π1A, we need to compute

Π1A
(j) for d vectors A(j), resulting in a total run time O(nd log d

δ ).

4. Algorithmic applications in �1 of the FCT. In this section, we describe
three related applications of the FCT to �1-based problems. The first is to the fast
construction of an �1 well-conditioned basis and the fast approximation of �1 leverage
scores; the second is a fast algorithm for the least absolute deviations or �1 regression
problem; and the third is to a fast algorithm for the �1 norm subspace approximation
problem.
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FastL1Basis(A):

1: Let Π1 be an r1×n matrix satisfying (7), e.g., as constructed with one of the
FCTs of section 3.

2: Compute Π1A ∈ R
r1×d and its QR factorization: Π1A = QR, where Q is an

orthogonal matrix, i.e., QTQ = I.
3: Return U = AR−1 = A(QTΠ1A)

−1.

Fig. 1. Our main algorithm for the fast construction of an �1 well-conditioned basis of an
n × d matrix A. Note the structural similarities with the algorithm of [10] for computing quickly
approximations to the �2 leverage scores and an �2 well-conditioned basis.

4.1. Fast construction of an �1 well-conditioned basis and �1 leverage
scores. We start with the following definition, adapted from [7], of a basis that is
“good” for the �1 norm in a manner that is analogous to how an orthogonal matrix
is “good” for the �2 norm.

Definition 3 (�1 well-conditioned basis (adapted from [7])). A basis U for the
range of A is (α, β)-conditioned if ‖U‖1 ≤ α and for all x ∈ R

d, ‖x‖∞ ≤ β‖Ux‖1.
We will say that U is well-conditioned if α and β are low-degree polynomials in d,
independent of n.

Remark. An Auerbach basis for A is (d, 1)-conditioned, and thus we know that
there exist well-conditioned bases for �1. More generally, well-conditioned bases can
be defined in any �p norm, using the notion of a dual norm �∗p, and these have proven
important for solving �p regression problems [7]. Our focus in this section is the �1
norm, for which the dual norm is the �∞ norm, but in section 5 we will return to a
discussion of extensions to the �p norm.

Our main algorithm for constructing an �1 well-conditioned basis, FastL1Basis,
is summarized in Figure 1. This algorithm was originally presented in [24], and our
main contribution here is to improve its running time. We note that in step 3, we
do not explicitly compute the product of A and R−1, but rather just return A and
R−1 with the promise that AR−1 is well-conditioned. The leading-order term in our
running time to compute R−1 is O(nd log d), while in [24] it is O(nd2), or with fast
matrix multiplication, O(nd1.376).

Given an n× d matrix A, let Π1 ∈ R
r1×n be any projection matrix such that for

any x ∈ R
d,

(7) ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ κ‖Ax‖1.
For example, it could be constructed with either of the FCT constructions described
in section 3, or with the “slow” Cauchy transform of [24], or via some other means.
After computing the matrix Π1, the FastL1Basis algorithm of Figure 1 consists of
the following steps: construct Π1A and an R such that Π1A = QR, where Q has
orthonormal columns (for example, using a QR factorization of Π1A); and then return
U = AR−1 = A(QTΠ1A)

−1.
The next theorem and its corollary are our main results for the FastL1Basis algo-

rithm; and this theorem follows by combining our Theorem 2 with Theorems 9 and
10 of [24]. The proof of this theorem may be found in Appendix B.

Theorem 4 (fast �1 well-conditioned basis). For any A ∈ R
n×d, the basis U =

AR−1 constructed by FastL1Basis(A) of Figure 1 using any Π1 satisfying (7) is a
(d
√
r1, κ)-conditioned basis for the range of A.
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Corollary 1. If Π1 is obtained from the FCT2 construction of Theorem 2,
then the resulting U is an (α, β)-conditioned basis for A, with α = O(d3/2 log1/2 d)
and β = O(d2+η log d), with probability 1 − δ. The time to compute the change of
basis matrix R−1 is O(nd log d+ d3 log d), assuming logn = O(d) and δ > 0 is a fixed
constant.

Remark. Our constructions that result in Π1 satisfying (7) do not require that
A ∈ R

n×d; they only require that A have rank d and hence can be applied to any A ∈
R

n×m having rank d. In this case, a small modification is needed in the construction
of U , because R ∈ R

d×m, and so we need to use R† instead of R−1. The running
time will involve terms with m. This can be improved by processing A quickly into a
smaller matrix by sampling columns so that the range is preserved (as in [24]), which
we do not discuss further.

The notion of a well-conditioned basis plays an important role in our subsequent
algorithms. Basically, the reason is that these algorithms compute approximate an-
swers to the problems of interest (either the �1 regression problem or the �1 subspace
approximation problem) by using information in that basis to construct a nonuniform
importance sampling distribution with which to randomly sample. This motivates
the following definition.

Definition 4 (�1 leverage scores). Given a well-conditioned basis U for the
range of A, let the n-dimensional vector λ̃, with elements defined as λ̃i = ||U(i)||1, be
the �1 leverage scores of A.

Remark. The name �1 leverage score is by analogy with the �2 leverage scores,
which are important in random sampling algorithms for �2 regression and low-rank
matrix approximation [21, 20, 10]. As with �2 regression and low-rank matrix approx-
imation, our result for �1 regression and �1 subspace approximation will ultimately
follow from the ability to approximate these scores quickly. Note, though, that these
�1-based scores are not well-defined for a given matrix A, in the sense that the �1
norm is not rotationally invariant, and thus depending on the basis that is chosen,
these scores can differ by factors that depend on low-degree polynomials in d. This
contrasts with �2, since for �2 any orthogonal matrix spanning a given subspace leads
to the same �2 leverage scores. We will tolerate this ambiguity since these �1 leverage
scores will be used to construct an importance sampling distribution, and thus up to
low-degree polynomial factors in d, which our analysis will take into account, it will
not matter.

4.2. Fast �1 regression. Here, we consider the �1 regression problem, also
known as the least absolute deviations problem, the goal of which is to minimize
the �1 norm of the residual vector Ax − b. That is, given as input a design matrix
A ∈ R

n×d, with n > d, and a response or target vector b ∈ R
n, compute

(8) min
x∈Rd

||Ax− b||1

and an x∗ achieving this minimum. We start with our main algorithm and theorem
for this problem; and we then describe how a somewhat more sophisticated version
of the algorithm yields improved running time bounds.

4.2.1. Main algorithm for fast �1 regression. Prior work has shown that
there is a diagonal sampling matrix D with a small number of nonzero entries so that
x̂ = argminx∈Rd‖D(Ax− b)‖1 satisfies

‖Ax̂− b‖1 ≤ (1 + ε)‖Ax∗ − b‖1,



THE FAST CAUCHY TRANSFORM 779

FastCauchyRegression(A, b):

1: Let X =
[
A −b] ∈ R

n×(d+k), and construct Π1, an r1 × n matrix satisfying
(7) with A replaced by X . (If b is a vector, then k = 1.)

2: ComputeX ′ = Π1X ∈ R
r1×(d+k) and its QR factorization, Π1X = QR. (Note

that Π1XR−1 has orthonormal columns.)
3: Let Π2 ∈ R

(d+k)×r2 be a matrix of independent Cauchys, with r2 = 15 log 2n
δ .

4: Let U = XR−1, and construct Λ = UΠ2 ∈ R
n×r2 .

5: For i ∈ [n], compute λi = medianj∈[r2] |Λij |.
6: For i ∈ [n] and s =

63κ(d+k)
√
r1

ε2

(
(d + k) log

24κ(d+k)
√
r1

ε + log 2
δ

)
, compute

probabilities

p̂i = min

{
1, s · λi∑

i∈[n] λi

}
.

7: Let D ∈ R
n×n be diagonal with independent entries: Dii ={

1
p̂i
, prob. p̂i;

0, prob. 1− p̂i.

8: Return x̂ ∈ R
d that minimizes ‖DAx−Db‖1 with respect to x (using linear

programming).

Fig. 2. Algorithm for solving �1 regression. Note that in step 6, we sample rows of A and
b so that the expected number of rows sampled is at most s. Instead of this independent sampling
(without replacement), we could sample exactly s rows independently with replacement according to
the probabilities p̂i = λi/

∑
i∈[n] λi, and all our results continue to hold up to small factors.

where x∗ is an optimal solution for the minimization in (8); see [7, 24]. The matrix
D can be found by sampling its diagonal entries independently according to a set of
probabilities pi that are proportional to the �1 leverage scores of A. Here, we give
a fast algorithm to compute estimates p̂i of these probabilities. This permits us to
develop an improved algorithm for �1 regression and to construct efficiently a small
coreset for an arbitrary �1 regression problem.

In more detail, Figure 2 presents the FastCauchyRegression algorithm, which we
summarize here. Let X =

[
A −b]. First, a matrix Π1 satisfying (7) is used to reduce

the dimensionality ofX to Π1X and to obtain the orthogonalizerR−1. Let U = XR−1

be the resulting well-conditioned basis for the range of X . The probabilities we use
to sample rows are essentially the row norms of U . However, to compute XR−1

explicitly takes O(nd2) time, which is already too costly, and so we need to estimate
‖U(i)‖1 without explicitly computing U . To construct these probabilities quickly, we
use a second random projection Π2—on the right. This second projection allows us
to estimate the norms of the rows of XR−1 efficiently to within relative error (which
is all we need) using the median of r2 independent Cauchys, each scaled by ||U(i)||1.
(Note that this is similar to what was done in [10] to approximate the �2 leverage
scores of an input matrix.) These probabilities are then used to construct a carefully
downsampled (and rescaled) problem, the solution to which will give us our (1 + ε)
approximation to the original problem.

The next theorem summarizes our main quality-of-approximation results for the
FastCauchyRegression algorithm of Figure 2. It improves the O(nd2+poly(dε−1 logn))
algorithm of [24], which in turn improved the result in [7]. (Technically, the running

time of [24] is O(ndω
+−1+poly(dε−1 logn)), where ω+ is any constant larger than the
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exponent for matrix multiplication; for practical purposes, we can set ω+ = 3.) Our
improved running time comes from using the FCT and a simple row norm estimator
for the row norms of a well-conditioned basis. The proof of this theorem may be found
in Appendix C.

Theorem 5 (Fast Cauchy �1 regression). Given are ε ∈ (0, 1), ρ > 0, A ∈ R
n×d,

and b ∈ R
n. FastCauchyRegression(A, b) constructs a coreset specified by the diagonal

sampling matrix D and a solution vector x̂ ∈ R
d that minimizes the weighted regression

objective ‖D(Ax− b)‖1. The solution x̂ satisfies, with probability at least 1− 1
dρ (ρ > 0

is a constant),

‖Ax̂− b‖1 ≤
(
1 + ε

1− ε

)
‖Ax− b‖1 ∀x ∈ R

d.

Further, with probability 1− o(1), the entire algorithm to construct x̂ runs in time

O (nd logn+ φ(s, d)) = O
(
nd logn+ 1

ε2 poly(d, log
d
ε )
)
,

where φ(s, d) is the time to solve an �1 regression problem on s vectors in d dimensions,

and if FCT2 is used to construct Π1 then s = O
(

1
ε2 d

ρ+ 9
2+η log

3
2 (dε )

)
.

Remarks. Several remarks about our results for the �1 regression problem are in
order:

• Our proof analyzes a more general problem minx∈C ||Xx||1, where C ⊆ R
d is

a convex set. In order to get the result, we need to preserve norms under
sampling, which is what Lemma 5 allows us to do. We mention that our
methods extend with minor changes to �p regression for p > 1. This is
discussed in section 5.
• A natural extension of our algorithm to matrix-valued RHSs b gives a (1+ ε)
approximation in a similar running time for the �1 norm subspace approxi-
mation problem. See section 4.3 for details.
• We can further improve the efficiency of solving this simple �1 regression
problem, thereby replacing the nd logn running time term in Theorem 5
with nd log(dε−1 logn), but at the expense of a slightly larger sample size s.
The improved algorithm is essentially the same as the FastCauchyRegression
algorithm, except with two differences: Π2 is chosen to be a matrix of i.i.d.
Gaussians for a value r2 = O(log(dε−1 logn)); and, to accommodate this, the
size of s needs to be increased. Details are presented in section 4.2.2.

4.2.2. A faster algorithm for �1 regression. Here, we present an algorithm
that improves the efficiency of our �1 regression algorithm from section 4.2.1; and
we state and prove an associated quality-of-approximation theorem. See Figure 3,
which presents the OptimizedFastCauchyRegression algorithm. This algorithm has a
somewhat larger sample size s than our previous algorithm, but our main theorem
for this algorithm will replace the nd logn running time term in Theorem 5 with a
nd log(dε−1 logn) term.

