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Abstract

Pointer analysis techniques are crucial for many software

security mitigation approaches. However, these techniques

suffer from imprecision; hence, the reported points-to sets

are a superset of the actual points-to sets that can possibly

form during program execution. To improve the precision

of pointer analysis techniques, we propose Kaleidoscope. By

using an invariant-guided optimistic (IGO) pointer analysis

approach, Kaleidoscope makes optimistic assumptions dur-

ing the pointer analysis that it later validates at runtime. If

these optimistic assumptions do not hold true at runtime,

Kaleidoscope falls back to an imprecise baseline analysis,

thus preserving soundness. We show that Kaleidoscope re-

duces the average points-to set size by 13.15× across a set of 9

applications over the current state-of-the-art pointer analysis

framework. Furthermore, we demonstrate how Kaleidoscope

can implement control flow integrity (CFI) to increase the

security of traditional CFI policies.
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1 Introduction

Applications developed in C/C++ make extensive use of code

and data pointers. Therefore, accurately resolving the tar-

gets of pointers in these applications is important for various

software security and software engineering techniques. For

example, forward-edge control flow integrity (CFI) [11] re-

quires the points-to sets of each function pointer. Software

debloating [12, 27] requires the precise callgraph of the appli-

cation, and therefore needs to resolve the targets of function
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pointers, too. Similarly, automatic privilege separation mech-

anisms [19, 35, 42] that isolate accesses to privileged data,

must resolve which data pointers point to privileged data.

These techniques, therefore, critically rely on pointer analy-

sisÐa class of static code analysis techniques that identifies

the application object targets of each pointer.

Unfortunately, pointer analysis techniques struggle to

achieve precision, especially when applied to complex sys-

tems that consist of hundreds of thousands of lines of code.

Static pointer analysis imprecision arises primarily due to

the inability to model all runtime information statically. For

example, a function accepting pointer arguments that is in-

voked frommultiple callsites with different arguments would

result in different points-to relationships depending on the

arguments passed from each calling context. An analysis

technique that does not differentiate between these differ-

ent calling contexts, therefore, results in imprecision as the

pointer arguments at these different callsites cannot be mod-

eled distinctly.

Imprecision significantly hinders the applicability of pointer

analysis. For example, imprecise pointer analysis results in

overly permissive control flow integrity (CFI) policies, thus

weakening security guarantees. Figure 1 compares the num-

ber of CFI targets for each callsite derived by the modern

SVF [10] pointer analysis framework against the number

of targets observed experimentally through runtime execu-

tion for the popular lightweight SSL library, MbedTLS [9],

when performing 1000 SSL requests for a 4KB file. While it

is impossible to ensure full coverage using execution alone,

it is indicative of the imprecision that the static analysis con-

cludes that 92% of all indirect callsites can invoke 184 out of

all 185 address-taken functions. This results in a highly per-

missive CFI policy where every indirect call-site is allowed to

invoke all of the address-taken functions in the application,

thereby reducing the CFI security effectiveness.

To improve pointer analysis precision, we propose Kaleido-

scope, a system that combines the knowledge gained during

the static analysis process with dynamic run-time informa-

tion. Unlike traditional efforts [15, 43, 49, 52, 53] that aim to

reduce the imprecision statically, we observe that by making

optimistic assumptions about the points-to sets of certain key

pointers, during the static analysis, we can significantly re-

duce the impact of static imprecision on the pointer analysis

use cases. These optimistic assumptions are then monitored
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Figure 1. Indirect callsite targets for the MbedTLS library.

at runtime, and in the unlikely event of their violation, we

fall back to a conservative, potentially imprecise analysis

that maintains soundness.

Two primary insights inform Kaleidoscope’s approach.

The first insight stems from the observation that once impre-

cision is introduced into the pointer analysis results, it has a

compounding effect, causingmore imprecision in the pointer

relationships derived subsequently. Therefore, arresting this

snowballing effect of imprecision provides a significant im-

provement in the overall precision of the analysis. For ex-

ample, imprecision in the callgraph caused by imprecisely

resolving a function pointer to point to extra functions leads

to further imprecision in points-to sets of the arguments of

all of these extra functions. If any of these arguments con-

sist of function pointers, then this increased imprecision in

these arguments would result in further imprecision in the

callgraph.

The second insight is that the process of solving pointer

constraints itself provides us with hints that indicate likely

imprecise derivations that can cause further explosion in im-

precision down the line. Using these hints, we can postulate

likely invariants (e.g., a particular p pointer can never point

to a particular object obj) that are likely to hold true during

the lifetime of the program. By assuming that these likely

invariants hold, our analysis can reduce imprecision, thus

resulting in stricter security policies (e.g., reduced authorized

targets in CFI). Clearly, the choice of likely invariants is key

for our system to be effective and practical. In particular, we

want the likely invariants to mitigate a significant amount

of imprecision and also be few to limit the runtime overhead

of monitoring them.

In order to maintain soundness guarantees, if the likely in-

variants assumed to hold during analysis are violated during

program execution, we must provide a way for the system

to recover from the violation. Thus, to preserve soundness,

Kaleidoscope adapts to the violation of the likely invariants

at runtime, without compromising soundness. To this end,

we present the notion of Invariant Guided Memory Views.

First, when the static pointer analysis algorithm encounters

a derivation that Kaleidoscope deems to be a candidate for

likely invariant, the analysis explores both pathsÐone where

the likely invariant holds, and one where it does not. Thus,

at the end of the analysis, we generate two points-to collec-

tions, one where all of the likely invariants hold, and one

where none of them hold.

Kaleidoscope uses these two points-to collections to gen-

erate different versions of the hardened instructions for the

binary, one according to the precise analysis, where all likely

invariants hold, and one according to the imprecise analy-

sis, where the likely invariants do not hold. We call these

hardened instructions, that depend on the likely invariant,

Memory Views. In the case of control flow integrity, these

hardened instructions consist of the function pointer valida-

tion checks that are inserted before each indirect function

call. We further instrument the target application to insert

monitors that observe the state of the likely invariant during

runtime at critical program points. If the execution of a par-

ticular program statement causes the likely invariant to be

violated, Kaleidoscope securely switches the memory view

to the fallback MV.

While Kaleidoscope can be applied to a variety of use-

cases, in order to illustrate the precision improvements pro-

vided by Kaleidoscope, we implement a fine-grained forward-

edge control flow integrity framework using Kaleidoscope

for 9 popular applications. Using the results of our system, we

insert CFI validation checks before each indirect call-site that

involves a function pointer. Evaluating the hardened bina-

ries with popular benchmarking tools validates our choice of

likely invariants as we observe that none of the likely invari-

ants are violated during execution. Across all 9 applications,

Kaleidoscope provides an average precision improvement of

13.15× with a performance overhead of 5.45%, thus showing

that Kaleidoscope is a practical solution for pointer analysis

precision improvement.

2 Background and Motivation

2.1 Static Pointer Analysis

To illustrate how pointer analysis works, we consider the

fragment of code snippet shown in Figure 2. The three pro-

gram statements, P1, P2, and P3 initialize and assign the

three pointers p, q, and r. The goal of pointer analysis tech-

niques is to soundly derive all potential points-to relation-

ships between all such pointers and objects in the applica-

tion. For example, in this case, the analysis would determine

that PTS(r) = o. Pointer analysis aims to derive these

points-to relationships precisely across thousands of such

constraints.

