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Motivation

Iron Law
All numbers used in a computer shall have a fixed number of digits. Therefore, the
output of (almost) all primitive operations executed in a computer are wrong.

▶ Major concern: These roundoff errors accumulate and could be catastrophic1.
▶ Turing Award (1970) to J. H. Wilkinson for his work in linear algebraic

computations and backward error analysis.

1Anecdotally, a very promiment numerical analyst was hesitant to fly after they found out that
computers (and, therefore, roundoff errors) were involved in aircraft design and flight planning...



Motivation, cont’d

Iron Law
All numbers used in a computer shall have a fixed number of digits. Therefore, the
output of (almost) all primitive operations executed in a computer are wrong.

▶ We need to round numbers in order to be stored/represented/used by a computer.
▶ We think of this rounding process as a deficiency , since it leads to errors.



Could rounding be a blessing for 21st century computing?

Computing in the 21st century
Data Science, Machine Learning, and Artificial Intelligence dominate modern
computing.

▶ Data are noisy and highly accurate computations could result in overfitting2.
▶ Regularization is fundamental in DS/ML/AI algorithms.
▶ Rounding is a form of implicit regularization!

2. . .to irrelevancies, according to Michael W. Mahoney.



Research Topic

Rounding and the smallest singular value of a matrix
Given a matrix A ∈ Rn×d (exact representation), what happens to its smallest singular
value after rounding A to Ã ∈ Fn×d?

▶ Here F could be, for example, the set of all double, single, or half precision
numbers.



Prior knowledge

Large singular values remain unharmed, but small singular values tend to increase.

See, for example, [Stewart & Sun, 1990, pg. 266]

“...small singular values tend to increase” [under small perturbations]

and [Rump, 2009, pg. 261]

“...even an approximate inverse of an arbitrarily ill-conditioned matrix does, in
general, contain useful information. This is due to a kind of regularization by
rounding to working precision.”



Rounding as a perturbation

A straight-forward approach
▶ Model rounding error as a perturbation E

▶ Formally, Ã = A + E

▶ Use perturbation theory to get bounds

What does Weyl’s inequality reveal about the small singular values?
▶ If the largest singular value of E (“noise” due to rounding) is larger than the

smallest singular value of A, not much...

σmin(A) − ∥E∥2︸ ︷︷ ︸
trivial if ≤0

≤ σmin(A + E︸ ︷︷ ︸
Ã

)



A higher order expansion [Boutsikas, Drineas, and Ipsen SIMAX ’24]

(Building upon [G. W. Stewart LAA ’84])

▶ Partition the n × d matrices A and E
▶ (Σ1 is (d − 1) × (d − 1))

A = U

Σ1 0
0 σd

0 0

VT , E = U

E11 e12
eT

21 e22
E31 e32

VT



A higher order expansion [Boutsikas, Drineas, and Ipsen SIMAX ’24]

▶ Assume
1 Large singular values are large: σd−1 > 4∥E∥2

2 A single small singular value: σd < ∥E∥2
▶ We prove3

σd(A + E)2 ≥ (σd + e22)2 + ∥e32∥2
2 − r3 − r4

▶ r3, r4 contains terms of O(∥E∥3
2) or higher

r3 = 2eT
12 (Σ1 + E11)−T

(
e21 ET

31

)(e22 + σd

e32

)
︸ ︷︷ ︸

w

r4 = ∥w∥2
2 + 4∥E∥2

2∥(Σ1 + E11)−1(e12 + w)∥2
2

1 − 4∥E∥2
2∥∥(Σ1 + E11)−1∥2

2
3We also prove a generalized version of this result for clusters of small singular values.



Pros & Cons

Pros
▶ True lower bound (beyond second order)

▶ Assumes a small gap between σd−1, σd

▶ Numerical experiments confirm our theory

Cons
▶ The higher order terms are challenging to interpret



Pros & Cons

Pros
▶ True lower bound (beyond second order)

▶ Assumes a small gap between σd−1, σd

▶ Numerical experiments confirm our theory

Cons
▶ The higher order terms are challenging to interpret

Let’s use Randomized Algorithms, specifically Stochastic Rounding (SR).



Normalized FP numbers

FP Model
▶ Given a basis β and a precision p

x = (−1)s · m · βe−p

▶ s is the sign bit

▶ e is the exponent

▶ The significand m is an integer in

βp−1 ≤ m ≤ βp

Properties
▶ Let F be the set of normalized FP

numbers and let x ∈ R − F

▶ The two FP numbers enclosing x are
denoted by TxU, VxW

TxU VxWx

▶ The following inequality holds:

max {x − TxU, VxW − x} ≤ β1−p|x|



Deterministic vs Stochastic Rounding (SR)

Deterministic
▶ Round-to-Nearest (RN)

TxU VxWx

▶ For RN

max {x − TxU, VxW − x} ≤ 1/2β1−p|x|

Stochastic
▶ θ(x) = x − TxU

VxW − TxU
▶ SR - nearness:

TxU VxWx

1 − θ(x)
θ(x)

▶ Property: E [SR(x)] = x



Stochastic Rounding (SR)

Stochastic Rounding

▶ θ(x) = x − TxU
VxW − TxU

▶ SR - nearness:

TxU VxWx

1 − θ(x)
θ(x)

▶ Property: E [SR(x)] = x

History:
▶ Can be traced back to Forsythe 1950

▶ Also von Neumann & Goldstine 1947

▶ Recent resurgence: increasing interest
for low-precision FP arithmetic for ML
and DNNs [Gupta et al. 2015]

▶ Many patents held by (GPU) chip
designers

▶ Review: Croci et al. 2022



SR: A simple example

Why SR?
▶ Let F = {0, 1} and consider the rank one matrix

1
2

1
2

1
2

1
2...
...