The intuition behind the OptimizedFastCauchyRegression algorithm is as follows.
The (i, j)th entry (UΠ2)ij will be a 0-mean Gaussian with variance ‖U(i)‖22. Since

the row has d dimensions, the �2 norm and �1 norm only differ by
√
d. Hence, at

the expense of some factors of d in the sampling complexity s, we can use sampling
probabilities based on the �2 norms. The nice thing about using �2 norms is that we
can use Gaussian random variables for the entries of Π2 rather than Cauchy random
variables. Given the exponential tail of a Gaussian random variable, for a Π2 with
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OptimizedFastCauchyRegression(A, b):

1: Let X =
[
A −b] ∈ R

n×(d+k), and construct Π1, an r1 × n matrix satisfying
(7) with A replaced by X .

2: ComputeX ′ = Π1X ∈ R
r1×(d+k) and its QR factorization, Π1X = QR. (Note

that Π1XR−1 has orthonormal columns.)
3: Set the parameters

s =
210κ2

√
r1(d+ k)

ε2

(
(d+ k) log

24κ(d+ k)
√
r1

ε
+ log

2

δ

)
,

r2 = 2 log
(
2sq
√
r1 log

2ρ+1/2 n
)
= O

(
log
(
ρ(d+ k)ε−1 logn

))
.

4: Let Π2 ∈ R
(d+k)×r2 be a matrix of independent standard Gaussians.

5: Construct Λ = XR−1Π2 ∈ R
n×r2 .

6: For i ∈ [n], compute λ̂i = medianj∈[r2] |Λij |.
7: For i ∈ [n], compute probabilities p̂i = min{1, s · λ̂i}.
8: Let D ∈ R

n×n be diagonal with independent entries: Dii ={
1
p̂i
, prob. p̂i;

0, prob. 1− p̂i.

9: Return x̂ ∈ R
d that minimizes ‖DAx−Db‖1 with respect to x (using linear

programming).

Fig. 3. An optimized version of our main algorithm for solving �1 regression. Note that for this
algorithm, Π2 consists of independent Gaussian random variables and achieves the desired running
time at the cost of a larger corset size, increased by a factor of poly(dε−1 logn).

fewer columns we can still guarantee that no sampling probability increases by more
than a logarithmic factor. The main difficulty we encounter is that some sampling
probabilities may decrease by a larger factor, even though they do not increase by
much—however, one can argue that with large enough probability, no row is sampled
by the algorithm if its probability shrinks by a large factor. Therefore, the behavior
of the algorithm is as if all sampling probabilities change by at most a poly(dε−1 lnn)
factor, and the result will follow. The following theorem is our main theorem for the
OptimizedFastCauchyRegression algorithm. The proof of this theorem may be found
in Appendix D.

Theorem 6 (optimized Fast Cauchy �1 regression). Given are ε ∈ (0, 1), ρ > 0,
A ∈ R

n×d, and b ∈ R
n. OptimizedFastCauchyRegression(A, b) constructs a coreset

specified by the diagonal sampling matrix D and a solution vector x̂ ∈ R
d that mini-

mizes the weighted regression objective ‖D(Ax− b)‖1. The solution x̂ satisfies, with
probability at least 1− 1

dρ − 1
logρ n ,

‖Ax̂− b‖1 ≤
(
1 + ε

1− ε

)
‖Ax− b‖1 ∀x ∈ R

d.

Further, with probability 1− o(1), the entire algorithm to construct x̂ runs in time

O
(
nd log(ρdε−1 logn) + φ(s, d)

)
= O

(
nd log(ρdε−1 logn) + poly(d, log(dε−1 lnn))

)
,

where φ(s, d) is the time to solve an �1 regression problem on s vectors in d dimensions,

and if FCT2 is used to construct Π1, then s = O
(

1
ε2 d

2ρ+6+η log
5
2 (dε )

)
.
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Note that our algorithms and results also extend to multiple regression with
b ∈ R

n×k, a fact that will be exploited in the next section.

4.3. �1 norm subspace approximation. Finally, we consider the �1 norm
subspace approximation problem: Given the n points in the n × d matrix A and a
parameter k ∈ [d − 1], embed these points into a subspace of dimension k to obtain
the embedded points Â such that ‖A− Â‖1 is minimized. (Note that this is the �1
analogue of the �2 problem that is solved by the SVD.) When k = d− 1, the subspace
is a hyperplane, and the task is to find the hyperplane passing through the origin so as
to minimize the sum of �1 distances of the points to the hyperplane. In order to solve
this problem with the methods from section 4.2, we take advantage of the observation
made in [5] (see also Lemma 18 of [24]) that this problem can be reduced to d related
�1 regressions of A onto each of its columns, a problem sometimes called multiple
regression. Thus, in section 4.3.1, we extend our �1 “simple” regression algorithm to
an �1 “multiple” regression algorithm; and then in section 4.3.2, we show how this
can be used to solve the �1 norm subspace approximation problem.

4.3.1. Generalizing to multiple �1 regression. The multiple �1 regression
problem is similar to the simple �1 regression problem, except that it involves solving
for multiple RHSs; i.e., both x and b become matrices (W and B, respectively).
Specifically, let A ∈ R

n×d and B ∈ R
n×k. We wish to find W ∈ R

d×k which solves

min
W
‖AW −B‖1.

Although the optimal W can clearly be obtained by solving k separate simple �1
regressions, with b = B(j) for j ∈ [k], one can do better. As with simple regression,
we can reformulate the more general constrained optimization problem:

min
Z∈C
‖XZ‖1.

To recover multiple �1 regression, we set X =
[
A −B] and ZT =

[
W Ik

]T
, in

which case the constraint set is C = {Z =
[
W
Ik

]
: W ∈ R

d×k
}
.

A detailed inspection of the proof of Theorem 5 in section 4.2 (see Appendix C
for the proof) reveals that nowhere is it necessary that x be a vector, i.e., the whole
proof generalizes to a matrix Z. In particular, the inequalities in (9) continue to
hold since if they hold for every vector x, then it must hold for a matrix Z because
‖XZ‖1 =

∑
j∈[k] ‖XZ(j)‖1. Similarly, if Lemma 13 continues to hold for vectors,

then it will imply the desired result for matrices, and so the only change in all the
algorithms and results is that the short dimension of X changes from d+ 1 to d+ k.
Thus, by shrinking δ by an additional factor of k and taking a union bound, we get a
relative error approximation for each individual regression. We refer to this modified
algorithm, where a matrix B is input and the optimization problem in the last step
is modified appropriately, as FastCauchyRegression(A,B), overloading notation in the
obvious way. This discussion is summarized in the following theorem.

Theorem 7 (Fast Cauchy multiple �1 regression). Given ε ∈ (0, 1), ρ > 0, a
matrix A ∈ R

n×d, and B ∈ R
n×k, FastCauchyRegression(A,B) constructs a coreset

specified by the diagonal sampling matrix D and a solution Ŵ ∈ R
d×k that minimizes

the weighted multiple regression objective ‖D(AW −B)‖1. The solution Ŵ satisfies,
with probability at least 1− 1

(d+k)ρ ,

‖AŴ (j) −B(j)‖1 ≤
(
1 + ε

1− ε

)
‖Ax−B(j)‖1 ∀x ∈ R

d and ∀j ∈ [k].
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Further, with probability 1− o(1), the entire algorithm to construct Ŵ runs in time

O (n(d+ k) logn+ φ(s, d, k)) ,

where φ(s, d, k) is the time to solve k �1 regression problems on the same s vectors in
d dimensions, and if FCT2 is used to construct Π1, then

s = O

(
1

ε2
(d+ k)ρ+

11
2 +η log

3
2

(
d+ k

ε

))
.

Remarks. Several remarks about our results for this �1 multiple regression problem
are in order:

• First, we can save an extra factor of (d+k) in s in the above theorem if all we
want is a relative error approximation to the entire multiple regression and
we do not need relative error approximations to each individual regression.
• Second, when k = O(d) it is interesting that there is essentially no asymp-
totic overhead in solving this problem other than the increase from φ(s, d) to
φ(s, d, k); in general, by preprocessing the matrix DA, solving k regressions
on this same matrix DA is much quicker than solving k separate regressions.
This should be compared with �2 regression, where solving k regressions with
the same A takes O(nd2 + ndk + kd2) (since the SVD of A needs to be done
only once), versus a time of O(nkd2) for k separate �2 regressions.
• Third, we will use this version of �1 multiple regression problem, which is
more efficient than solving k separate �1-simple regressions, to solve the �1-
subspace approximation problem. See section 4.3.2 for details.

4.3.2. Application to �1 norm subspace approximation. Here, we will take
advantage of the observation made in [5] that the �1 norm subspace approximation
problem can be reduced to d related �1 regressions of A onto each of its columns. To
see this, consider the following �1 regression problem:

min
w:wj=0

‖Aw −A(j)‖1.

This regression problem is fitting (in the �1 norm) the jth column of A onto the
remaining columns. Let w∗

j be an optimal solution. Then if we replace A(j) by Aw∗
j ,

the resulting vectors will all be in a (d− 1)-dimensional subspace. Let Aj be A with
A(j) replaced by Aw∗

j . The crucial observation made in [5] (see also Lemma 18 of [24])
is that one of the Aj is optimal—and so the optimal subspace can be obtained by
simply doing a hyperplane fit to the embedded points. So,

min
j∈[d]
‖A−Aj‖1 = min

rank(Â)=d−1
‖A− Â‖1.

When viewed from this perspective, the �1 norm subspace approximation problem
makes the connection between low-rank matrix approximation and overconstrained
�1 regression. (A similar approach was used in the �2 case to obtain relative-error
low-rank CX and CUR matrix decompositions [11, 21].) We thus need to perform k
constrained regressions, which can be formulated into a single constrained multiple
regression problem, which can be solved as follows: Find the matrix W that solves

min
W∈C

‖AW‖1,



784 CLARKSON ET AL.

where the constraint set is C = {W ∈ R
d×d : Wii = −1}. Since the constraint

set effectively places an independent constraint on each column of W , after some
elementary manipulation, it is easy to see that this regression is equivalent to the d
individual regressions to obtain w∗

j . Indeed, for an optimal solution W ∗, we can set

w∗
j = W ∗(j).

Thus, using our approximation algorithm for constrained multiple �1 regres-
sion that we described in section 4.3.1, we can build an approximation algorithm
for the �1 norm subspace approximation problem that improves upon the previous
best algorithm from [24, 5]. (The running time of the algorithm of [24] is Ω(ndω

+

+
poly(dε−1 logn)), where ω ≈ 2.376 and β > 0 is any constant.) Our improved algo-
rithm is basically our multiple �1 regression algorithm, FastCauchyRegression(A,B),
invoked with A and b = {} (NULL). The algorithm proceeds exactly as outlined in
Figure 2, except for the last step, which instead uses linear programming to solve for
Ŵ that minimizes ‖AW‖1 with respect to W ∈ C. (Note that the constraints defining
C are very simple affine equality constraints.) Given Ŵ , we define ŵj = Ŵ (j) and

compute j∗ = argminj∈[d] ‖A− Âj‖, where Âj is A with the column A(j) replaced

by Aŵj . It is easy to now show that Âj∗ is a (1 + ε)-approximation to the (d − 1)-
dimensional subspace approximation problem. Indeed, recall that W ∗ is optimal and
the optimal error is ‖AW ∗(j)‖1 for some j ∈ [d]; however, for any j ∈ [d],

‖AW ∗(j)‖1
(a)

≥
(
1− ε

1 + ε

)
‖AŴ (j)‖1

(b)

≥
(
1− ε

1 + ε

)
‖AŴ (j∗)‖1 =

(
1− ε

1 + ε

)
‖A− Âj∗‖1,

where (a) is from the (1 + ε)-optimality of the constrained multiple regression as
analyzed in Appendix C and (b) is because j∗ attained minimum error among all
j ∈ [d]. This discussion is summarized in the following theorem.

Theorem 8. Given A ∈ R
n×d (n points in d dimensions), there is a randomized

algorithm which outputs a (1 + ε)-approximation to the �1 norm subspace approxima-
tion problem for these n points with probability at least 1− 1

dρ . Further, the running
time, with probability 1− o(1), is

O
(
nd logn+ 1

ε2 poly(d, log
d
ε )
)
.

5. Extensions to �p for p > 1. In this section, we describe extensions of our
methods to �p for p > 1. We will first (in section 5.1) discuss �p norm conditioning and
connect it to ellipsoidal rounding, followed by a fast rounding algorithm for general
centrally symmetric convex sets (in section 5.2); and we will then (in section 5.3) show
how to obtain quickly a well-conditioned basis for the �p norm for any p ∈ [1,∞) and
(in section 5.4) show how this basis can be used for improved �p regression. These
results will generalize our results for �1 from sections 4.1 and 4.2, respectively, to
general �p.

5.1. �p norm conditioning and ellipsoidal rounding. As with �2 regression,
�p regression problems are easier to solve when they are well-conditioned. Thus, we
start with the definition of the �p norm condition number κp of a matrix A.

Definition 5 (�p norm conditioning). Given an n× d matrix A, let

σmax
p (A) = max

‖x‖2≤1
‖Ax‖p and σmin

p (A) = min
‖x‖2≥1

‖Ax‖p.