Pointer analysis consists of two phases. First, the model-

ing phase converts program statements to constraints. These

constraints are represented as a constraint graph. The nodes

of the graph are the program pointers and objects, while

the edges represent the constraints that determine how the

program statements impact the points-to sets of the point-

ers. Once the constraints directly corresponding to program
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P0: int* p, **q, *r;
P1: p = &o;
P2: q = &p;
P3: r = *q;
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Figure 2. Pointer analysis constraint graph example.

statements are captured, they are solved by iteratively ap-

plying constraint resolution rules, progressively updating

the points-to sets of each application pointer. Because appli-

cations commonly use double and triple pointers, constraint

resolution often adds new constraint edges to the constraint

graph that represent the flow of pointer values through these

multi-level pointers. Table 1 summarizes the different con-

straints and their resolution rules for Andersen’s [15] solver,

which is the basis of the state-of-the-art pointer analysis

frameworks [10].

Primitive and Derived Constraints. Pointer analysis con-

straints either (a) correspond directly to a program statement

or (b) are generated by solving an already known constraint.

For presentation purposes, we call the former primitive con-

straints and the latter derived constraints. Primitive con-

straints can be simple and correspond to a direct assignment

p = q, or can be conditional, such as p = *q or *q = p,

where the resolution is conditioned on the points-to set of q.

As depicted in Table 1, primitive constraints of type Load and

Store, which correspond to indirect load and store operations,

result in the addition of new derived Copy constraints based

on the points-to sets of the pointers involved in the indirect

access.

Figure 2 illustrates a simple sample code snippet and its

corresponding constraint graph. Constraint C1 adds the ob-

ject o to the points-to set of p. Constraint C2 adds p to the

points-to set of q. Finally when C3 is solved, it adds the

derived Copy constraint edge C4 from p to r. By solving C4,

the pointer analysis algorithm finally concludes that r can

point to o.

Thus, if imprecision causes the spurious addition of objects

to the points-to set of a double or triple pointer, it results in

the addition of spurious derived constraint edges. Although

the constraint graph in this example is relatively simple, the

constraint graph of real-world applications is significantly

more complex, often contain hundreds of thousands of con-

straint nodes and edges, and determining these spurious

derived constraint edges requires advanced techniques.

2.2 Precision Challenges in Static Pointer Analysis

Static pointer analysis is performed at compile time and

therefore, lacks runtime information. Certain information

that is easily available at runtime, such as values of offsets

added to pointers, are challenging to derive statically as

they can depend on user input. This causes imprecision in

the final points-to results. We briefly discuss four of the

common imprecision sources for C programs [46] and how

they compound, resulting in potential amplification of the

analysis imprecision.

Context Sensitivity. A context-sensitive pointer analysis

qualifies each program statement in a function with infor-

mation about the calling context. The calling-context infor-

mation is critical for precision in cases where the function

is invoked from multiple callsites, with different arguments,

thus establishing different callsite-dependent pointer rela-

tionships at each callsite. However, maintaining the calling

context information for arbitrarily deep function calls signif-

icantly reduces the scalability of the analysis. Thus, pointer

analysis clients [20, 27, 28] opt to use a context-insensitive

pointer analysis instead, thus sacrificing precision.

Field Sensitivity. A field-sensitive pointer analysis algo-

rithm distinguishes between each field of a struct object.

The ability to distinguish between different fields of a com-

plex object of struct type is critical for precision, espe-

cially if these fields contain function pointers. Without this

ability, all the pointer fields in the object must share the same

single points-to set, degrading precision further. However,

identifying individual field accesses is challenging when

fields of such a struct object are accessed using arbitrary

pointer arithmetic, such as *(p+i) = ... where i is a

variable whose value is difficult to determine statically.

Flow and Path Sensitivity. Similar to context-sensitivity, a

flow-sensitive pointer analysis qualifies each program state-

ment with its order of execution. The execution order infor-

mation allows the analysis to determine when a pointer is

being overwritten, thus allowing it to invalidate stale pointer

relationships at each program statement, thus ensuring pre-

cision. Similarly, a path-sensitive analysis qualifies each pro-

gram statement with its branch information and can distin-

guish between the pointer relationships established along the

true and false branches of if-else statements. Thus,

the lack of flow and path sensitivity causes imprecision.

The key property of these various imprecision sources is

that they often compound. Figure 3 shows a simplified exam-

ple from the popular MbedTLS SSL library. During pointer

analysis, context insensitivity first causes the ssl object to

be added to the points-to set of pointer s, which is updated

using arbitrary pointer arithmetic in a statement *(s+i)

= *(ptr+i). This causes the ssl object to become field

insensitive. The ssl object, in turn, contains the function

pointers f_send, f_recv, and f_recv_timeout. Turn-

ing the object field insensitive causes each of these function

pointers to share the same points-to set, making the anal-

ysis (wrongly) conclude that each of these function point-

ers can point to either mbedtls_net_send, mbedtls_-

net_recv, and mbedtls_net_recv_timeout. More-

over, the imprecision explosion propagates to all arguments

and return values of the corresponding indirect callsites.
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Table 1. Pointer analysis constraints and resolution rules for a field-sensitive Andersen’s algorithm [15, 43]. Pointers (e.g., p

and q) may be single-level (i.e., int*) or multi-level (e.g., int**, int***). Pts(p) represents the points-to set for the

pointer p.

Program Statement Constraint Constraint Type Resolution Rule

𝑝 = &𝑥 Addr-Of Primitive 𝑥 ∈ 𝑝𝑡𝑠 (𝑝)

𝑝 = ∗𝑞 Load Primitive ∀𝑎 ∈ 𝑝𝑡𝑠 (𝑞) , add Copy constraint 𝑝 = 𝑎

∗𝑝 = 𝑞 Store Primitive ∀𝑎 ∈ 𝑝𝑡𝑠 (𝑝) , add Copy constraint 𝑎 = 𝑞

𝑝 = 𝑞 Copy Primitive or Derived 𝑝𝑡𝑠 (𝑝) = 𝑝𝑡𝑠 (𝑝) ∪ 𝑝𝑡𝑠 (𝑞)

𝑝 = &(𝑞.𝑘) Field-Of Primitive Generate a new constraint node f for field q.k. 𝑝𝑡𝑠 (𝑝) = 𝑝𝑡𝑠 (𝑝) ∪ 𝑓

struct mbedtls_ssl_context {
 int (*f_send)(void* ctx);
 int (*f_recv)(void* ctx);
 int (*f_recv_timeout)(
               void* ctx);
};

struct mbedtls_ssl_context ssl;
(ssl->f_send)(&obj1);
(ssl->f_recv)(&obj2);
(ssl->f_recv_timeout)(&obj3);

char* s = ...; // pts(s) = {ssl,...}
*(s + i) = ...;

int mbedtls_net_send(void* ctx)

int mbedtls_net_recv(void* ctx)

Actual points-to relationships

Imprecise points-to relationships
for function arguments

Imprecise points-to relationships
for function pointers

int mbedtls_net_recv_timeout(
                    void* ctx)

Figure 3. MbedTLS code snippet showing how imprecision

compounds.

3 Invariant-guided Optimistic Analysis

Traditional points-to analysis techniques rely on static anal-

ysis to attempt to identify the points-to set of each pointer.

Unfortunately, as discussed in ğ2.2, there are fundamental

challenges that make this static-time process imprecise. This

work explores a different angle to this problem. Instead of

attempting to statically identify the points-to set of each

pointer, Kaleidoscope’s approach makes optimistic assump-

tions about the program during static analysis that it can

verify and, if necessary, correct by falling back on a con-

servative analysis during runtime. We name this approach

invariant-guided optimistic (IGO) points-to analysis.