1
2

1
2


RN(A)


1 1

1 1
...

...
1 1



▶ Any deterministic rounding will result to a rounded matrix Ã that is also rank one.



SR: A simple example [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

This is not the case for SR
▶ Let F = {0, 1} and consider the rank one matrix

1
2

1
2

1
2

1
2...
...

1
2

1
2


SR(A)


1 0
0 0
...

...
1 1

 = Ã

▶ We can prove that for such n × 2 matrices (with probability at least 0.997)

σmin
(
Ã
)
⪆ 1/2

√
n



Our bound [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

For simplicity, assume A ∈ [−1, 1]n×d and let Ã be the stochastically rounded A.

σmin
(
Ã
)

≥

Model
▶ A ∈n×d with n ≫ d

▶ SR to FP numbers

▶ E = Ã − A

▶ E[E] = 0

Ingredients
▶ β is the basis of our FP arithmetic
▶ p is the working precision



Our bound [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

For simplicity, assume A ∈ [−1, 1]n×d and let Ã be the stochastically rounded A.

σmin
(
Ã
)

≥ β1−p√
n
(√

ν−εn,d

)

Model
▶ A ∈n×d with n ≫ d

▶ SR to FP numbers

▶ E = Ã − A

▶ E[E] = 0

Ingredients
▶ β is the basis of our FP arithmetic
▶ p is the working precision
▶ ν measures the amount of available randomness

during the rounding process
▶ εn,d captures lower-order terms



Our bound: ν [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

For simplicity, assume A ∈ [−1, 1]n×d and let Ã be the stochastically rounded A.

σmin
(
Ã
)

≥ β1−p√
n
(√

ν−εn,d

)

Model
▶ A ∈n×d with n ≫ d

▶ SR to FP numbers

▶ E = Ã − A

▶ E[E] = 0

Understanding ν

▶ Consider a matrix with, say, two identical columns
whose entries are FPs: σmin(A) = 0.

▶ SR will not modify those columns: σmin(Ã) = 0.
▶ Intuitively: no randomness for SR to exploit.
▶ This lack of randomness is captured by ν, which,

in this case, is equal to zero.



Our bound: ν [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

For simplicity, assume A ∈ [−1, 1]n×d and let Ã be the stochastically rounded A.

σmin
(
Ã
)

≥ β1−p√
n
(√

ν−εn,d

)

Model
▶ A ∈n×d with n ≫ d

▶ SR to FP numbers

▶ E = Ã − A

▶ E[E] = 0

Understanding ν

▶ Formallya: ν ∝ min
all columns j

n∑
i=1

Var (Eij)

▶ 0 ≤ ν ≤ 1

aSkipping a normalization factor



Interpreting our bound

For simplicity, assume A ∈ [−1, 1]n×d and let Ã be the stochastically rounded A.

σmin
(
Ã
)

≥ β1−p√
n
(√

ν−εn,d

)
▶ As n grows, σmin

(
Ã
)

increases

▶ β1−p captures the parameters of FP arithmetic

▶ ν captures the amount of available stochasticity in SR(A)
▶ εn,d depends only on n, d:

→ If n is ω(d4), then lim
n→∞

εn,d = 0.
→ (hiding log factors)



Our main result: A perturbation theory bound

Main Theorem
Let A and Ã = A + E be real n × d matrices. Here E models a zero-mean random
perturbation matrix with minimal (normalized) column variance ν and max

i,j
|Eij | ≤ R.

If n ≥ 836, then with probability at least 1 − 1/nc − 2d2/n2,

σmin(Ã) ≥ R
√

n(
√

ν − εn,d),

where

εn,d ≡

√
d

n
+ 2d2

√
log n

n
+ C(log n)2/3

n1/30 ·
(

d

n

) 1
54

,

and c and C are absolute constants.



Our bound is tight [Dexter, Boutsikas, Ma, Ipsen, and Drineas ArXiv ’24]

Tightness of our bound

Let A and Ã = A + E be real n × d matrices. Here E models a zero-mean random
perturbation matrix with minimal (normalized) column variance ν and max

i,j
|Eij | ≤ R.

Our main bound is that, with high probability,

σmin(Ã) ⪆ R
√

nν.

We exhibit n × d matrices A for which SR returns the matrix Ã such that

σmin
(
Ã
)

≤
(

1 +
√

1/(d−1)

)
· R

√
nν.