Then, we denote by κp(A) the �p norm condition number of A, defined to be

κp(A) = σmax
p (A)/σmin

p (A).



THE FAST CAUCHY TRANSFORM 785

For simplicity, we will use κp, σ
min
p , and σmax

p when the underlying matrix is clear.

There is a strong connection between the �p norm condition number and the
concept of an (α, β, p)-conditioning developed by Dasgupta et al. [7].

Definition 6 ((α, β, p)-conditioning (from [7])). Given an n× d matrix A and
p ∈ [1,∞], let ‖ · ‖q be the dual norm of ‖ · ‖p, i.e., 1/p + 1/q = 1. Then, A is
(α, β, p)-conditioned if (1) ‖A‖p ≤ α, and (2) for all z ∈ R

d, ‖z‖q ≤ β‖Az‖p. Define
κ̄p(A) as the minimum value of αβ such that A is (α, β, p)-conditioned. We say that
A is �p well-conditioned if κ̄p(A) = O(poly(d)), independent of n.

The following lemma characterizes the relationship between these two quantities.

Lemma 10. Given an n× d matrix A and p ∈ [1,∞], we always have

d−|1/2−1/p|κp(A) ≤ κ̄p(A) ≤ dmax{1/2,1/p}κp(A).

Proof. To see the connection, recall that

‖A‖p =

⎛
⎝ d∑

j=1

‖Aej‖pp

⎞
⎠

1/p

≤
⎛
⎝ d∑

j=1

(σmax
p ‖ej‖2)p

⎞
⎠

1/p

= d1/pσmax
p

and that
‖Ax‖p ≥ σmin

p ‖x‖2 ≥ dmin{1/p−1/2,0}σmin
p ‖x‖q ∀x ∈ R

n.

Thus, A is (d1/pσmax
p , 1/(dmin{1/p−1/2,0}σmin

p ), p)-conditioned and

κ̄p(A) ≤ dmax{1/2,1/p}κp(A).

On the other hand, if A is (α, β, p)-conditioned, we have, for all x ∈ R
d,

‖Ax‖p ≤ ‖A‖p‖x‖q ≤ dmax{1/2−1/p,0}α · ‖x‖2
and

‖Ax‖p ≥ ‖x‖q/β ≥ dmin{1/2−1/p,0}/β · ‖x‖2.
Thus, κp(A) ≤ d|1/p−1/2|αβ.

Although it is easier to describe sampling algorithms in terms of κ̄p, after we
show the equivalence between κp and κ̄p, it will be easier for us to discuss conditioning
algorithms in terms of κp, which naturally connects to ellipsoidal rounding algorithms.

Definition 7. Let C ⊆ R
d be a convex set that is full-dimensional, closed,

bounded, and centrally symmetric with respect to the origin. An ellipsoid E = {x ∈
R

d | ‖Rx‖2 ≤ 1} is a κ-rounding of C if it satisfies E/κ ⊆ C ⊆ E for some κ ≥ 1,
where E/κ means shrinking E by a factor of 1/κ.

To see the connection between rounding and conditioning, let

C = {x ∈ R
d | ‖Ax‖p ≤ 1}

and assume that we have a κ-rounding of C: E = {x | ‖Rx‖2 ≤ 1}. This implies

‖Rx‖2 ≤ ‖Ax‖p ≤ κ‖Rx‖2 ∀x ∈ R
d.

If we let y = Rx, then we get

‖y‖2 ≤ ‖AR−1y‖p ≤ κ‖y‖2 ∀y ∈ R
d.
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Therefore, we have κp(AR
−1) ≤ κ. So a κ-rounding of C leads to a κ-conditioning

of A.

5.2. Fast ellipsoidal rounding. Here, we provide a deterministic algorithm to
compute a 2d-rounding of a centrally symmetric convex set in R

d that is described by
a separation oracle. Recall the well-known result due to John [17] that for a centrally
symmetric convex set C there exists a d1/2-rounding and that such a rounding is given
by the Löwner–John (LJ) ellipsoid of C, i.e., the minimal-volume ellipsoid containing
C. However, finding this d1/2-rounding is a hard problem. To state algorithmic
results, suppose that C is described by a separation oracle and that we are provided
an ellipsoid E0 that gives an L-rounding for some L ≥ 1. In this case, the best known
algorithmic result of which we are aware is that we can find a (d(d+ 1))1/2-rounding
in polynomial time, in particular, in O(d4 logL) calls to the oracle; see Lovász [19,
Theorem 2.4.1]. This result was used by Clarkson [6] and by Dasgupta et al. [7]. Here,
we follow the same construction, but we show that it is much faster to find a (slightly
worse) 2d-rounding. The proof of this theorem may be found in Appendix E.1.

Theorem 9 (fast ellipsoidal rounding). Given a centrally symmetric convex set
C ⊆ R

d centered at the origin and described by a separation oracle, and an ellipsoid
E0 centered at the origin such that E0/L ⊆ C ⊆ E0 for some L ≥ 1, it takes at most
3.15d2 logL calls to the oracle and additional O(d4 logL) time to find a 2d-rounding
of C.

Applying Theorem 9 to the convex set C = {x | ‖Ax‖p ≤ 1}, with the separation
oracle described via a subgradient of ‖Ax‖p and the initial rounding provided by
the “R” matrix from the QR decomposition of A, we improve the running time of
the algorithm used by Clarkson [6] and by Dasgupta et al. [7] from O(nd5 logn) to
O(nd3 logn) while maintaining an O(d)-conditioning. The proof of this theorem may
be found in Appendix E.2.

Theorem 10. Given an n × d matrix A with full column rank, it takes at most
O(nd3 logn) time to find a matrix R ∈ R

d×d such that κp(AR
−1) ≤ 2d.

5.3. Fast construction of an �p well-conditioned basis. Here, we consider
the construction of a basis that is well-conditioned for �p. To obtain results for
general �p that are analogous to those we obtained for �1, we will extend the FCT2
construction from section 3.2, combined with Theorem 9.

Our main algorithm for constructing a p-well-conditioned basis, the FastLpBasis
algorithm, is summarized in Figure 4. The algorithm first applies blockwise embed-
dings in the �2 norm, similar to the construction of FCT2; it then uses the algorithm
of Theorem 9 to compute a (2d)-rounding of a special convex set C̃ and obtain the
matrix R. It is thus a generalization of our FastL1Basis algorithm of section 4.1, and
it follows the same high-level structure laid out by the algorithm of [10] for computing
approximations to the �2 leverage scores and an �2 well-conditioned basis.

The next theorem is our main result for the FastLpBasis algorithm. It improves the
running time of the algorithm of Theorem 10, at the cost of slightly worse conditioning
quality. However, these worse factors will only contribute to a low-order additive
poly(d) term in the running time of our �p regression application in section 5.4. The
proof of this theorem may be found in Appendix F.

Theorem 11 (fast �p well-conditioned basis). For any A ∈ R
n×d with full col-

umn rank, the basis AR−1 constructed by FastLpBasis(A) (Figure 4), with probability
at least 1− 1/n, is �p well-conditioned with κp(AR

−1) = O(dt|1/p−1/2|). The time to
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FastLpBasis(A):

1: Let s = Θ(d + log n), let t = Θ(sd2), and let G be an s × t Fast Johnson–
Lindenstrauss matrix, the same as the matrix G in the FCT2 construction.

2: PartitionA along its rows into submatrices of size t×d, denoted byA1, . . . , AN ,
compute Ãi = GAi for i = 1, . . . , N , and define

C̃ =
⎧⎨
⎩x

∣∣∣∣∣∣
(

N∑
i=1

‖Ãix‖p2
)1/p

≤ 1

⎫⎬
⎭ and Ã =

(
Ã1

.

.

.

ÃN

)
.

3: Apply the algorithm of Theorem 9 to obtain a (2d)-rounding of C̃: E =
{x | ‖Rx‖2 ≤ 1}.

4: Output AR−1.

Fig. 4. Our main algorithm for the fast construction of an �p well-conditioned basis of an n×d
matrix A. Note the structural similarities with our FastL1Basis algorithm of Figure 1 for computing
quickly an �1 well-conditioned basis.

compute R is O(nd log n).

When d > logn, κp(AR
−1) = O(d1+3·|1/p−1/2|) and hence

κ̄p(AR
−1) = O(d1+3·|1/p−1/2|+max{1/p,1/2})

by Lemma 10. Note that, even for the case when p = 1, we have κ̄p(AR
−1) = O(d7/2),

which is slightly better than FCT2 (see Corollary 1). However, we have to solve a
rounding problem of size ns/t×d in step 2 of FastLpBasis, which requires storage and
work depending on n.

5.4. Fast �p regression. Here, we show that the overconstrained �p regression
problem can be solved with a generalization of the algorithms of section 4.2 for solv-
ing �1 regression; we will call this generalization the FastLpRegression algorithm. In
particular, as with the algorithm for �1 regression, this FastLpRegression algorithm
for the �p regression problem uses an �p well-conditioned basis and samples rows of
A with probabilities proportional to the �p norms of the rows of the corresponding
well-conditioned basis (which are the �p analogues of the �2 leverage scores). As with
the FastCauchyRegression, this entails using—for speed—a second random projection
Π2 applied to AR−1—on the right—to estimate the row norms. This allows fast
estimation of the �2 norms of the rows of AR−1, which provides an estimate of the
�p norms of those rows, up to a factor of d|1/2−1/p|. We use these norm estimates,
e.g., as in the above algorithms or in the sampling algorithm of [7]. As discussed for
the running time bound of [7, Theorem 7], this algorithm samples a number of rows
proportional to κ̄p

p(AR
−1)d. This factor, together with a sample complexity increase

of (d|1/2−1/p|)p = d|p/2−1| needed to compensate for error due to using Π2, gives a
sample complexity increase for the FastLpRegression algorithm, while the leading term
in the complexity (for n	 d) is reduced from O(nd5 logn) to O(nd log n). We modify
Theorem 7 of [7] to obtain the following theorem.

Theorem 12 (fast �p regression). Given ε ∈ (0, 1), A ∈ R
n×d, and b ∈ R

n, there
is a random sampling algorithm (the FastLpRegression algorithm described above) for
�p regression that constructs a coreset specified by a diagonal sampling matrix D and a
solution vector x̂ ∈ R

d that minimizes the weighted regression objective ‖D(Ax− b)‖p.
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The solution x̂ satisfies, with probability at least 1/2, the relative error bound that
‖Ax̂− b‖p ≤ (1 + ε)‖Ax− b‖p for all x ∈ R

d. Further, with probability 1 − o(1), the
entire algorithm to construct x̂ runs in time

O (nd logn+ φp(s, d)) = O
(
nd logn+ 1

ε2 poly(d, log
d
ε )
)
,

where s = O(ε−2dk log(1/ε)) with k = p+ 1 + 4|p/2− 1|+max{p/2, 1}, and φp(s, d)
is the time to solve an �p regression problem on s vectors in d dimensions.

6. Numerical implementation and empirical evaluation. In this section,
we describe the results of our empirical evaluation. We have implemented and eval-
uated the Fast Cauchy transforms (both FCT1 and FCT2) as well as the Cauchy
transform (CT) of [24]. For completeness, we have also compared our method against
two �2-based transforms: the Gaussian transform (GT) and a version of the FJLT.
Ideally, the evaluation would be based on evaluating the distortion of the embedding,
i.e., evaluating the smallest κ such that

‖Ax‖1 ≤ ‖ΠAx‖1 ≤ κ‖Ax‖1 ∀x ∈ R
d,

where Π ∈ R
r×n is one of the CTs. Due to the nonconvexity, there seems not to

be a way to compute, tractably and accurately, the value of this κ. Instead, we
evaluate both �1-based transforms (CT, FCT1, and FCT2) and �2-based transforms
(GT and FJLT) based on how they perform in computing well-conditioned bases and
approximating �1 regression problems.

6.1. Evaluating the quality of �1 well-conditioned bases. We first describe
our methodology. Given a “tall and skinny” matrix A ∈ R

n×d with full column
rank, as in section 4.1, we compute well-conditioned bases of A: U = AR−1 =
A(QTΠA)−1, where Π is one of those transforms, and where Q and R are from the
QR decomposition of ΠA. Our empirical evaluation is based on the metric κ̄1(U).
Note that κ̄1 is scale-invariant: if U is (α, β)-conditioned with κ̄1(U) = αβ, then γU
is (αγ, β/γ)-conditioned, and hence κ̄1(γU) = αγβ/γ = αβ = κ̄1(U). This saves us
from determining the scaling constants when implementing CT, FCT1, and FCT2.
While computing α = ‖U‖1 is trivial, computing β = 1/(min‖z‖∞=1 ‖Uz‖1) is not as
easy: it requires solving d linear programs:

β =
1

min
j=1,...,d

min
‖z‖∞ ≤ 1

zj = 1

‖Uz‖1 .