Goals and Requirements. IGO aims to soundly reduce the

points-to set sizes, increasing the effectiveness of common

point-to analysis use cases. In security-related use cases, such

as CFI and debloating, effectiveness increases are particu-

larly important since they translate into security increases.

However, to ensure effectiveness, the IGO approach has to

satisfy two requirements. First, the analysis has to remain,

in practice, sound (i.e., during runtime no pointer can point

to an object not in the points-to set). Ensuring soundness

is important because use cases such as CFI require a sound

analysis for correctness. Second, the system must reduce

the points-to set sizes while still ensuring sufficient applica-

tion performance. The effectiveness gains may justify some

performance reduction, especially in security-sensitive uses

cases, but performance impact should be reasonable.

Insight. The key observation leveraged by IGO is that some

program properties that are hard to validate during static

time, significantly impact the points-to set sizes. Hence, tra-

ditional points-to analysis techniques assume a worst-case

scenario to ensure soundness. However, making an optimistic

assumption during static time would allow an analysis frame-

work to reduce the points-to set, as long as there is a fallback

mechanism for disproven assumptions.

Challenges. Realizing this idea requires addressing two

mains challenges:

• How to identify program properties that are (a) likely to

hold (i.e., likely invariants) and (b) significantly reduce

the points-to set size?

• How to design an efficient monitor and fall-back mech-

anism for the unlikely case that the likely invariants do

not hold?

Overview. Depending on the use case, the pointer analysis

results are used to instrument or transform the application

code. For instance, a CFI implementation will add branch

checks to the instrumented code, which dynamically blocks

unsafe jumps. Hence, the IGO fallback mechanism for dis-

proven invariants requires multiple instrumented versions

of the program, i.e., memory views, and a mechanism to

switch between them dynamically. IGO performs the points-

to analysis in three stages.❶ First, IGO performs the standard

pointer analysis and generates the memory view correspond-

ing to this analysis. We call this memory view the Fallback

Memory View. ❷ Then we perform the pointer analysis as-

suming that the selected likely invariants hold, generating

the Optimistic Memory View. ❸ Finally, IGO inserts runtime

monitors for each likely invariant that monitor violations

of the likely invariants and switch from the optimistic MV

to fallback MV. Figure 4 presents the high-level interaction

between these different phases.

Figure 5 shows how the typical pointer analysis algorithm

is modified to perform IGO pointer analysis using likely in-

variants. As discussed in ğ2.1, the analysis generates new de-

rived constraints as well as new pointer relationships during

constraint solving. Assume that the application program has
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Figure 4. Overview of Kaleidoscope.

two pointers p and q, and two objects o1 and o2. A partic-

ular iteration of the points-to solver derives the relationship

𝑜2 ∈ 𝑃𝑡𝑠 (𝑞). If the IGO analysis believes that this derivation

is likely imprecise, it simply removes this derivation from

the points-to set of q and inserts a runtime monitor that

monitors the program execution for the condition where q

= &o2. After this filtration, the pointer analysis proceeds

without further changes until the next likely invariant is

encountered.

4 Kaleidoscope Design

This section presents the design of Kaleidoscope’s pointer

analysis.We first discuss our systematic introspectionmethod

for selecting IGO likely invariants. Then, we discuss the three

types of likely invariants policies: the arbitrary pointer arith-

metic, the positive weight cycles, and the context sensitivity

policies.

4.1 Pointer Analysis Introspection

In order to understand the exact points during pointer anal-

ysis that cause an imprecision explosion, we instrumented

SVF [10], the state-of-the-art pointer analysis framework to

track all updates to the points-to sets of the various pointers

under analysis. SVF uses a standard field-sensitive, flow- and

context-insensitive Andersen’s [15] algorithm. To gain better

visibility into the sources of imprecision, we modified the

generation of derived constraint edges to record the original

primitive constraint edges that were instrumental in their

derivation, thus recording their origin information. If there

are multiple paths along which the same derived constraint

is generated, we retain the five most recent paths, which

we found to be enough for our purposes. The overhead of

recording this information is non-trivial, but because this in-

trospection is performed only to inform our choice of likely

invariants, it does not have any significant impact.

A pointer’s points-to set can be updated by solving a prim-

itive Copy or Field-Of constraint. Similarly, cycle detection

and collapse [31], an optimization technique, also updates

the points to set of the pointers in the cycle. During cycle

collapse, the points-to sets of all pointer nodes in the cycle

are merged, and the cycle is replaced by a single pointer

node. Thus, to introspect how the points-to sets of differ-

ent pointers evolve during multiple iterations of the pointer

analysis algorithm, we instrument the resolution rules and

the cycle collapse code to record the number of objects that

are added to the target pointer’s points-to set.

Our introspection framework triggers alerts when it en-

counters situations that are indicative of imprecision. In

particular, it alerts if the number of new objects added to the

points-to set of a pointer crosses a pre-configured threshold

(configured to vary between 100 and 1000 depending on the

program size). The addition of objects of different unrelated

types to the same points-to set also indicates imprecision.

Therefore, if the points-to set is updated to contain objects of

more than a preconfigured number of different types (config-

ured to vary between 10 and 50), our system also registers an

alert. If the triggering constraint edge is a derived constraint,

our introspection framework automatically backtracks from

the particular derived constraint till it reaches the primitive

constraint that resulted in the addition of the derived con-

straint. To ensure backtracking termination, we impose a

limit of five levels.

The alerts generated by this automatic introspection are

then manually analyzed to identify the pointer analysis pre-

cision bottlenecks. We performed a preliminary study using

this introspection framework on two large codebases, the

Nginx web server, and a tiny build of the Linux kernel. This

study informed our selection of likely invariant policies.

Observation. Our first observation was that a significantly

high percentage of imprecision was caused by the loss of

field sensitivity for struct objects under certain circum-

stances. Particularly, if struct objects containing function

pointers lose field sensitivity, it introduces imprecision in the

callgraph that further compounds imprecision. We further

observed that objects lose field sensitivity because of either

(a) arbitrary pointer arithmetic operations determined to op-

erate on these struct objects, or (b) collapsing of positive

weight cycles in the constraint graph.

We also observed that invocations of a small set of func-

tions from different calling contexts cause a significant loss

in precision due to context insensitivity. These functions

typically copy one of the function arguments to a field of

an object referred to by another function argument. The

next sections discuss these cases that cause field and context

sensitivity loss and how Kaleidoscope mitigates them.

4.2 Arbitrary Pointer Arithmetic

Ideally, a field-sensitive static pointer analysis would always

distinguish between individual fields of an object because

these individual fields might themselves hold pointer values.

Achieving field sensitivity is fairly trivial if the fields are

accessed by their field name, such as obj.f1, but, unfortu-

nately, other non-obvious ways to access fields complicate

this analysis.
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Most complex real-world applications extensively use

pointer arithmetic, where a pointer is used to incrementally

traverse the elements of an array of simple or complex types.

While less commonly used, it is also legal in the C language

to ignore the actual struct types and use arbitrary pointer

arithmetic, in the form *(p+i) = &k, to access individ-

ual fields of a struct object, when p is a char* or int*
pointer pointing to the base of the struct object, and i is

a variable with an arbitrary value [2, 3]. So pointer analysis

frameworks must support this programming construct even

for struct object types. However, in these cases, pointer

analysis techniques typically find it difficult to distinguish

between different fields, especially if the value of i can-

not be easily computed statically and simply turn the entire

struct object field-insensitive.