Proof outline

Steps:
1 We introduce the orthogonal projector PA onto the left column space of A. This

allows us to focus on PAE.
2 Weyl’s inequality yields a lower bound on the smallest singular value of

(I − PA)E by lower bounding the smallest singular value of E and upper
bounding the largest singular value of PAE.

3 Application of a Random Matrix Theory bound from [Dumitriu & Zhu ’23] shows
that the smallest singular value of E is sufficiently large.

4 The largest singular value of the projection PAE is small, because PA projects E
on the low-dimensional subspace of dimension d.

5 Standard measure concentration bounds show that E does not concentrate in any
low-dimensional subspace.

6 Finally, we combine the bounds for the smallest singular value of E and the
largest singular value of PAE.



Experiments (1)

Our universe
▶ A ∈ [−1, 1]n×d

▶ All elements of SR(A) ∈ F{p}, 1 ≤ p ≤ 5
F{p} = {± m/10p, for all integers m = 0, 1, 2, . . . , 10p − 1︸ ︷︷ ︸

≤ p digits

} ∪ {±1}

Setting (1)
▶ σmin(A) = 0
▶ n = 104; 105; 106 and d = 10; 100; 1000
▶ For a fixed d, all A have the same singular values



Experiments (1) [recall: n × d matrix A and σmin(A) = 0]

Each entry in the tables shows the pair of values
(
σmin(Ã), R

√
nν
)

Precision p = 1

d ; n 104 106

10 (4.11, 4.08) (34.11, 32.96)

102 (4.08, 4.07) (32.76, 32.46)

103 (3.84, 4.05)a (33.26, 33.03)

aSquare-ish matrix

Precision p = 3

d ; n 104 106

10 (0.04, 0.04) (0.41, 0.41)

102 (0.04, 0.04) (0.41, 0.41)

103 (0.039, 0.04)a (0.41, 0.41)

aSquare-ish matrix



Experiments (2)

Our universe
▶ A ∈ [−1, 1]n×d

▶ All elements of SR(A) ∈ F{p}, 1 ≤ p ≤ 5
F{p} = {± m/10p, for all integers m = 0, 1, 2, . . . , 10p − 1︸ ︷︷ ︸

≤ p digits

} ∪ {±1}

Setting (2)
▶ Ah with ν ≈ 1 (high value)
▶ Al with ν ≈ 5 · 10−4 (low value)
▶ σmin(Ah) = σmin(Al) = 0
▶ Fixed n = 104 and d = 10; 100; 1000



Experiments (2) [recall: 104 × d matrix A and σmin(A) = 0]

Each entry in the tables shows the pair of values
(
σmin(Ã), R

√
nν
)
; n = 104 fixed

Precision p = 1

d ; ν (high) 1 (low) 5 · 10−4

10 (5.01, 5) (2.34, 2.31)

102 (4.95, 5) (2.27, 2.30)
a103 (4.79, 5) (2.20, 2.29)

aSquare-ish matrix

Precision p = 3

d ; ν (high) 1 (low) 5 · 10−4

10 (0.05, 0.05) (0.023, 0.023)

102 (0.05, 0.05) (0.023, 0.023)
a103 (0.047, 0.05) (0.022, 0.023)

aSquare-ish matrix



Experiments (3)

Our universe
▶ A ∈ [−1, 1]n×d

▶ All elements of SR(A) ∈ F{p}, 1 ≤ p ≤ 5
F{p} = {± m/10p, for all integers m = 0, 1, 2, . . . , 10p − 1︸ ︷︷ ︸

≤ p digits

} ∪ {±1}

Setting (3)
▶ σmin(A) = 10−2

▶ n = 104; 105; 106 and d = 10; 100; 1000
▶ For a fixed d, all A have the same singular values



Experiments (3) [recall: n × d matrix A and σmin(A) = 10−2]

Each entry in the tables shows the pair of values
(
σmin(Ã), R

√
nν
)

Precision p = 1

d ; n 104 106

10 (4.11, 4.07) (31.87, 30.85)

102 (4.07, 4.06) (34.59, 34.09)

103 (3.86, 4.05)a (33.24, 33.01)

aSquare-ish matrix

Precision p = 4

d ; n a104 b106

10 (0.01, 0.004) (0.04, 0.04)

102 (0.01, 0.004) (0.04, 0.04)

103 (0.01, 0.004) (0.04, 0.04)

an is “small”→ smaller singular value does not
increase much; bounds are tight

bn is “large”→ smaller singular increases more;
bounds are tight



Future work

Theory
▶ New Random Matrix Theory bounds for matrices whose entries are independent,

but not identically distributed random variables.
1 Can be used to prove similar bounds for square-ish matrices.
2 Can be used to remove or reduce the ϵn,d factor.

▶ Effect of stochastic rounding in downstream applicationsa.

Experiments
▶ Experimental evaluation in GPUs/IPUs that support stochastic rounding, e.g.,

GraphCore IPU.
▶ Effect of stochastic rounding in downstream applicationsa.
aFrom simple regression problems to DNN training.
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