Note that this essentially limits the size of the test problems in our empirical eval-
uation: although we have applied our algorithms to much larger problems, we must
solve these linear programs if we want to provide a meaningful comparison by com-
paring our fast �1-based algorithms with an “exact” answer. Another factor limiting
the size of our test problems is more subtle and is a motivation for our comparison
with �2-based algorithms. Consider a basis induced by the GT: U = A(QTGA)−1,
where G ∈ R

O(d)×n is a matrix whose entries are i.i.d. Gaussian. We know that
κ2(U) = O(1) with high probability. In such a case, we have

‖U‖1 =
d∑

j=1

‖Uej‖1 ≤
d∑

j=1

n1/2‖Uej‖2 ≤ n1/2d · σmax
2 (U)
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Table 1

Summary of time complexity and �1 conditioning performance for �1-based and �2-based trans-
forms used in our empirical evaluation.

Time κ̄1

CT O(nd2 log d) O(d5/2 log3/2 d)

FCT1 O(nd log d) O(d11/2 log9/2 d)

FCT2 O(nd log d) O(d7/2+η log3/2 d)

GT O(nd2) O(n1/2d)

FJLT O(nd logn) O(n1/2d)

and

‖Uz‖1 ≥ ‖Uz‖2 ≥ σmin
2 (U)‖z‖2 ≥ σmin

2 (U)‖z‖∞.

Hence κ̄1(U) ≤ n1/2d · σmax
2 (U)/σmin

2 (U) = O(n1/2d). Similar results apply to the
FJLTs that work on an entire subspace of vectors, e.g., the subsampled randomized
Hadamard transform (SRHT) [28]. In our empirical evaluation, we use the SRHT as
our implementation of the FJLT, but we note that similar running times hold for other
variants of the FJLT [4]. Table 1 lists the running time and worst-case performance
of each transform on �1 conditioning, clearly showing the cost-performance trade-offs.
For example, comparing the condition number of GT or FJLT, O(n1/2d), with the

condition number of CT, O(d5/2 log3/2 d), we will need n > O(d3 log3 d) to see the
advantage of CT over �2-based algorithms (e.g., n should be at least at the scale
of 108 when d is 100). To observe the advantage of FCT1 and FCT2 over �2-based
transforms, n should be relatively even larger.

Motivated by these observations, we create two sets of test problems. The first set
contains matrices of size 218×4, and the second set contains matrices of size 216×16.
We choose the number of rows to be powers of 2 to implement FCT2 and FJLT in a
straightforward way. Based on our theoretical analysis, we expect �1-based algorithms
to work better on the first test set than �2-based algorithms, at least on some worst-
case test problems, and that this advantage should disappear on the second test set.
For each of these two sizes, we generate four test matrices: A1 is a randomly generated
ill-conditioned matrix with slightly heterogeneous leverage scores; A2 is a randomly
generated ill-conditioned matrix with strongly heterogeneous leverage scores; and A3

and A4 are two “real” matrices chosen to illustrate the performance of our algorithms
on real-world data. In more detail, the test matrices are as follows:

• A1 = D1G1D2G2, where D1 ∈ R
n×n is a diagonal matrix whose diagonals

are linearly spaced between 1 and 104, G1 ∈ R
n×d is a Gaussian matrix,

D2 ∈ R
d×d is a diagonal matrix whose diagonals are linearly spaced between

1 and 104, and G2 ∈ R
d×d is a Gaussian matrix. A1 is chosen in this way so

that it is ill-conditioned (due to the choice of D2) and its bottom rows tend
to have high leverage scores (due to the choice of D1).
•

A2 =

( 1
1

. . .
1 ··· 1

)T

G,

where G ∈ R
d×d is a Gaussian matrix. The first d − 1 rows tend to have

very high leverage scores because missing any of them would lead to rank
deficiency, while the rest of the n−d+1 rows are the same as each other, and
hence they tend to have very low leverage scores. A2 is also ill-conditioned



790 CLARKSON ET AL.

Table 2

�1 norm conditioning, κ̄1(U), on matrices of size 218 × 4. We compute the first and the
third quartiles of the �1 norm conditioning number in 50 independent runs for each matrix and
each algorithm. The size is chosen to demonstrate the difference between �1-based and �2-based
conditioning algorithms and the superiority of the �1-based algorithms in the asymptotic regime.
GT and FJLT do not work well on A2, resulting in condition numbers close to the worst-case bound
of n1/2d = 2048. CT, FCT1, and FCT2 perform consistently across all matrices.

A1 A2 A3 A4

κ̄1(Ai) 1.93e+04 7.67e+05 8.58 112
CT [10.8, 39.1] [10.4, 41.7] [10.2, 33] [8.89, 42.8]
FCT1 [9.36, 21.2] [15.4, 58.6] [10.9, 38.9] [11.3, 40.8]
FCT2 [12.3, 32.1] [17.3, 76.1] [10.9, 43] [11.3, 42.1]
GT [6.1, 8.81] [855, 1.47e+03] [5.89, 8.29] [6.9, 9.17]
FJLT [5.45, 6.29] [658, 989] [5.52, 6.62] [6.18, 7.53]

because we have

AT
2 A2 = GT

( 1

. . .
1
w

)
G,

where w = (n− d+ 1)2 is very large.
• A3, the leading submatrix of the SNP matrix used by Paschou et al. [23].
The SNP matrix is of size 492516× 2250, from the Human Genome Diversity
Panel and the HapMap Phase 3 dataset. See [23] for more descriptions of the
data.
• A4, the leading submatrix of the TinyImages matrix created by Torralba,
Fergus, and Freeman [26]. The original images are in RGB format. We
convert them to grayscale intensity images, resulting in a matrix of size 8e7×
1024.

To implement FCT1 and FCT2 for our empirical evaluations, we have to fix
several parameters in Theorems 2 and 1, finding a compromise between theory and
practice. We choose r1 = �2d log d� except r1 = 2d for GT. We choose s = �2d log d�
and t = 2d2 for FCT1 and s = 2�2 log2(2d log d)� for FCT2. Although those settings do
not follow Theorems 2 and 1 very closely, they seem to be good for practical use. Since
all the transforms are randomized algorithms that may fail with certain probabilities,
for each test matrix and each transform, we take 50 independent runs and show the
first and the third quartiles of κ̄1 in Tables 2 and 3.

The empirical results, described in detail in Tables 2 and 3, conform with our ex-
pectations. The specifically designed �1-based algorithms perform consistently across
all test matrices, while the performance of �2-based algorithms is quite problem-
dependent. Interestingly, though, the �2-based methods often perform reasonably
well: at root, the reason is that for many inputs the �2 leverage scores are not too
much different than the �1 leverage scores. That being said, the matrix A2 clearly
indicates that �2-based methods can fail for “worst-case” input, while the �1-based
methods perform well for this input.

On the first test set, �1-based algorithms are comparable to �2-based algorithms on
A1, A3, and A4 but much better on A2. The differences among �1-based algorithms
are small. In terms of conditioning quality, CT leads FCT1 and FCT2 by a small
amount on average, but when we take running times into account, FCT1 and FCT2
are clearly more favorable choices in this asymptotic regime. On the second test
set, �1-based algorithms become worse than �2-based on A1, A3, and A4 due to the
increase of d and the decrease of n. All the algorithms perform similarly on A2, but
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Table 3

�1 norm conditioning, κ̄1(U), on matrices of size 216 × 16. We compute the first and the third
quartiles of the �1 norm conditioning number in 50 independent runs for each matrix and each
algorithm. The size is chosen to demonstrate that �2-based conditioning algorithms can be as good
as or even better than �1-based conditioning algorithms. GT and FJLT still do not work well on A2,
but they become comparable to �1-based algorithms. Although still performing consistently across all
matrices, �1-based algorithms perform much worse than in the first test set due to the increase of d
and decrease of n.

A1 A2 A3 A4

κ̄1(Ai) 4.21e+05 2.39e+06 36.5 484
CT [90.2, 423] [386, 1.44e+03] [110, 633] [150, 1e+03]
FCT1 [113, 473] [198, 1.1e+03] [114, 765] [127, 684]
FCT2 [134, 585] [237, 866] [106, 429] [104, 589]
GT [27.4, 31] [678, 959] [28.8, 32.3] [29.4, 33.5]
FJLT [19.9, 21.2] [403, 481] [21.4, 23.1] [21.8, 23.2]

�1-based algorithms, involving Cauchy random variables, have larger variance than
�2-based algorithms.

6.2. Application to �1 regression. Next, we embed these transforms into
fast approximation of �1 regression problems to see how they affect the accuracy of
approximation. We implement the FastCauchyRegression algorithm of section 4.2,
except that we compute the row norms of U exactly instead of estimating them.
Although this takes O(nd2) time, it is free from errors introduced by estimating
the row norms of U , and thus it permits a more direct evaluation of the regression
algorithm. Unpublished results indicate that using approximations to the �1 leverage
scores, as is done at the beginning of the FastCauchyRegression algorithm, leads to
very similar quality-of-approximation results.

We generate a matrix A of size 218 × 7 and generate the RHSs b = Axexact + ε,
where xexact is a Gaussian vector, and ε is a random vector whose entries are indepen-
dently sampled from the Laplace distribution and scaled such that ‖ε‖2/‖Axexact‖2 =
0.1. Then, for each row i, with probability 0.001 we replace bi by 100‖ε‖2 to simulate
corruption in measurements. On this kind of problem, �1 regression should give a
very accurate estimate, while �2 regression will not work well. For completeness, we
also add uniform sampling (UNIF) and no conditioning (NOCD) into the evaluation.
Instead of determining the sample size from a given tolerance, we accept the sample
size as a direct input; and we choose sample sizes from 25 to 214.

The results are shown in Figure 5, where we draw the first and the third quartiles
of the relative errors in objective value from 50 independent runs. If the subsampled
matrix is rank-deficient, we set the corresponding relative error to ∞ to indicate a
failure. We remove relative errors that are larger than 100 from the plot in order to
show more details. As expected, we can see that UNIF and NOCD are certainly not
among reliable choices; they failed (either generating rank-deficient subsampled prob-
lems or relative errors larger than 100) completely on A2. In addition, GT and FJLT
failed partially on the same test. Empirically, there is not much difference among
�1-based algorithms: CT works slightly worse than FCT1 and FCT2 on these tests,
which certainly makes FCT1 and FCT2 more favorable. (One interesting observation
is that we find that, in these tests at least, the relative error is proportional to 1/s
instead of 1/s1/2. At this time, we do not have theory to support this observation.)
This coupled with the fact that �1 leverage scores can be approximated more quickly



792 CLARKSON ET AL.

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

sample size

(f−
f* )/f

*

CT
FCT1
FCT2
GT
FJLT
NOCD
UNIF

101 102 103 104 105
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

sample size

(f−
f* )/f

*

CT
FCT1
FCT2
GT
FJLT
NOCD
UNIF

A1 A2

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

sample size

(f−
f* )/f

*

CT
FCT1
FCT2
GT
FJLT
NOCD
UNIF

101 102 103 104 105
10−7

10−6

10−5

10−4

10−3

10−2

10−1

sample size

(f−
f* )/f

*
CT
FCT1
FCT2
GT
FJLT
NOCD
UNIF

A3 A4

Fig. 5. The first and the third quartiles of relative errors in objective value. The problem size
is 218 × 7. The first quartiles are drawn in solid lines, while the third quartiles are drawn in dashed
lines. If the subsampled problem is rank-deficient, we set the corresponding relative error to ∞. If
a quartile is larger than 100, we remove it from the plot. There are few differences among those
algorithms on A1, A3, and A4. UNIF and NOCD are clearly inferior to algorithms that explore both
conditioning and leverage score-based sampling. UNIF and NOCD also failed on A2 completely. GT
and FJLT failed on A2 when the sample size is smaller than 512. CT works slightly worse than
FCT1 and FCT2 on these tests. One interesting fact from the result is that we see ε ∼ 1/s instead
of 1/s1/2.

with FCT1 and FCT2 suggests the use of these transforms in larger-scale applications
of �1 regression.

6.3. Evaluation on a large-scale �1 regression problem. Here, we continue
to demonstrate the capability of sampling-based algorithms in large-scale applications
by solving a large-scale �1 regression problem with imbalanced and corrupted mea-
surements. The problem is of size 5.24e9× 15, generated in the following way:

1. The true signal x∗ is a standard Gaussian vector.
2. Each row of the design matrix A is a canonical vector, which means that

we only estimate a single entry of x∗ in each measurement. The number of
measurements on the ith entry of x∗ is twice as large as that on the (i+1)st
entry, i = 1, . . . , 14. We have 2.62 billion measurements on the first entry
while only 0.16 million measurements on the last. Imbalanced measurements
apparently create difficulties for sampling-based algorithms.
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Table 4

The first and the third quartiles of relative errors in 1-, 2-, and ∞ norms. CT clearly performs
the best. GT follows closely. NOCD generates large errors, while UNIF works but it is about a
magnitude worse than CT.