Figure 6 shows a simplified example from the Lighttpd

codebase. The function http_write_header copies ele-

ments from a char array pointed to by pointer ds->ptr to

another char array pointed to by pointer s. Now imagine

that because of imprecision, the analysis determines that

the pointer s might also point to the plugin objects mod_-

auth and mod_cgi. Without any further mitigation, the

analysis has no option but to assume that the statement

*(s+i) is accessing individual fields of the objects, mod_-

auth and mod_cgi, and must, therefore, turn these objects

field-insensitive (if it cannot determine the value of i). Be-

cause these objects contain function pointers, turning these

objects field insensitive has a cascading effect on impreci-

sion.

Key Insight. Analysis imprecision has a critical side effect

on how pointer analysis techniques handle pointer arith-

metic. The pointer analysis might imprecisely conclude that

the individual fields of a struct object obj are accessed

using arbitrary pointer arithmetic, when at runtime, the

pointer in question does not even point to obj at all. Never-

theless, because the pointer analysis algorithm has no way of

pinpointing these imprecise derivations, obj unnecessarily

has to be turned field insensitive, resulting in further preci-

sion loss. This, in turn, makes all other accesses to obj field

insensitive, including explicit field accesses (e.g., obj.f1).

We observe thatwhile it is challenging for the static pointer

analysis to determine if a points-to relationship is imprecise,

this information is easily available during program execution.

Moreover, because such field-level accesses using arbitrary

pointer arithmetic are rare, the likelihood of it happening at

runtime is very low.

Likely Invariant. In order to limit the compounding of

imprecision due to arbitrary pointer arithmetic on struct

objects, we define our first likely invariant as follows:

A pointer, to which an arbitrary offset is added or sub-

tracted, is only used to access elements of an array (consisting

of primitives or complex objects), and not fields of a struct

object.

Solve a
constraint

Determine
Likely-Invariants

Insert
Runtime Monitors

PTS(p) = {o1}
PTS(q) = {o2}

PTS(p) = {o1}
PTS(q) = {}Filter o2 ∈ Pts(q) Monitor q != &o2

IGO Analysis

Figure 5. Overview of IGO Analysis using likely invariants.

If the analysis concludes that such a pointer is used to

access individual fields of a struct object, the IGO opti-

mistic analysis considers this points-to relationship to be the

result of imprecision and ignores it. Note that because our

likely invariant is focused primarily on the imprecision intro-

duced by field insensitivity, it makes optimistic assumptions

only about these pointers not accessing individual fields of

objects. No assumptions are made about arbitrary pointer

arithmetic used to iterate over individual elements within

arrays of struct objects.

When performing the optimistic analysis, we filter all

struct type objects from the points-to sets for the pointers

operated on by arbitrary arithmetic and insert likely invari-

ants that are monitored at runtime. For example, in Figure 6,

based on the type information of the object, the optimistic

analysis filters the imprecise targets mod_auth and mod_-

cgi from the points-to set of s as these are of struct type.

This allows the optimistic MV to retain field sensitivity for

these objects, thereby ensuring higher precision as long as

the likely invariant holds.

RuntimeMonitor.Kaleidoscope instruments the pointer on

which the pointer arithmetic is performed (in this case, the

pointer s) with runtime monitors that verify that the pointer

does not point to any of the filtered objects during program

execution. Thus, in Figure 6, the runtime monitor checks

if the pointer s points to mod_auth and mod_cgi. If at

runtime, the monitor observes s to refer to mod_auth or

mod_cgi, Kaleidoscope will detect that the likely invariant

has been violated and proceed to switch to the fallback MV.

Our current implementation supports only two memory

views, the optimistic MV, where all likely invariants hold,

and the fallback MV, where none of the likely invariants

hold. We discuss the use-case specific details of memory

view switching in ğ5.

4.3 Positive Weight Cycles in the Constraint Graph

As discussed in ğ2.1, during the pointer analysis, as new

points-to relationships are discovered, new derived con-

straint edges are added to the constraint graph. Occasionally,

such derived constraint edges result in the formation of cy-

cles in the pointer constraint graphs. If such cycles consist

solely of Copy constraint edges, the points-to relationship

derivations eventually converge when all the pointers in-

volved have the same objects in their points-to sets. In fact,

using cycle detection and elimination techniques [25, 31, 45],
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struct plugin{
  void* data;
  void (*handle_uri_raw)();
  void (*handle_request)();
};
char buff[1024];
struct plugin mod_auth;
struct plugin mod_cgi;

void http_write_header(char* s,   
       struct data_string* ds) {
  MONITOR(s, [mod_auth, mod_cgi])
  *(s+i) = *((ds->ptr)+i);
}

s

struct plugin mod_auth

struct plugin mod_cgi

char buff[1024]

Runtime Monitors

Static points-to relations

Actual points-to relation

Figure 6. Likely Invariant for Arbitrary Pointer Arithmetic.

the pointer analysis technique can safely detect and collapse

these cycles into a single representative pointer node.

The PWC Challenge. A particularly insidious form of such

a cycle is the positive weight cycle [43] (PWC). A PWC is a

cycle that includes at least one Field-Of constraint edge (in

the form of q = &(p->f1)). Even though the exact field

index is known, the presence of such a Field-Of constraint

edge inside a cycle presents additional challenges. As shown

by Pearce et al. [43], if no further mitigations are in place,

this potentially leads to infinite derivations, as the points-to

sets of the pointers involved do not ever converge, repeatedly

accessing deeper and deeper nested fields of the objects in

the points-to set of p.

For example, in Figure 7, the PWC consists of C1, F1, and

C2. Imagine the heap pointer H1 points to object obj. The

constraints C1, F1, and C2will be solved repeated, accessing

deeper nested fields, obj.f2, obj.f2.f2, and so on, and

never converge. Note that if the Field-Of constraint edge

was a Copy constraint edge, the points-to sets would have

converged with all the points-to sets containing obj.

To avoid this problem, typically, pointer analysis frame-

works turn all targets of such Field-Of constraint edges inside

a PWC, into field insensitive. This allows the analysis to con-

vert the Field-Of constraint edge itself to a Copy constraint

edge, thereby converting the PWC into a simple cycle, that

can be safely collapsed into a single node. However, this ap-

proach leads to precision loss, and potentially sets the stage

for the generation of further PWCs down the line.

Key Insight. Similar to the case of arbitrary pointer arith-

metic, the pointer analysis technique is unable to determine

if a PWC is the result of actual points-to relationships that

hold at runtime or is caused purely because of imprecision.

While it is theoretically true that if such a PWC were to

actually occur at runtime, it would cause infinite derivations,

the very fact that a PWC can lead to an improbable situation

such as infinite derivations, itself indicates that the formation

of a PWC is very likely the result of imprecision.

Likely Invariant. The second likely invariant targets im-

precision resulting from the generation of PWCs, as follows:

Positive weight cycles (PWCs) in the pointer constraint

graph stem from imprecision and do not occur at runtime.

Through experimentation, we found that it was not fea-

sible to predict which derived Copy constraint edge in the

PWC was likely to be added due to imprecision. However,

we observe that turning the pointee objects of the Field-Of

constraint edges can be deferred until the PWC is actually

observed to occur at runtime. Therefore, during the opti-

mistic analysis, when Kaleidoscope observes the formation

of PWCs, it simply solves each constraint edge involved in

the PWC, but defers collapsing the PWC and turning any of

the involved objects to field insensitive. Thus, the optimistic

MV does not contain any imprecision resulting from PWCs.

Non-PWC cycles that do not contain a Field-Of edge are

collapsed and merged normally.

Figure 7 shows a simplified PWC from the LibPNG [7]

library. In the case of this PWC, heap imprecision at the

heap allocation function png_alloc causes the same heap

object H1 to be returned at both callsites, P6 and P7, even

though P6 allocates a pointer to a compression_state

object, and P7 allocates a pointer to a int primitive vari-

able. This results in the addition of the same object H1 in the

points-to sets of both s1 and q. When the Load and Store

constraint edges L1 and S1, corresponding to program state-

ments P10 and P12 are solved, this ultimately results in the

addition of derived Copy edges s1 and s2. These derived

Copy constraints along with the Field-Of edge (correspond-

ing to program statement P11) from a to b completes the

PWC.

A PWC can form at runtime only if a field address gen-

erated by a program statement such as k = &(p->f), is

reused as the base pointer to generate the address of a deeper

nested field, by a subsequent execution of the same program

statement. For example, the statement P11 would result in

a PWC only if the generated field address b is reused as the

base pointer c2 to derive the field address of a nested inner

field. Multiple such field accesses in a cycle can interact with

each other and form a PWC. Thus, the formation of PWCs

at runtime can be detected by observing the base pointers

and the field addresses generated by the field accesses in-

volved in the PWC. In the case of Figure 7, the heap contexts

represented statically by H1 will be separated at runtime.

Therefore, the PWC will not form, and the likely invariant

will continue to hold.

Runtime Monitor. Kaleidoscope inserts runtime monitors

to record both the base pointer and the field address gen-

erated by the field access instructions in the PWC. If these

runtime monitors observe a field address generated by an

field access inside a PWC, being reused as the base pointer

in the computation of a nested field address, it detects the

formation of the PWC. This, in turn, invokes the use-case

specific memory switcher to switch to the fallback MV.
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P1: typedef struct {
      int *f1; int *f2;
    } compression_state;

P2: void *png_malloc(..){
P3:   return malloc(..);
P4: } 

P5: compression_state **s1,*s2;
P5: int **q,*b;
P6: s1 = png_malloc(...);
P7: q = png_malloc(...);
P8: for (...) { 
P9:   *s1 = ... ;
P10:   s2 = *s1;
P11:   b = &s2->f2;
P12:   *q = b; 
P13: }

H1

qs1

P6: A1 P7: A2

s2

P10: L1

P11: F1
b

C2C1

Runtime Monitor P12: S1

Addr-Of constraint
Load constraint
Store constraint
Field-of constraint
Derived Copy constraint
Likely Invariant

Figure 7. Example showing how heap imprecision leads to

a positive weight cycle [43].

4.4 Context Sensitivity

Implementing full context-sensitivity requires each function

to be re-analyzed at each callsite where it is invoked. This

requires significant recomputation of the same function un-

der different calling contexts, especially in the case of nested

function calls, leading to scalability issues, ultimately pre-

venting its adoption for large codebases [24, 48].

Key Insight. Our key insight stems from the observation

that the context-insensitive analysis of only a few program

statements, in a handful of functions, results in a significant

loss of overall precision. For example, the typical case of

updating global values via pointer arguments of a function

does not cause imprecision. Only in cases where there exists

a data flow originating from a pointer argument to the value

returned by the function, will invoking the function from

different callsites with cause imprecision. This data flow can

be via an explicit return statement or by copying the input

pointer argument to another argument. The precision loss

occurs because the pointer arguments at each of the callsites

will be returned to each of the return sites. We call pointer

arguments that are part of such data flows Precision Critical

Arguments.

Therefore, instead of analyzing all instructions of all func-

tions in a context-sensitive manner, Kaleidoscope makes

optimistic assumptions about these precision critical argu-

ments, thereby allowing us to maintain significant precision

without the cost of a full context-sensitive analysis.

For example, consider the simplified code snippet from the

Libevent [5] library, shown in Figure 8. The Libevent library

provides support for handling events asynchronously. The

application first sets up one or more event bases, and then sets

up callback functions for them. The function ev_queue_-

insert stores the callback argument cb, to a field cbs of

event base argument b. The Libevent source code invokes

P1 : struct ev_base {
P2 :  int ev_count;
P3 :  struct ev_callback** cbs;
P4 : };

P5 : struct ev_base global_base;
P6 : struct ev_base evdns_base;
P7 : void INCR_EVENT_COUNT() {...}

P8 : ev_queue_insert(&global_base, cb1);
P9 : ev_queue_insert(&evdns_base, cb2);

P10: void ev_queue_insert(struct 
P11:    ev_base* b, struct ev_callback* cb){
P12:  INCR_EVENT_COUNT(...);
P13:  ...
P14:  MONITOR(b == &global_base && cb == &cb1
P15:   || b == &evdns_base && f == &cb2)
P16:  b->cbs[b->event_count++] = cb;
P17:  ...
P18:}

b cbs cb

cb@P8

cb@P9

b@P8

b@P9

global_base

evdns_base

cb1

cb2

Load constraint
Store constraint
Field-of constraint
Derived copy
constraint
Likely Invariant

Addr-Of constraint

cbs0

cbs1

Figure 8. Example showing how context insensitivity leads

to imprecision.

this function from two different callsites, to set up two dif-

ferent event bases, global_base and evdns_basewith

their respective callback functions. Due to the program state-

ment P16 being analyzed in a context-insensitive way, the

pointer analysis will resolve both global_base.cbs and

evdns_base.cbs to point to both the callback objects

cb1 and cb2. Therefore, in this case, the formal arguments

b and cb are the precision critical arguments for the function

ev_queue_insert.

Complex pointer operations involving such precision criti-

cal arguments are challenging to reason about without expen-

sive analysis. In particular, these arguments can themselves

have their addresses stored in other double or triple indi-

rection pointers, and be modified to point to other objects

via these multi-level pointer references. However, a light-

weight data flow analysis of these pointer arguments can

identify the simple patterns where a pointer argument is

either returned by the function, or copied to another pointer

argument.

Likely Invariant. In order tomitigate the imprecision caused

by the context-insensitive analysis of the precision critical

arguments, we define a third likely invariant as follows:

Precision critical arguments of a function are not updated

to point to any other object inside the called function.

Thus, in the case of the code snippet in Figure 8, Kaleido-

scope will assume that the calls to INCR_EVENT_COUNT

in statement P12 does not update the argument pointers b

or cb to point to any other objects other than the objects

they are initialized with at the callsites at P8 or P9.

During optimistic analysis, Kaleidoscope directly connects

the actual arguments at the callsites, bypassing the store or

return statements inside the function. To achieve this, in the
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constraint graph, we create new dummy nodes at each call-

site. We then connect the actual arguments, at each callsite,

via these dummy nodes. In the case of Figure 8, the actual ar-

guments at each callsite are represented by the nodes b@P8,

b@P9, cb@P8, and cb@P9. To represent the store instruc-

tion P16, we generate dummy field nodes cbs0 and cbs1

for nodes b@P8 and b@P9 respectively, and connect them

to cb@P8 and cb@P9. Then, while solving the constraint

graph, the store constraint edge corresponding to original

store statement P16 is ignored. This ensures that the pointer

relationships that are updated by the statement P16 are an-

alyzed in a context-sensitive manner.