‖x−x∗‖1
‖x∗‖1

‖x−x∗‖2
‖x∗‖2

‖x−x∗‖∞
‖x∗‖∞

CT [0.008, 0.0115] [0.00895, 0.0146] [0.0113, 0.0211]
GT [0.0126, 0.0168] [0.0152, 0.0232] [0.0184, 0.0366]

NOCD [0.0823, 22.1] [0.126, 70.8] [0.193, 134]
UNIF [0.0572, 0.0951] [0.089, 0.166] [0.129, 0.254]

3. The response vector is given by

bi =

{
1000εi with probability 0.001,

aTi x
∗ + εi otherwise,

i = 1, . . . ,

where ai is the ith row of A and {εi} are i.i.d. samples drawn from the Laplace
distribution. 0.1% measurements are corrupted to simulate noisy real-world
data. Due to these corrupted measurements, �2 regression will not give us an
accurate estimate, and �1 regression is certainly a more robust alternative.

Since the problem is separable, we know that an optimal solution is simply given by
the median of responses corresponding to each entry.

The experiments were performed on a Hadoop cluster with 40 cores. Similar to
our previous test, we implemented and compared Cauchy-conditioned sampling (CT),
Gaussian-conditioned sampling (GT), unconditioned sampling (NOCD), and uniform
sampling (UNIF). Since A only has 2n nonzeros, CT takes O(nd log d) time instead
of O(nd2 log d), which makes it the fastest among CT, FCT1, and FCT2 on this
particular problem. Moreover, even if A is dense, data at this scale are usually stored
on secondary storage, and thus time spent on scanning the data typically dominates
the overall running time. Therefore, we only implemented CT for this test. Note that
the purpose of this test is not to compare CT, FCT1, and FCT2 (which we did above),
but to reveal some inherent differences among �1 conditioned sampling (CT, FCT1,
and FCT2), �2 conditioned sampling (GT and FJLT), and other sampling algorithms
(NOCD and UNIF). For each algorithm, we sample approximately 100000 (0.019%)
rows and repeat the sampling 100 times, resulting in 100 approximate solutions. Note
that those 100 approximate solutions can be computed simultaneously in a single pass.

We first check the overall performance of these sampling algorithms, measured
by relative errors in 1-, 2-, and ∞ norms. The results are shown in Table 4. Since
the algorithms are all randomized, we show the first and the third quartiles of the
relative errors in 100 independent runs. We see that CT clearly performs the best,
followed by GT. UNIF works, but it is about a magnitude worse than CT. NOCD is
close to UNIF at the first quartile but makes very large errors at the third. Without
conditioning, NOCD is more likely to sample outliers because the response from a
corrupted measurement is much larger than that from a normal measurement. How-
ever, those corrupted measurements contain no information about x∗, which leads to
NOCD’s poor performance. UNIF treats all the measurements the same, but the mea-
surements are imbalanced. Although we sample 100000 measurements, the expected
number of measurements on the last entry is only 3.05, which downgrades UNIF’s
overall performance.
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Fig. 6. The first (solid) and the third (dashed) quartiles of entrywise absolute errors for our
large-scale �1 regression empirical evaluation. See the text for details. Color is available in the
online version and from http://arxiv.org/abs/1207.4684.

We continue to analyze entrywise errors. Figure 6 draws the first and the third
quartiles of entrywise absolute errors, which clearly reveals the differences among �1
conditioned sampling, �2 conditioned sampling, and other sampling algorithms. While
UNIF samples uniformly rowwise, CT tends to sample uniformly entrywise. Although
not as good as other algorithms on the first entry, CT maintains the same error level
across all the entries, delivering the best overall performance. The �2-based GT sits
between CT and UNIF. �2 conditioning can help detect imbalanced measurements
to a certain extent and adjust the sampling weights accordingly, but it is still biased
towards the measurements on the first several entries.

To summarize, we have shown that �1 conditioned sampling indeed works on
large-scale �1 regression problems and its performance looks promising. We obtained
about two accurate digits (0.01 relative error) on a problem of size 5.24e9 × 15 by
passing over the data twice and sampling only 100000 (0.019%) rows in a judicious
manner.

7. Conclusion. We have introduced the Fast Cauchy transform, an �1-based
analogue of Fast Hadamard–based random projections. We have also demonstrated
that this fast �1-based random projection can be used to develop algorithms with im-
proved running times for a range of �1-based problems; we have provided extensions
of these results to �p; and we have provided the first implementation and empirical
evaluation of an �1-based random projection. Our empirical evaluation clearly demon-
strates that for large and very rectangular problems, for which low-precision solutions
are acceptable, our implementation follows our theory quite well; and it also points
to interesting connections between �1-based projections and �2-based projections in
practical settings. Understanding these connections theoretically, exploiting other
properties such as sparsity, and using these ideas to develop improved algorithms for
high-precision solutions to large-scale �1-based problems are important future direc-

http://arxiv.org/abs/1207.4684
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tions raised by our work.

Appendix A. Proofs of technical Cauchy lemmas.

A.1. Proof of Lemma 3 (Cauchy upper tail inequality). The proof uses
techniques similar to the bounds due to Indyk [15] for sums of independent clipped
half-Cauchy random variables. Fix M > 0 (we will choose M later), and define the
events

Fi = {|Ci| ≤M},
and F = ∩i∈[m]Fi. Note that F ∩ Fi = F . Using the pdf of a Cauchy and because
tan−1 x ≤ x, we have that

Pr[Fi] =
2

π
tan−1 (M) = 1− 2

π
tan−1

(
1

M

)
≥ 1− 2

πM
.

By a union bound, Pr[F ] ≥ 1− 2m
πM . Further, Pr[F |Fi]Pr[Fi] = Pr[F ∩Fi] = Pr[F ],

and hence Pr[F |Fi] = Pr[F ]/Pr[Fi]. We now bound E
[|Ci|

∣∣ F ]. First, observe that
E
[|Ci|

∣∣ Fi

]
= E

[|Ci|
∣∣ Fi ∩ F

]
Pr[F |Fi] +E

[|Ci|
∣∣ Fi ∩ F̄

]
Pr[F̄ |Fi]

≥ E
[|Ci|

∣∣ Fi ∩ F
]
Pr[F |Fi].

Next, since Fi ∩ F = F , we have that

E
[|Ci|

∣∣F ] ≤ E
[|Ci|

∣∣ Fi

]
Pr[F |Fi]

=
E
[|Ci|

∣∣ Fi

]
Pr[Fi]

Pr[F ]
.

Finally, by using the pdf of a Cauchy, E
[|Ci|

∣∣Fi

]
= 1

π log(1 +M2)/Pr[Fi], and so

E
[|Ci|

∣∣F ] ≤ 1
π log(1 +M2)

Pr[F ]
≤

1
π log(1 +M2)

1− 2m/πM
.

We conclude that

E[X |F ] =
∑
i∈[m]

γiE
[|Ci|

∣∣F ] ≤ γ

π
· log(1 +M2)

1 − 2m/πM
.

By Markov’s inequality and because Pr[X ≥ γt|F̄ ] ≤ 1, we have

Pr[X ≥ γt] = Pr[X ≥ γt|F ]Pr[F ] +Pr[X ≥ γt|F̄ ](1−Pr[F ])

≤ 1

πt
· log(1 +M2)

1− 2m/πM
+

2m

πM
.

The result follows by setting M = 2mt.

A.2. Proof of Lemma 4 (Cauchy lower tail inequality). To bound the
lower tail, we will use Lemma 1. By homogeneity, it suffices to prove the result for
γ = 1. Let Zi = γi min(|Ci|,M). Clearly, Zi ≤ γi|Ci|, and so defining Z =

∑
i Zi, we

have that Z ≤ X and Pr[X ≤ 1− t] ≤ Pr[Z ≤ 1− t]. Thus, we have that

Pr[Z ≤ 1− t] = Pr[Z ≤ E[Z]− (E[Z]− 1 + t)] ≤ exp

(−(E[Z]− 1 + t)2

2
∑

iE[Z2
i ]

)
,

where the last step holds by Lemma 1 for 1− t < E[Z]. Using the distribution of the
half-Cauchy, one can verify using standard techniques that by choosing M ≈ 1.6768,
E[Zi] = γi and E[Z2

i ] ≤ 3
2γ

2
i , so

∑
i E[Zi] = 1 and

∑
iE[Z2

i ] ≤ 3
2

∑
i γ

2
i ≤ 3

2β2 . It

follows that Pr[Z ≤ 1− t] ≤ exp
(− t2/ 3

β2

)
, and the result follows.
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A.3. Proof of Lemma 5 (�1 sampling lemma). First, note that ‖DZx‖1 =∑
i∈[n]Dii|Z(i)x|, and since E[Dii] = 1, E[‖DZx‖1] =

∑
i∈[n] |Z(i)x| = ‖Zx‖1. Next,

observe that ∑
i∈[n]

Dii|Z(i)x| −
∑
i∈[n]

|Z(i)x| =
∑
p̂i<1

Dii|Z(i)x| −
∑
p̂i<1

|Z(i)x|

because when p̂i = 1, that row must be sampled and hence does not contribute to the
deviation. So, we only need to analyze the RHS of the above equation. From now on,
we only consider those i with p̂i < 1, in which case p̂i = s·ti, where ti ≥ a‖Z(i)‖1/‖Z‖1.
Let Qi be the (positive) random variable Dii|Z(i)x|; either Qi = 0 or

Qi =
|Z(i)x|
p̂i

≤ ‖Z(i)‖1‖x‖∞
p̂i

=
‖Z(i)‖1‖x‖∞

sti
≤ 1

as
‖Z‖1‖x‖∞ =

γ

s
,

where we defined γ = 1
a‖Z‖1‖x‖∞. We can also obtain a bound for

∑
p̂i<1Var[Qi]:

∑
p̂i<1

Var[Qi] =
∑
p̂i<1

Var[Qi] ≤
∑
p̂i<1

E[Q2
i ] =

∑
p̂i<1

|Z(i)x|2
p̂i

=
∑
p̂i<1

Qi|Z(i)x| ≤ γ

s
‖Zx‖1,

where, in the last inequality, we used the upper bound for Qi and we further upper
bounded by summing over all i ∈ [n]. Let Q =

∑
iQi with Qi ≤ γ; the standard

Bernstein bound states that

Pr [|Q−E[Q]| > ε] ≤ 2 exp

(
−ε2

2
∑

iVar[Qi] +
2
3εγ

)
.

Plugging in our bounds for
∑

i Var[Qi] and γ, we deduce that

Pr
[∣∣‖DZx‖1 − ‖Zx‖1

∣∣ > ε‖Zx‖1
]
≤ 2 exp

(
−ε2‖Zx‖21

2γ
s ‖Zx‖1 + 2εγ

3s ‖Zx‖1

)
.

The lemma follows after some simple algebraic manipulations.

Appendix B. Proof of Theorem 4 (fast �1 well-conditioned basis). Clearly,
U = AR−1 is in the range of A and has the same null-space; otherwise Π1A would not
preserve lengths to relative error. Therefore U is a basis for the range of A. Consider
any x ∈ R

d. The first claim of the theorem follows from the following derivations:

‖U‖1 = ‖AR−1‖1
(a)

≤ ‖Π1AR
−1‖1≤

√
r1‖Π1AR

−1‖2
(b)
=d
√
r1;

‖x‖∞≤‖x‖2
(b)
= ‖Π1AR

−1x‖2 ≤ ‖Π1AR
−1x‖1

(c)

≤κ‖AR−1x‖1 = κ‖Ux‖1.
(a) follows from the lower bound in (7) because it holds for every column of AR−1;
(b) follows because by the construction of R, Π1AR

−1 has d orthonormal columns;
finally, (c) follows from the upper bound in (7).

Finally, to obtain the corollary, if Π1 satisfying (7) is constructed using Theorem 2
with small fixed probability of failure δ, then r1 = O(d log d) and κ = O(d2+η log d).
The running time to compute R−1 is obtained by summing O(nd log d) (to compute
Π1A) and O(r1d

2) = O(d3 log d) (to obtain R−1 ∈ R
d×d).

Appendix C. Proof of Theorem 5 (Fast Cauchy �1 regression). For X ∈
R

n×q, we analyze the more general constrained �1 regression problem, minx∈C ‖Xx‖1,
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where C ⊆ R
q is a convex set, and we show that x̂ ∈ C constructed by our algorithm

is a (1 + ε)-approximation for this more general problem:

‖Xx̂‖1 ≤ (1 + ε)min
x∈C
‖Xx∗‖1.

(That is, we actually prove a somewhat stronger result than we state in Theorem 5.
This more general problem involves calling our main algorithm with b = {} (NULL)
and then incorporating the constraint that x ∈ C into the optimization problem
that is solved as a black box in the last step. Of course, if the constraint set is
not a polytope, then the last step may involve more sophisticated techniques than
linear programming.) The classic �1 regression is obtained by setting X =

[
A −b]

(q = d + 1) with constraint C = {x : eTd+1x = 1}, which corresponds to setting
xd+1 = 1.