Runtime Monitor. To observe the state of the likely in-

variants at runtime, we instrument the callsites of the target

function to record the actual arguments. The return and

store statements involving precision-critical arguments are

instrumented with runtime monitors to check if the argu-

ment pointers are modified to point to different objects than

what was recorded at the callsite. If the values are observed

to not match, it triggers a switch to the fallback MV.

5 Case Study: Control Flow Integrity

Control flow integrity (CFI) protects against control flow

hijacking attacks by ensuring that the runtime control flow

follows valid, precomputed paths, including indirect callsites.

However, imprecision in static pointer analysis makes the

generation of effective CFI policies challenging. To mitigate

this precision challenge, we use the IGO pointer analysis

to resolve the targets of the function pointers and generate

significantly tighter control flow integrity policies.

Consider the simplified example from the MbedTLS code-

base shown in Figure 9. The function mbedtls_ctr_-

drbg_reseed has an indirect call site ctx->f_entropy.

The indirect function call is instrumented with the CFI check,

which ensures that the function pointer can only refer to

precomputed valid function targets. The set of valid func-

tion targets for each function pointer is derived by the IGO

pointer analysis. Therefore, in the CFI case, a memory view

consists of the set of valid functions that a function pointer

can refer to. We use Kaleidoscope to generate both the op-

timistic MV and the fallback MV consisting of the function

pointer targets for each such indirect callsite.

When the application starts, it begins with the optimistic

MV, and the indirect callsite is permitted to invoke only

mbedtls_entropy_func. During runtime, if a likely in-

variant is violated, the memory view is switched via a secure

MV Switch operation, and the indirect callsite is now permit-

ted to invokembedtls_entropy_func,mbedtls_net_-

send, and mbedtls_net_receive. We implemented

Kaleidoscope using the LLVM 12 toolchain and SVF [10].

Ensuring MV Switch Integrity. In order to prevent an

adversary from illegally jumping into the CFI MV Switch

code and relaxing the CFI policy in place, we implement the

void mbedtls_net_send() {...}
void mbedtls_net_recv() {...}
void mbedtls_entropy_func(){...}

void mbedlts_ctr_drbg_reseed(){
 CHECK_CFI(ctx->f_entropy)
 ctx->f_entropy();
}

mbedtl_entropy_func() mbedtl_entropy_func()
mbedtls_net_send()
mbedtls_net_recv() 

Optimistic MV Fallback MV

CFI Target
Lookup

Memory View
Switcher

Figure 9. The optimistic and fallback MV for the CFI checks.

MV Switch using secure gates [51]. We first make sure that

the function responsible for switching the memory view is

blocked at all indirect callsites, in both the optimistic MV and

the fallback MV. Moreover, we push a unique 64-bit secret

value to the stack at all legitimate callsites that invoke the

Memory View Switcher to protect against control-flow hijack

via the corruption of the return address. Immediately, on

entering the Memory View Switcher function, the value on

the stack is validated against this secret value. This makes it

further challenging for the attacker to perform unauthorized

jumps into the Memory View Switcher.

Security Analysis. Kaleidoscope strengthens the traditional

CFI properties by narrowing down the set of valid jump tar-

gets through the increased analysis precision. This benefit is

dependent on Kaleidoscope preserving during run-time the

integrity of the memory view, even under attack. Kaleido-

scope ensures that corrupting a function pointer by a buffer

overflow does not cause the memory view to switch to the

fallback MV. This is because Kaleidoscope does not use likely

invariants on the targets of function pointers. Instead, it uses

likely invariants on the pointer relationships, which have

a cascading imprecision effect, eventually adding a target

function to the equivalence class of a function pointer dur-

ing static analysis. For example, a PWC might cause certain

objects to lose field sensitivity, eventually leading to the ad-

dition of a function to the set of valid targets of an indirect

callsite. In this case, the likely invariant is added on the PWC,

and the attacker must perform a series of data-only attacks

first to violate the likely invariant and create the PWC at

runtime. And only then can they mount the control flow

attack by overwriting the function pointer.

6 Implementation

We implement Kaleidoscope using the LLVM12 [4, 8] toolchain.

The Kaleidoscope IGOpointer analysis is based on the SVF [10]

framework, which applies Andersen’s pointer analysis al-

gorithm on LLVM IR bitcode. Kaleidoscope modifies SVF’s

pointer analysis algorithm to insert the likely invariants and

their monitors.
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Table 2. Evaluation Applications

Application Description LoC

MbedTLS SSL Library 73528

Libtiff Library for manipulating TIFF files 34221

Curl Web Downloader 21258

Lighttpd HTTP Web Server 77912

Memcached Key-value Store 75049

LibPNG Library for manipulating PNG files 58831

Libxml Library for manipulating XML files 97929

Wget Webpage Downloader 65490

TinyDTLS Library for Datagram Transport Layer Security 10207

Heap Type Detection Pointer Arithmetic likely invariants

for heap objects required special handling. Kaleidoscope de-

termines the type of heap objects so that they can be filtered

by the pointer arithmetic likely invariant. To determine the

type of the object created at the callsite, we extract the type

name passed to the sizeof operator at these heap allo-

cation calls. Because the sizeof operator is lowered to

constant integer values by the Clang front-end, we modi-

fied the Clang front-end to retain this type information as

metadata in the LLVM IR bitcode. We use an interprocedural

analysis to propagate the heap-type information. If the type

information for a heap allocation site cannot be determined,

then the objects allocated at that callsite are never filtered,

thus ensuring soundness.

7 Evaluation

In this section, we describe our evaluation of Kaleidoscope.

Evaluation Setup. We ran all experiments on machines

with a AMD EPYC 7402P (24 core) CPU and 128 GB of RAM.

These machines ran Ubuntu 22.04, with Linux kernel 5.15.0-

27. For server-client experiments, both machines were on

the same local network.

Applications Table 2 lists the applications used to evaluate

Kaleidoscope. In cases where the application depended on

other libraries, we used Link Time Optimization (LTO) to

generate the linked LLVM Intermediate Representation bit-

code of the application and its dependent libraries. For library

targets, such as Libtiff and Libpng, we used a representative

application that uses the library to evaluate Kaleidoscope.

7.1 Precision Improvements

Table 3 reports the average and maximum points-to set size

for each application under Kaleidoscope and the baseline

analysis. A smaller points-to set size indicates a higher de-

gree of precision. Kaleidoscope’s likely invariants results

in improved field and context sensitivity, and this causes

an improvement in precision. Across all applications, the

average points-to set size reduced by 13.15× and the max-

imum points-to set size reduced by 1.25×, demonstrating

the effectiveness of Kaleidoscope. Figure 10 presents the

box-plot distribution of the points-to set sizes of all pointer

variables in the applications. Kaleidoscope reduces both the

median points-to set size as well as the outliers, thus miti-

gating the extreme imprecision cases where certain pointer

variables have very large points-to sets. Depending on the

programming patterns used by the application, some of the

likely invariants are more impactful than others. For exam-

ple, in the case of Libtiff, the context-sensitivity and the PWC

likely invariants provide the majority of the precision im-

provements, whereas in the case of MbedTLS, all the likely

invariants must be enabled to observe a significant reduction

in the points-to set sizes.

In the case of Wget and TinyDTLS, Kaleidoscope prevents

imprecision that causes multiple pointers to share the largest

points-to set, but it does not decrease the size of the largest

points-to set. Therefore, the maximum points-to set size

does not show any improvement under Kaleidoscope, but

the average points-to set size reduces by 1.83× and 3.89×

compared to the baseline analysis, respectively.

7.2 Case Study: Control Flow Integrity

Figure 11 shows the average number of targets for indirect

callsites for each application under IGO’s optimistic analysis.