The main ingredients in our proof follow along a line similar to those in [6, 7, 24].
We use the notation from Figure 2. From step 1, Π1 satisfies (7) with A ← X ; i.e.,
Π1 preserves the �1 norm of vectors in the range of X :

(9) ‖Xx‖1 ≤ ‖Π1Xx‖1 ≤ κ‖Xx‖1.
Let C′ = {y = R−1x : x ∈ C} be a linear transform of the constraint set. We start
with a basic lemma that allow us to use U instead of X . This lemma says that if we
can construct a sampling matrix D for U under the constraint C′ such that solving the
downsampled problem for U gives a (1 + ε)-approximation, then that same sampling
matrix works for X under the constraint C.

Lemma 11. Let U = XR−1, and let D be any diagonal sampling matrix as in Fig-
ure 2. Suppose that for any ŷ ∈ C′ that minimizes ‖DUy‖, ŷ is a (1+ε)-approximation
for the problem miny∈C′ ‖Uy‖. Let x̂ be any solution to minx∈C ‖DXx‖. Then, x̂ is a
(1 + ε)-approximation for the problem minx∈C ‖Xx‖.

Proof. Select ŷ = R−1x̂ ∈ C′. For any y ∈ C′, there is some x ∈ C with y = R−1x,
and we have

‖DUy‖1 = ‖DUR−1x‖1 = ‖DXx‖1
(a)

≥‖DXx̂‖1 = ‖DUR−1x̂‖1 = ‖DUŷ‖1,
where (a) is by the optimality of x̂. So, ŷ minimizes ‖DUy‖1, and hence for all y ∈ C′,
‖Uŷ‖1 ≤ (1 + ε)‖Uy‖1. Now consider any x ∈ C and let y = R−1x ∈ C′. Then,
‖Xx̂‖1 = ‖UR−1x̂‖1 = ‖Uŷ‖1 ≤ (1 + ε)‖Uy‖1 = (1 + ε)‖UR−1x‖1 = (1 + ε)‖Xx‖1,
completing the proof.

Remarks. We emphasize that our proof accommodates an arbitrary constraint
set C. For the classical �1 regression problem, that is of interest to us in Theorem 5,
we only need C to be specified by a single linear constraint. In what follows, we will
work with U and show that our algorithm generates a coreset that works, regardless
of the constraint set C′.

By Theorem 4, U = XR−1 is an (α, β)-conditioned basis for the range of X ,
where

α ≤ q
√
r1 and β ≤ κ.

So, ‖U‖1 ≤ q
√
r1 and for all y ∈ R

q, ‖y‖∞ ≤ κ‖Uy‖1. We next show that λi estimates
‖U(i)‖1. The following lemma is a straightforward application of a Chernoff bound to
independent half-Cauchys (see also Claims 1 and 2 and Lemmas 1 and 2 in [15]).
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Lemma 12. Let Z1, . . . , Zr2 be r2 independent Cauchys. Then,

1

2
≤ median{|Z1|, . . . , |Zr2 |} ≤

3

2

with probability at least 1− 2e−cr2, where c ≥ 2(tan−1(15 ))
2 ≥ 0.07 is a constant.

Fix i, and for j ∈ [r2] define the random variables Zj = Λij to apply Lemma 12.

Observe that for j ∈ [r2], Zj = Λij = U(i)Π
(j)
2 are independent Cauchy random

variables scaled by ‖U(i)‖1. Applying Lemma 12 with λi = medianj∈r2 |Λij |, we have

that with probability at least 1− 2e−cr2,

(10) 1
2‖U(i)‖1 ≤ λi ≤ 3

2‖U(i)‖1.
By a union bound, these inequalities hold for all i ∈ [n] with probability at least
1 − 2ne−cr2 ≥ 1 − δ for r2 ≥ 1

c log
2n
δ (since 1

c ≤ 15, our algorithm satisfies this
condition). Next we show that if the sampling matrix preserves the �1 norm of every
vector in the range of U , then we are done.

Lemma 13. Given D with n columns, suppose that for all y ∈ R
q,

(11) (1− ε)‖Uy‖1 ≤ ‖DUy‖1 ≤ (1 + ε)‖Uy‖1,
and suppose that ŷ is a solution to miny∈C′ ‖DUy‖. Then, for all y ∈ C′,

‖Uŷ‖1 ≤
(
1 + ε

1− ε

)
‖Uy‖1.

Proof. Since D preserves norms, for any y ∈ C′, we have that

‖Uŷ‖1 ≤
1

1− ε
‖DUŷ‖1

(a)

≤ 1

1− ε
‖DUy‖1 ≤

1 + ε

1− ε
‖Uy‖1.

(a) is by the optimality of ŷ.

The remainder of the proof is to show that D from our algorithm in Figure 2
satisfies the precondition of Lemma 13, namely (11). We need two ingredients. The
first is the �1-sampling lemma (Lemma 5). The second ingredient is a standard γ-net
argument.

We are going to apply Lemma 5 with Z = U . From (10) (which holds for all
i ∈ [n] with probability at least 1 − δ), λi/

∑
i∈[n] λi ≥ 1

3‖U(i)‖1/‖U‖1, and so we

can apply Lemma 5 with a = 1
3 . Since U is (α, β)-conditioned, ‖Uy‖1 ≥ 1

β‖y‖∞, and

‖U‖1 ≤ α, and so we have that with probability at least 1− δ,

(1− ε)‖Uy‖1 ≤ ‖DUy‖1 ≤ (1 + ε)‖Uy‖1,

where δ ≤ 2 exp
( −sε2

(6+2ε)αβ

)
, and αβ ≤ κq

√
r1. If y = 0, then the bounds trivially

hold; by rescaling, it thus suffices to show the bound for all y ∈ R
q with ‖y‖∞ = 1.

We now show this using a standard γ-net argument. Consider the uniform lattice on
R

q specified by T = γ
qZ

q (we assume that q/γ is a positive integer for simplicity).

Let H = {z : ‖z‖∞ ≤ 1} ∩ T be the restriction of this grid to only its points within
the hypercube of points with �∞ norm equal to 1; |H | ≤ (2qγ )q. Consider any y with

‖y‖∞ = 1, and let h be the closest grid point in H to y. Then

(12) y = h+
γ

q

q∑
i=1

ζiei,
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where 0 ≤ |ζi| ≤ 1. Observe that ei ∈ H . By a union bound, for every h ∈ H , with
probability at least 1− δ,

(1− ε)‖Uh‖1 ≤ ‖DUh‖1 ≤ (1 + ε)‖Uh‖1,

where δ ≤ 2|H | exp ( −sε2

(6+2ε)αβ

)
. We condition on this high probability event. Then,

‖DUy‖1 =

∥∥∥∥∥DUh+
γ

q

q∑
i=1

ζiDUei

∥∥∥∥∥
1

≤ ‖DUh‖1 +
γ

q

q∑
i=1

|ζi|‖DUei‖1

≤ (1 + ε)

(
‖Uh‖1 +

γ

q

q∑
i=1

‖Uei‖1
)
.

Applying U to both sides of (12) and using the triangle inequality, ‖Uh‖1 ≤ ‖Uy‖1 +
γ
q

∑q
i=1 |ζi|‖Uei‖1. We conclude that

‖DUy‖1 ≤ (1 + ε)

(
‖Uy‖1 +

2γ

q

q∑
i=1

‖Uei‖1
)
≤ (1 + ε)‖Uy‖1

(
1 +

2γαβ

q

)
,

where we used ‖Uy‖1 ≥ 1
β‖y‖∞ = 1

β (since ‖y‖∞ = 1) and
∑q

i=1 ‖Uei‖1 = ‖U‖1 ≤ α.
In an analogous way, we get the lower bound:

‖DUy‖1 =

∥∥∥∥∥DUh+
γ

q

q∑
i=1

ζiDUei

∥∥∥∥∥
1

≥ ‖DUh‖1 −
γ

q

q∑
i=1

|ζi|‖DUei‖1

≥ (1 − ε)‖Uh‖1 −
γ(1 + ε)

q

q∑
i=1

‖Uei‖1

= (1 − ε)‖Uh‖1 −
γ(1 + ε)

q
‖U‖1.

Again, applying U to (12) and using the triangle inequality gives ‖Uh‖1 ≥ ‖Uy‖1 −
γ
q ‖U‖1. Further, ‖Uy‖1 ≤ ‖U‖1‖y‖∞ ≤ α, and so we have

‖DUy‖1 ≥ (1− ε)

(
‖Uy‖1 −

2γ

q(1− ε)
‖U‖1

)
≥ (1− ε)‖Uy‖1

(
1− 4γαβ

q

)
,

where we assume ε ≤ 1
2 . Setting γ = qε/(4αβ), using (1+ ε)2 ≤ 1+3ε and (1− ε)2 ≥

1 − 3ε (for ε < 1
2 ), and rescaling ε by dividing by 3, we obtain that with probability

at least 1− δ,
(1− ε)‖Uy‖1 ≤ ‖DUy‖1 ≤ (1 + ε)‖Uy‖1,

where δ ≤ 2|H | exp ( −sε2

9(6+2ε/3)αβ

)
, and |H | ≤ (24αβε )q. Solving for s using α ≤ q

√
r1

and β ≤ κ, and simplifying a little, we require

s ≥ 63κq
√
r1

ε2

(
q log

24κq
√
r1

ε
+ log

2

δ

)
.

The total success probability is 1 − 2δ, which results from a union bound applied to
the two random processes involving Π2 and D. The theorem now follows by setting
δ = 1/dρ for a constant ρ. This concludes the proof of the correctness.
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Running time. Set δ = 1
3qρ for ρ = O(1). We compute the running time as

follows. In step 2, if we use Theorem 2 for Π1 (which succeeds with probability 1−δ),
the time to compute Π1X is O(nq log q) and r1 = O(q log q) and κ = O

(
qρ+2 log q)

)
(r1 and κ affect the running time of later steps). We need to compute an orthogonal
factorization in O(r1q

2) and then compute R−1 in O(q3) for a total run time of step
2 that is O((n + q2)q log q). In step 3, r2 = O(log n) by our choice of r2, so the
time to compute Λ = XR−1Π2 is in O(nqr2 + r2q

2) = O(nq logn + q2 logn), where
O(nq logn+ q2 logn) is the time needed to compute R−1Π2 followed by X · (R−1Π2).
Note that q2 logn ≤ nq logn.

Since computation of the median of r2 elements is in O(r2), computing all λi

takes O(nr2) = O(n log n) time. Thus, the running time for steps 1–5 is O(nq logn)+
q3 log q.

In step 6, s = O
(
ε−2qρ+

9
2 log

5
2 ( qε )

)
. It takes O(n) time to sample the diagonal

matrix D and then O(qS) time to construct DA and Db, where S is the number
of nonzero entries in D. Finally, step 8 takes φ(S, d) = Ω(dS) time to solve the �1
regression on the smaller problem with s rows in d dimensions. The total running
time is thus

O (nq logn+ φ(S, q)) ,

where E[S] ≤ s = O
(
ε−2qρ+

9
2 log

5
2 ( qε )

)
and S is very tightly concentrated around

s (via a standard Bernstein bound) because it is the sum of independent binomial

variables; specifically, with probability at least 1 − e−
3
8 s, S ≤ 2s. Hence S = O(s)

with probability 1−o(1). The probability of success is 1−3δ = 1− 1
qρ (union bound).

Since s = ε−2qρ+
9
2 poly(log q

ε ), and since standard algorithms for linear programming

give φ(S, q) = SqO(1), we have the result claimed in the theorem for q = O(d).

Appendix D. Proof of Theorem 6 (optimized Fast Cauchy �1 regres-
sion). As in the proof of Theorem 5 in Appendix C, given are X ∈ R

n×q and the
constraint set C. We condition on Π1 ∈ R

r1×n satisfying (7) and Theorem 4. So,
U = XR−1 is (q

√
r1, κ)-conditioned where r1 and κ depend on n, q, δ (this holds with

probability at least 1− δ). Thus, ‖U‖1 ≤ q
√
r1 and ‖x‖∞ ≤ κ‖Ux‖1 for any x ∈ R

q.
It follows that

q

κ
≤ ‖U‖1 ≤ q

√
r1.

(The lower bound follows from
∑

i∈[q] ‖ei‖∞ ≤
∑

i∈[q] ‖Uei‖1, where ei are standard

basis vectors.) In the proof of Theorem 5, we proved the following result. Given
weights ti, with

(13) ti ≥ a · ‖U(i)‖1
‖U‖1

∀i ∈ [n],

define leverage probabilities
�i = min (1, s · ti) ,

with

(14) s ≥ 63κq
√
r1

aε2
·
(
q log

4q
√
r1 max(q

√
r1, κ)

ε
+ log

2

δ

)
,

and construct the random diagonal sampling matrix D with Dii = 1/�i with proba-
bility �i and zero otherwise. Then, with probability at least 1− δ, solving the coreset
problem given byDX and the constraints C gives a (1+ε)/(1−ε) approximate solution
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to the full L1 regression with X and C. In the proof of Theorem 5, the purpose of Π2

was to allow us to construct weights ti quickly such that with high probability, 1
a ≤ 3.