As expected, in the case of all 9 applications, Kaleidoscope

provides a lower number of indirect call-site targets, thus

ensuring a higher degree of security. All applications except

Curl, Wget, and Lighttpd show significant precision improve-

ments. In the cases of these applications, we observed that

even though Kaleidoscope identifies opportunities to make

optimistic assumptions and insert likely invariants, the pre-

cision improvement provided by these likely invariants are

eventually negated by certain programming patterns.

Lighttpd and Wget use function pointers stored in arrays

to implement callbacks. Lighttpd uses these callbacks to im-

plement a plugin architecture, while Wget uses callbacks to

implement the functionalities of the command line options.

Because our baseline analysis itself is array-index insensitive,

Kaleidoscope is forced to treat each of these function point-

ers as the same, thus losing all benefits of preserving field

sensitivity. In the case of Curl, heap allocation functions

such as malloc and calloc accessed via function point-

ers, account for the majority of the imprecision. Resolving

these function pointers itself requires complete pointer anal-

ysis, thus Kaleidoscope’s context-sensitivity likely invariants

do not sufficiently handle such patterns.

Figure 12 provides a detailed view of the distribution of the

number of indirect callsite targets. Note that the reduction

in the points-to set sizes of all pointers shown in Figure 10

does not necessarily correlate with the reduction in the indi-

rect callsite targets because imprecision can sometimes be

localized only to function pointers. Our observation shows

that the points-to sets of function pointers often converge

and typically multiple pointers end up sharing the same

points-to set, resulting in a narrow interquartile range (IQR).

As depicted by the results, Kaleidoscope reduces both the
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Figure 10. Points-to set sizes for pointers. Kd-{Ctx, PA, PWC, Ctx-PA, Ctx-PWC, PA-PWC} represent optimistic analysis with

only the respective or pair-wise likely invariants enabled. Kaleidoscope represents enabling all three likely invariants.

Table 3. Average and Maximum Points-to set size of top-level pointers.

Average Pts. Set Size

Application Baseline Kd-Ctx Kd-PA Kd-PWC Kd-Ctx-PA Kd-Ctx-PWC Kd-PA-PWC Kaleidoscope Factor

MbedTLS 304.0 304.0 297.92 299.53 297.92 299.53 297.92 6.71 45.31

Libtiff 138.37 113.13 53.59 113.13 53.59 113.13 53.59 2.91 47.55

Curl 163.94 97.26 84.71 163.94 84.71 97.26 84.71 84.71 1.94

Lighttpd 113.08 97.64 98.79 113.08 97.64 97.64 98.79 97.64 1.16

Memcached 125.3 117.31 107.4 117.31 107.4 117.31 107.4 30.61 4.09

LibPNG 17.75 17.75 17.52 17.74 17.52 17.74 17.52 1.21 14.67

Libxml 303.99 303.99 300.16 298.39 300.16 298.39 298.39 87.56 3.47

Wget 6.16 6.16 3.76 6.16 3.76 6.16 3.76 3.36 1.83

TinyDTLS 6.58 6.58 6.54 3.86 6.54 3.86 3.86 1.69 3.89

Max Pts. Set Size

Application Baseline Kd-Ctx Kd-PA Kd-PWC Kd-Ctx-PA Kd-Ctx-PWC Kd-PA-PWC Kaleidoscope Factor

MbedTLS 825 825 824 821 824 821 824 454 1.82

Libtiff 712 712 439 712 439 712 439 439 1.62

Curl 819 628 607 819 607 628 607 607 1.35

Lighttpd 827 625 627 827 625 625 627 625 1.32

Memcached 725 711 699 711 699 711 699 690 1.05

LibPNG 432 432 432 432 432 432 432 379 1.14

Libxml 938 938 935 928 935 928 928 925 1.01

Wget 397 397 397 397 397 397 397 397 1.0

TinyDTLS 183 183 183 183 183 183 183 183 1.0

median number of indirect callsite targets and also the larger

outliers.

Performance Overhead. We benchmark the CFI-hardened

applications using standard benchmarking tools. For the

MbedTLS SSL server, which is an SSL server provided by the

MbedTLS library that can serve HTTP requests over a secure

SSL connection, we use the SSL client that is provided with

the library to send 100000 requests. To benchmark Lighttpd,

we use ApacheBench [1] to request a 4KB file 10000 times.

We benchmark Memcached using the memaslap [6] tool

and make 200000 requests with a 90:10 get/set ratio [41]. We

also enabled multi-get requests. For Wget and Curl, we

downloaded a 4KB file 10000 times from a local web server.

For Libtiff, we used the tiffcrop utility to crop 4KB TIFF

images, and for Libpng, we used the pngcp tool to copy

4KB PNG images. For Libxml, we used the xmllint tool

to validate an 8KB XML file. We performed 10000 requests

to the TinyDTLS server. Each experiment was performed 10

times, and the average was reported.
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Figure 11. Average CFI targets for indirect callsites.
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Figure 12. CFI targets for indirect callsites.

Whenever possible, we use a diverse set of inputs, which

we derive via fuzzing, to increase the code coverage and en-

sure that the application is not under-exercised. We present

the details of our fuzzing setup in ğ7.3. In the case of Lighttpd

and MbedTLS, due to the limitations of the benchmarking

tools, which limit the types of requests that can be sent, we

could not incorporate all possible inputs during our eval-

uation. ApacheBench [1] does not support benchmarking

multiple URLs with different command line options. Simi-

larly, the memaslap tool does not support commands such

as stats and flush. Table 4 reports the branch and run-

time monitor coverage statistics of the inputs used in our

CFI evaluation. On average, 33.08% of all code branches

were executed. Moreover, 50.72% of all runtime monitors

were executed, demonstrating that the applications were not

under-exercised, and the reported performance overhead is

representative of the overhead of Kaleidoscope.

Figure 13 shows the runtime performance overhead of

Kaleidoscope over a CFI framework hardened by the base-

line points-to analysis. As shown, the performance overhead

of Kaleidoscope is minimal compared to the baseline, with a

maximum overhead of 9.67% observed for Memcached. The

average throughput overhead was observed to be 5.45%. This

indicates that the cost of the runtime monitor checks is low.

And indeed, the maximum number of monitor checks per-

formed at runtime is 4.78% of all memory operations (in the

case of Curl). We observe that none of the likely invariants

selected by Kaleidoscope were violated at runtime. There-

fore, the CFI policies generated using the optimistic analysis

are always in place, thereby providing higher security.
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Figure 13. Average throughput of the 9 applications.

Table 4. Branch and runtime monitor coverage for CFI eval-

uation.

Code Branches Runtime Monitors

Application Total Exec. Perc. Total Exec. Perc.

MbedTLS 36096 11810 32.72% 2172 842 38.77%

Libtiff 13853 5392 38.92% 821 671 81.73%

Curl 23752 7921 33.35% 1871 991 52.97%

Lighttpd 19784 3531 17.85% 1498 492 32.84%

Memcached 20422 5920 28.99% 1275 872 68.39%

LibPNG 16065 8810 54.84% 474 177 37.34%

Libxml 31465 5391 17.13% 1254 638 50.88%

Wget 13028 7811 59.96% 586 328 55.97%

TinyDTLS 8027 1121 13.97% 101 38 37.62%

Table 5. Branch and runtime monitor coverage for likely

invariant validation through fuzzing.

Code Branches Runtime Monitors

Application Total Exec. Perc. Total Exec. Perc.