Here, we show that our faster way to get weights results in only a poly(dε−1 logn)
factor increase in 1

a .
Recall Λ = UΠ2, where Π2 ∈ R

n×r2 is a matrix of i.i.d. standard Gaussian random
variables, and λ̂i = medianj∈[r2] |Λij |, with

p̂i = min
(
1, s · λ̂i

)
.

For j ∈ [r2], the Λij are i.i.d. zero mean Gaussians with variance ‖U(i)‖22, so |Λij | are
i.i.d half-Gaussians. We need a result from [15].

Lemma 14 (Lemma 2 of [15]). Let x1, . . . , xr be i.i.d. with continuous distribu-
tion function F and λ = mediani∈[r] xi. Then,

Pr
[
λ ≥ F−1(12 − ε)

] ≥ 1− exp(−2ε2r),
Pr
[
λ ≤ F−1(12 + ε)

] ≥ 1− exp(−2ε2r).
For the half-Gaussian with variance σ2, F (x) = 2φ(x/σ) − 1, where φ is the

standard Gaussian distribution function. Choosing ε = 1
4 and using Lemma 14, with

probability at least 1− exp(−r2/2),

λ̂i ≥ 0.3 · ‖U(i)‖2,

where we used 0.3 < φ−1(58 ). Using ‖U(i)‖2 ≥ ‖U(i)‖1/
√
q and ‖U‖1 ≥ q/κ, it follows

that

(15) λ̂i ≥ 0.3√
q
‖U(i)‖1 ≥

0.3
√
q

κ

‖U(i)‖1
‖U‖1

holds with probability at least 1 − 2 exp(−r2/2) for any particular i. If we required
these bounds to hold for all i ∈ [n], then to apply the union bound successfully, we
would need to set r2 = Ω(logn), which is too costly. We want r2 = O(log(dε−1 log n)),
so we need a more subtle argument. We choose s as in (14) with a = 0.3

√
q/κ.

Let ti = ‖U(i)‖1 and pi = min(1, s ·ti) be sampling probabilities obtained from the
exact L1 leverage scores for U . For these sampling probabilities, a in (13) is larger,
which would imply that a smaller s is needed. Nevertheless, any larger value of s will
also work, and so the same value of s with a = 0.3

√
q/κ will work with the weights ti.

Note that since Π1 is fixed, pi is not a random variable, but p̂i is a random variable
depending on Π2. Fix r2, and generate Π2 and hence λ̂i, p̂i.

We define a set of indices T ⊆ [n] as those i for which λ̂i ≥ (0.3
√
q/κ)‖U(i)‖1/‖U‖1.

These are the indices for which Π2 “worked.” Essentially, these are the large leverage
scores. The intuition behind our argument is that even though there may be some
indices for which Π2 did not work, there are enough large leverage scores for which
Π2 did work that the probability of these faulty indices coming into play is minuscule.

To make this argument, we define hybrid weights wi to equal λ̂i for i ∈ T and ti
for i �∈ T . By construction,

wi ≥ 0.3
√
q

κ

‖U(i)‖1
‖U‖1

,

and so the same s works for constructing sampling probabilities qi = min(1, s · wi).
Note that in the algorithm, we do not actually construct (or know) pi, qi; they are just
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used here as a hypothetical set of sampling probabilities which help us to analyze the
performance of the actual sampling probabilities we use, which are p̂i. The important
property about the qi is that for i ∈ T , qi = p̂i.

We call a set of rows that are sampled and rescaled according to a set of probabil-
ities a good coreset if the coreset solution from this sample is a (1+ ε)-approximation
to the full L1 regression. The sampling probabilities qi give a good coreset with prob-
ability at least 1− δ. We now define several events over three random processes: Π2,
sampling a coreset according to p̂i, and sampling a coreset according to qi. The last
two random processes depend on the outcome of Π2.

• AllBounded is the event {λ̂i ≤ C
√
logn · ‖U(i)‖2 ∀i ∈ [n]} (we will choose C

later). We show that

Pr
Π2

[AllBounded] ≥ 1− 1

n
1
2C

2−1
.

Indeed, λ̂i is the median of r2 i.i.d. zero mean Gaussians x1, . . . , xr2 with

variance ‖U(i)‖22, where

Pr
[
xi > C

√
logn‖U(i)‖2

]
= 1− φ(C

√
log n) ≤ 1/(

√
πnC2/2)

(by the properties of the Gaussian distribution). Define zi = 1 if xi >

C
√
log n and 0 otherwise. Then λ̂i > C

√
logn if and only if

∑
i∈[r2]

zi > r2/2.

We have E
[∑

i∈[r2]
zi
] ≤ r2/(

√
πnC2/2), and the result follows by a Markov

bound and a union bound over i ∈ [n].
• Let Good(q) be the event that the coresets sampled according to probabilities
qi are good.
• Let Good(p̂) be the event that the coresets sampled according to p̂i are good.
• Let BadRow be the event that either of the two coresets above contains a row
i /∈ T .

In what follows, we consider probabilities with respect to the joint distribution of Π2

and the randomness of choosing the coresets according to qi and p̂i.

Pr[Good(q)] ≤ Pr[BadRow] +Pr[Good(q)|¬BadRow](1−Pr[BadRow])

= Pr[BadRow] +Pr[Good(p̂)|¬BadRow](1−Pr[BadRow])

≤ Pr[BadRow] +Pr[Good(p̂)],

where the second step follows because conditioning on ¬BadRow, the sampling prob-
abilities p̂i and qi are identical (by construction). Thus,

Pr[Good(p̂)] ≥ Pr[Good(q)]−Pr[BadRow]

≥ 1− δ −Pr[BadRow]

because we know that the sampling probabilities qi satisfy the conditions to get a
good coreset with probability at least 1− δ. To get an upper bound on Pr[BadRow],
observe that

Pr[BadRow] ≤ Pr[¬AllBounded] + Pr[BadRow|AllBounded]
≤ 1

n
1
2C

2−1
+ Pr[BadRow|AllBounded].
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To conclude, we obtain a bound on Pr[BadRow|AllBounded]. Condition on Π2 and
that AllBounded holds. This fixes T and p̂i and also means that p̂i ≤ C

√
lognqi.

Hence,
(16)

Pr[BadRow|AllBounded] ≤
∑
i/∈T

(p̂i+qi) = (1+C
√
logn)·

∑
i/∈T

qi = (1+C
√
logn)·

∑
i/∈T

pi,

where the last equality is because qi = pi for i �∈ T . So the bound is determined by
the sum of the leverage scores over the indices for which Π2 did not work. This is the
quantification of our intuition that the algorithm will work as long as Π2 preserves
enough of the large leverage scores. We need to bound

∑
i/∈T pi, where T is a random

set of indices depending on Π2. We will use a Markov bound to bound
∑

i/∈T pi with
high probability. We have

EΠ2

[∑
i/∈T

pi

]
≥ EΠ2

[∑
i/∈T

pi | AllBounded

]
Pr[AllBounded]

≥ EΠ2

[∑
i/∈T

pi | AllBounded

]
·
(
1− 1

n
1
2C

2−1

)
.

Since Pr[i �∈ T ] ≤ exp(−r2/2),

EΠ2

[∑
i/∈T

pi

]
=
∑
i∈[n]

pi ·Pr[i �∈ T ] ≤ e−r2/2
∑
i∈[n]

pi.

But,
∑

i∈[n] pi ≤ s
∑

i∈[n] ti = s‖U‖1 ≤ sq
√
r1, where the last step follows from the

conditioning of U which is assumed. Putting all this together,

EΠ2

[∑
i/∈T

pi | AllBounded

]
≤ sq

√
r1e

−r2/2

1− n1− 1
2C

2
. ≤ 2sq

√
r1e

−r2/2,

where the last expression follows by setting C = 2, in which case 1− 1/n ≥ 1
2 . Now,

recalling ρ > 0 is given as in the theorem statement, if we set

r2 = 2 log
(
2sq
√
r1 log

2ρ+1/2 n
)
= O

(
log(dε−1 logn)

)
,

then EΠ2

[∑
i/∈T pi | AllBounded

] ≤ 1/ log2ρ+1/2 n. Applying a Markov bound and
conditioning on AllBounded, with probability at most 1/ logρ n, the bound

∑
i/∈T pi >

1/ logρ+1/2 n holds. Condition on this bad event not happening, in which case, us-
ing (16),

Pr[BadRow|AllBounded] ≤ 1 + 2
√
logn

logρ+3/2 n
= O(1/ logρ n),

where we used C = 2. Using a union bound over this bad event not happening, we
finally have that

Pr[BadRow] ≤ 1

n
+

1

logρ+1/2 n
+

1 + 2
√
logn

logρ+3/2 n
,

from which Pr[Good(p̂)] ≥ 1− δ −O(log−ρ n). This completes the proof.
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Appendix E. Proof of the fast ellipsoidal rounding theorems.

E.1. Proof of Theorem 9 (fast ellipsoidal rounding). For completeness,
we state the following lemma, which is from [25] and which we will use in the proof
of this theorem.

Lemma 15 (Todd [25]). Given an ellipsoid E = {u ∈ R
d |uTE−1u ≤ 1} where

E ∈ R
d×d is symmetric positive definite and K = {u ∈ R

d | − β(gTEg)1/2 ≤ gTu ≤
β(gTEg)1/2} for some g ∈ R

d, the minimum-volume ellipsoid that contains E ∩ K is
given by

E+ =

{
E if β ≥ d−1/2,

{u ∈ R
d |uTE−1

+ u ≤ 1} if 0 < β < d−1/2,

where

E+ = δ

(
E − σ

(Eg)(Eg)T

gTEg

)
,

δ =
d(1 − β2)

d− 1
, σ =

1− dβ2

1− β2
.

When β < d−1/2, we have

|E+|
|E| = d1/2

(
d

d− 1

)(d−1)/2

β(1− β2)(d−1)/2.

Now we proceed with the main part of the proof. We construct a sequence of
ellipsoids E1, E2, . . . , all centered at the origin, such that Ek ⊇ C and |Ek|/|Ek−1| <
e3/8/2, k = 1, 2, . . . , and thus this sequence must terminate in

log(L−d)/ log(e3/8/2) < 3.15d logL

steps. Suppose we have Ek ⊇ C centered at the origin. Determine all the extreme
points of Ek along its axes. Let these points be ±xk,i, i = 1, . . . , d, and then check
whether 1

2
√
d
xk,i ∈ C for i = 1, . . . , d. If all these points are in C, so is their convex

hull, denoted by H. Apparently, 1
2
√
d
Ek is the LJ ellipsoid of H, and hence shrinking

1
2
√
d
Ek by a factor 1√

d
makes it contained in H ⊆ C. We have 1

2dEk ⊆ C ⊆ Ek. Now

suppose that 1
2
√
d
xk,ik /∈ C for some ik and the separation oracle returns Kk = {x ∈

R
d | − 1 ≤ gTk x ≤ 1} such that C ⊆ Kk but 1

2
√
d
xk,ik /∈ Kk. Let Ek+1 be the LJ

ellipsoid of Ek ∩ Kk ⊇ C, which must be centered at the origin. Lemma 15 gives
analytic formulas of Ek+1 and |Ek+1|/|Ek|. Adopting the notation from Lemma 15, let
Ek = {x ∈ R

d |xTE−1
k x ≤ 1}, and we have

(gTk Ekgk)
1/2 =

[
gTk

(
d∑

i=1

xk,ix
T
k,i

)
gk

]1/2

≥ |gTk xk,ik | > 2
√
d.

The last inequality comes from the fact that 1
2
√
d
xk,ik /∈ Kk. Therefore,

β = (gTk Ekgk)
−1/2 <

1

2
√
d
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and
|Ek+1|
|Ek| <

1

2

(
1 +

3

4d− 4

)(d−1)/2

< e3/8/2.

Thus, our construction is valid. For each step, it takes at most d calls to the separation
oracle. Therefore, we need at most 3.15d2 logL calls to find a 2d-rounding of C.
Computing the extreme points of Ek requires an eigendecomposition, which takes
O(d3) time. Hence the total cost to find a 2d-rounding is 3.15d2 logL calls and
additional O(d4 logL) time. We note that rank-one updates can be used for computing
the eigendecomposition of Ek for efficiency. See Gu and Eisenstat [14].

E.2. Proof of Theorem 10. This is a direct consequence of Theorem 9. We
present the proof for the case p < 2. The proof for the case p > 2 is similar. Let
C = {x ∈ R

d | ‖Ax‖p ≤ 1}. For any z /∈ C, define K(z) = {x ∈ R
d | −1 ≤ g(z)Tx ≤ 1},

where g(z) is a subgradient of ‖Ax‖p at x = z. We have K(z) ⊇ C and z /∈ K(z),
which gives the separation oracle. Let A = QR0 be A’s QR factorization. We have

‖R0x‖2 = ‖Ax‖2 ≤ ‖Ax‖p ≤ n1/p−1/2‖Ax‖2
= n1/p−1/2‖R0x‖2 ∀x ∈ R

d,

which means E0 = E(0, R−1
0 ) gives an n1/p−1/2-rounding of C. Applying Theorem 9,

we can find a 2d-rounding of C in at most 3.15d2 log(n1/p−1/2) calls to the separation
oracle. Let E = E(0, E) be the ellipsoid that gives such a rounding. We have

‖y‖2 ≤ ‖AEy‖p ≤ 2d‖y‖2 ∀y ∈ R
d.

The QR factorization takes O(nd2) time. Each call to the separation oracle takes
O(nd) time. Computing the extreme points of an ellipsoid takes O(d3) time. In total,
we need O(nd3 logn) time.

Appendix F. Proof of Theorem 12. The tool we need to verify the FastLpBasis
algorithm is simply the equivalence of vector norms. We present the proof for the case
p < 2. The proof for the case p > 2 is similar. Adopt the notation from the FastLpBasis
algorithm. G is chosen such that, with a constant probability,

θ1‖Aix‖2 ≤ ‖Ãix‖2 ≤ θ2‖Aix‖2, i = 1, . . . , N,

where θ1 > 0 and θ2 > 0 are constants. Conditioning on this event, we have

(17) t1/p−1/2/θ1 · C̃ ⊆ C ⊆ 1/θ2 · C̃,
where C = {x | ‖Ax‖p ≤ 1}, because for all x ∈ R

d,

‖Ax‖pp =

N∑
i=1

‖Aix‖pp ≤ t1−p/2
N∑
i=1

‖Aix‖p2 ≤ t1−p/2/θp1 ·
N∑
i=1

‖Ãix‖p2

and

‖Ax‖pp =
N∑
i=1

‖Aix‖pp ≥
N∑
i=1

‖Aix‖p2 ≥ 1/θp2 ·
N∑
i=1

‖Ãix‖p2.

Let R0 be the R matrix from the QR decomposition of Ã, and define

E0 = {x | s1/p−1/2‖R0x‖2 ≤ 1}.
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We show that E0 gives an (Ns)1/p−1/2-rounding of C̃. For all x ∈ R
d, we have

(
N∑
i=1

‖Ãix‖p2
)1/p

≤ N1/p−1/2

(
N∑
i=1

‖Ãix‖22
)1/2

= N1/p−1/2‖R0x‖2

and (
N∑
i=1

‖Ãix‖p2
)1/p

≥ s1/2−1/p

(
N∑
i=1

‖Ãix‖pp
)1/p

= s1/2−1/p‖Ãx‖p

≥ s1/2−1/p‖Ãx‖2 = s1/2−1/p‖R0x‖2.
Hence E0 gives an (Ns)1/p−1/2-rounding of C̃. Then we compute a (2d)-rounding of C̃
and obtain the matrix R. The running time is O(Nsd3 log(Ns)) = O(nd log n) since
Ns = ns/t = n/d2. Then, by (17), we know κp(AR

−1) = O(dt1/p−1/2).

Appendix G. Proof of Theorem 3.
Upper bound. First we prove the upper bound. Let U be an �1 (d, 1)-conditioned

basis for L (see section 4.1). Therefore, ‖U‖1 ≤ d, ‖x‖∞ ≤ ‖Ux‖1 for all x ∈ R
d, and

for any y ∈ L, y = Ux for some x. Let y ∈ L; we have

‖Ry‖ = ‖RUx‖1 ≤ ‖RU‖1‖x‖∞ ≤ ‖RU‖1‖Ux‖1 = ‖RU‖1‖y‖1.
Thus, it suffices to prove an upper bound on ‖RU‖1. (RU)ij =

∑
k RikUkj is a Cauchy

scaled by γij = ‖U (j)‖. So ‖RU‖1 is a sum of r1d scaled, dependent half-Cauchys
with sum of scalings γ =

∑
i,j ‖U (j)‖ = r1‖U‖1. By Lemma 3,

Pr[‖RU‖1 > tr1‖U‖1] ≤
(log(r1d) + log t)

t
(1 + o(1)) .

It suffices to set t = O( 1p log(r1d)) for the RHS to be at least 1− δ. Since ‖U‖1 ≤ d,

with probability at least 1 − δ, ‖RU‖1 = O( r1dδ log(r1d)). Multiplying both sides by
C = 4/r1 gives the upper bound.

Lower bound. The lower bound is essentially following the proof of the lower
bound in Theorem 5 of [24], and so we only provide a sparse sketch of the proof.
Consider an arbitrary, fixed y. The product CRy is distributed as a Cauchy random
vector whose components are independent and scaled by C‖y‖1. Therefore,

‖CRy‖1 = C‖y‖1
r1∑
i=1

|Xi|,

where Xi are i.i.d. Cauchy random variables. We now apply Lemma 4 with γ =
r1C‖y‖1, β2 = r1 and setting t = 1

2 to obtain

Pr

[
‖CRy‖1 ≤

1

2
r1C‖y‖1

]
≤ exp (−r1/12) .

Since C = 4/r1, we have Pr [‖CRy‖1 ≤ 2‖y‖1] ≤ exp (−r1/12). The result now
follows by putting a γ-net Γ on L for sufficiently small γ. This argument follows
along the same line as the end of section 3 of [24].

It suffices to show the result for ‖y‖1 = 1. Consider the γ-net on L with cubes of
side γ/d. There are (2d/γ)d such cubes required to cover the hypercube ‖y‖∞ ≤ 1;



THE FAST CAUCHY TRANSFORM 807

and, for any two points y1, y2 inside the same γ/d-cube, ‖y1 − y2‖1 ≤ γ. From each
of the γ/d-cubes, select a fixed representative point which we will generically refer to
as y∗; select the representative to have ‖y∗‖1 = 1 if possible. By a union bound,

Pr

[
min
y∗ ‖CRy∗‖1/‖y∗‖1 < 2

]
≤ (2d/γ)d exp(−r1/12).

We will thus condition on the high probability event that ‖CRy∗‖1 ≥ ‖y∗‖1 for all y∗.
We will also condition on the upper bound holding (which is true with probability at
least 1 − δ). For any y ∈ L with ‖y‖1 = 1, let y∗ denote the representative point for
the cube in which y resides (by construction, ‖y∗‖1 = 1 as well). Then, ‖y − y∗‖ ≤ γ
and y − y∗ ∈ L since y, y∗ ∈ L and L is a subspace. We have

‖CRy‖1 = ‖CRy∗ + CR(y − y∗)‖1 ≥ ‖CRy∗‖1 − ‖CR(y − y∗)‖1 ≥ 2‖y∗‖1 − κ‖y − y∗‖1,

where we used the upper bound in the last inequality κ′ = 1
δ ·O(d log(r1d)). By choos-

ing γ = 1/κ′ and recalling that ‖y∗‖1 = 1, we have that ‖CRy‖1 ≥ 1, with probability
at least 1 − δ − exp(−r1/12 + d log(2dκ′)). Recall that κ′ = O(dδ log(r1d)), so, for c

large enough, by picking r1 = c · d log d
δ , we satisfy r1

12 ≥ log 1
δ + d log(2 d2

δ log(r1d)),
and so our bounds hold with probability at least 1− 2δ.

Appendix H. Proof of Lemma 9. We will need some lemmas from prior work.
The first two lemmas are on properties of a γ-net, taken directly from Lemma 4 of
[3]. Let U ∈ R

t×d be a matrix whose columns are an orthonormal basis for L; let S
be the unit sphere in R

d, and let T be the set of points in SL, the intersection of L
and S, defined by

T =

{
w : w ∈ γ√

d
Z
d, ‖w‖2 ≤ 1

}
,

where Z
d is the d-dimensional integer lattice on (the orthonormal basis for) L. The

set T is a γ-net on SL because every point in SL is at most �2-distance γ from some
point in T .

Lemma 16 (Lemma 4 of [3]). |T | ≤ ecd for c = ( 1γ + 2).

Lemma 17 (Lemma 4 of [3]). For any d× d matrix M , if for every u, v ∈ T we
have |uTMv| ≤ ε, then for every unit vector w we have |wTMw| ≤ ε

(1−γ)2 .

Note that as γ → 0, the inequality in Lemma 17 gets stronger, but the bound on
|T | in Lemma 16 gets larger.

The next lemma demonstrates that a JLP distribution preserves matrix products.

Lemma 18 (Theorem 19 of [18]). For ε ∈ (0, 12 ], let G be an s× t matrix drawn
from an MJLP distribution as given in Definition 2. Then for A,B any real matrices
with t rows and ‖A‖F = ‖B‖F = 1,

PrG[‖ATGTGB −ATB‖F > 3ε/2] < c1e
−c2sε

2

.

We now prove the first part of Lemma 9. Let M be the d × d matrix M =
UTGTGU − I, and let T be the γ-net with γ = 1

2 . By Lemma 16, |T | ≤ e4d. Let
u, v ∈ T be any two points in T , and set A = Uu, B = Uv to be two matrices
(actually vectors) with t rows. Since U has orthonormal columns, ‖A‖F = ‖B‖F = 1.
By Lemma 18, after relabeling 3ε/2→ ε,

PrG[|uTUTGTGUv − uTv| > ε] ≤ c1e
−4c2sε

2/9.
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So, applying the union bound, for every pair x, y ∈ T ,

|xTUTGGTUy − xT y| = |xTMy| ≤ ε

holds with probability at least 1− c1|T |2e−4c2sε
2/9. Let G be the s× t MJLP matrix

constructed as per Lemma 8. We will now derive a bound on s for the first result
(2-norm) to hold. For every unit norm x in L, x = Uw for unit norm w ∈ R

d. By
Lemma 17 (with γ = 1

2 ), for every unit vector w ∈ SL,

|wTUTGTGUw − ‖w‖22| ≤ 4ε.

Since wTUTGTGUw = ‖Gx‖22 and ‖w‖22 = ‖x‖22, after rescaling 4ε → ε, we have

proved that with probability at least 1− c1e
8de−c2s4ε

2/(9·16) = 1− c1e
8de−c2sε

2/36,

√
1− ε‖x‖2 ≤ ‖Gx‖2 ≤

√
1 + ε‖x‖2.

We now derive the second result (Manhattan norm), conditioning on the high
probability event that the result holds for the 2-norm as proved above. Since G is an
MJLP, we also have that with probability at least 1 − c1|T |e−c2sε

2

, for every w ∈ T
with x = Uw,

(18) c3
√
s(1− ε)‖x‖2 ≤ ‖Gx‖1 ≤ c3

√
s(1 + ε)‖x‖2.

Now consider any unit 2-norm x ∈ L; x = U(w + Δ), where w ∈ T has 2-norm at
most 1, w +Δ has unit 2-norm, and ‖Δ‖2 ≤ γ because T is a γ-net on S. Then,

‖Gx‖1 = ‖GUw +GUΔ‖1 = ‖GUw‖1 +Δ′,

where |Δ′| ≤ ‖GUΔ‖1. We can bound the first term on the RHS using (18). To
bound the second term, use the 2-norm bound as follows:

‖GUΔ‖1 ≤
√
s‖GUΔ‖2 ≤

√
s(1 + ε)‖UΔ‖2 =

√
s(1 + ε)‖Δ‖2 ≤

√
2sγ

(the last inequality is because ε ≤ 1). Thus, for every unit norm x ∈ L,

c3
√
s(1− ε)− 2γ

√
s ≤ ‖Gx‖1 ≤ c3

√
s(1 + ε) + 2γ

√
s.

Choosing γ = c3ε/2, |T | = exp
(
2d(1+ 1

c3ε
√
2
)
)
. Since c3 < (1+ε)/(1−ε) (as otherwise,

by the two properties of an MJLP, ‖Gx‖1 >
√
s‖Gx‖2 for some x, a contradiction)

and ε ≤ 1
3 , with probability at least 1− c1e

4d/c3εe−c2sε
2

,

c3
√
s(1− 2ε) ≤ ‖Gx‖1 ≤ c3

√
s(1 + 2ε).

After rescaling 2ε→ ε, the probability becomes at least 1−c1e
8d/c3εe−c2sε

2/4. Taking
a union bound over the 2-norm result and the Manhattan norm result, and using
8d ≤ 8d/c3ε, given that c3 ≤ (1+ ε)/(1− ε) and ε ≤ 1/3, we finally have that for any
unit 2-norm x, both the inequalities

(1− ε) ≤ ‖Gx‖2 ≤ (1 + ε),

c3
√
s(1− ε) ≤ ‖Gx‖1 ≤ c3

√
s(1 + ε)

hold with probability at least 1−2c1e8d/c3εe−c2sε
2/36 = 1−e−k, where the last equality
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follows by setting s = 36(k+ 8d
c3ε

+log(2c1))/c2ε
2 = O( k

ε2 +
d
ε3 ). Since the result holds

for any unit norm x, it holds for any x by scaling by ‖x‖2.
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