MbedTLS 36096 20388 56.48% 2172 1289 59.35%

Libtiff 13853 6291 45.41% 821 689 83.92%

Curl 23752 8821 37.14% 1871 1269 67.82%

Lighttpd 19784 7807 39.46% 1498 876 58.48%

Memcached 20422 11749 57.53% 1275 1145 89.80%

LibPNG 16065 10326 64.28% 474 198 41.77%

Libxml 31465 6876 21.85% 1254 998 79.59%

Wget 13028 8976 68.90% 586 345 58.87%

TinyDTLS 8027 2184 27.21% 101 60 59.41%

7.3 Likely Invariant Validation through Fuzzing

To further demonstrate that the likely invariants hold under

a variety of inputs we used the AFL++ [26] fuzzer to generate

a variety of test cases and increase the code coverage. Every

application was seeded with a list of inputs covering the

popular options provided in their man page. The branch-

level coverage and the executed runtime monitor statistics

after running a 24-hour [18, 44] fuzzing session are reported

in Table 5. Across all applications, 46.47% of total branches

and 66.56% of all runtime monitors were executed and none

of the likely invariants were violated. This increases our

confidence in the selection of the likely invariants.

8 Discussion

Finer Grained Fallback Mechanisms. Finer grained fall-

back mechanisms can potentially allow Kaleidoscope to grad-

ually degrade precision as likely invariants are observed to

fail. A possible approach for such a mechanism is to pre-

generate the memory views corresponding to each likely

invariant. This would potentially lead to an increase in the

application binary size. Therefore alternatively, incremen-

tal pointer analysis techniques [38] can be used on likely-

invariant violations to update the points-to sets on the fly.

Other Use Cases. Applying Kaleidoscope to use cases

where the fallbackMV can be statically determined is straight-

forward. This includes security use cases such as bug find-

ing [29, 30, 39] and software debloating [12, 27, 28]. However,

in certain use cases, the fallback MV can depend on runtime

state whose generation itself is predicated on the fallback

MV’s pointer analysis. Such cases must be handled on a per

use-case basis to recover this runtime state. This includes

compiler optimizations which optimistically transform code

to elide the generation of certain runtime state that is later

required by the fallback MV. Systems that only use pointer

analysis to statically prove properties of the system are not

a good fit for Kaleidoscope.

Kaleidoscope can augment bug-finding and fuzzing tools

to provide more precise, optimistic points-to results. In the

case of debloating, Kaleidoscope can rely on dynamic de-

bloating mechanisms, which simply mark the optimistically
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debloated code as inaccessible [12ś14], instead of removing

them entirely. If a likely invariant is violated at runtime, the

fallback mechanism can restore the executable access to this

code.

Other Language Support. Kaleidoscope operates at the

LLVM IR level and can natively support any language that

has an LLVM frontend. Likely invariants for these languages

can be derived using our pointer introspection framework.

9 Related Work

Scalability Improvements.Andersen’s pointer analysis [15]

is the most precise class of solvers but has a cubic runtime.

Optimizations such as cycle detection [31], wave propaga-

tion [45], and partial update solving [40] use graph optimiza-

tions to improve the performance of Andersen’s analysis.

Steensgaard’s [49] pointer analysis runs in linear time but

is imprecise. Other techniques [22] attempt to reduce the

imprecision in such unification-based approaches. DEA [36]

proposed a faster technique for solving PWC cycles, but does

not improve precision.

Sensitivity Improvements. Various techniques [32, 34, 52]

have been proposed to improve the scalability of flow and

context sensitive pointer analysis algorithms. Introspective

analysis [47] uses feedback from the pointer analysis pro-

cess to fine-tune context sensitivity. Pearce et.al. [43] extend

Andersen’s analysis to support field sensitivity. CClyzer [16]

presents a structure sensitive points-to analysis. Zipper [37]

proposes a precision-guided context sensitivity for Java pro-

grams. Lu et.al. [33] present a tunable technique for object

context sensitivity in Java programs.

Selective context sensitivity techniques offer similar capa-

bilities as Kaleidoscope’s context sensitivity likely-invariant,

but because they target Java applications, they are not di-

rectly applicable to C/C++ codebases. For example, Zip-

per [37] uses the Java Class information to identify the

precision loss patterns, whereas the type information is often

obfuscated in C applications. Moreover, Kaleidoscope allows

the functions with precision critical arguments to contain

indirect function calls. Applying selective context sensitiv-

ity techniques to such functions is challenging because this

requires a context sensitive analysis for all possible targets

of such indirect callsites. Unlike Java, where the number of

targets of virtual function calls is limited by the class hier-

archy, in C/C++ codebases, each indirect callsite can have a

significantly large number of targets, each of which must be

analyzed in a context-sensitive manner, thus complicating

the analysis.

Hybrid Approaches. Various hybrid approaches which

combine other techniques with pointer analysis to improve

precision have been proposed. Past-Sensitive pointer anal-

ysis [50] uses symbolic execution to improve the precision

of pointer analysis. Similarly, Iodine [17] and Hybrid prun-

ing [21] applies dynamic profiling to derive data flow and

pointer relationships, respectively. Optimistic Hybrid Analy-

sis [23], uses predicated static analysis to accelerate dynamic

analysis.

10 Conclusion

We implemented Kaleidoscope, a system that improves pointer

analysis precision by making optimistic assumptions during

the pointer analysis that it later validates at runtime. We

showed that Kaleidoscope (a) reduces the average points-to

set size by 13.15× across a range of benchmarks and (b) en-

ables CFI implementations with significantly more restrictive

policies.
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A Artifact Appendix

A.1 Abstract

The artifact comprises the workflow for Kaleidoscope. Kalei-

doscope is based on a custom LLVM compiler and the SVF

pointer analysis framework. In this artifact, we provide the

source code and scripts to build the custom LLVM compiler,

the Kaleidoscope codebase, and scripts to compile and ana-

lyze applications using Kaleidoscope. The source code for

the custom LLVM compiler and the Kaleidoscope codebase

is publicly available on Github.

A.2 Artifact check-list (meta-information)

• Program: kaleidoscope-artifact.

• Binary: The custom LLVM 12 compiler artifacts clang,

llvm-link, opt, and the Kaleidoscope binary.

• Run-time environment: Ubuntu 22.04, Docker

• Hardware: 64 GB RAM, 300 GB hard-disk

• Output: CSV files containing the points-to sets and CFI

policies

• Howmuchdisk space required (approximately)?: ∼100GB

• How much time is needed to prepare workflow (ap-

proximately)?: 3-4 hours

• How much time is needed to complete experiments

(approximately)?: ∼3 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License

• Archived (provideDOI)?: https://zenodo.org/records/10841643

A.3 Description

We evaluated Kaleidoscope on a server machine with 24-

core AMD EPYC 7402P core, 64 GB RAM, and 1 TB hard

disk. Kaleidoscope requires a customized LLVM 12 compiler

https://zenodo.org/records/10841643
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toolchain which we provide in the Github repository.We also

provide the source code and scripts to build the applications

and libraries used to evaluate our system. We package the

scripts and its dependencies in a Docker container. Note that

the provided scripts build the Gold linker from the binu-

tils package and also update the system-wide linker to

the Gold linker. Therefore, it is recommended to use the con-

tainerized environment and not run the scripts on the host

machine.

A.3.1 How to access The artifact is available at https:

//github.com/rssys/kaleidoscope-artifacts/. The source code

for the modified LLVM 12 compiler and the Kaleidoscope

pointer analysis framework are provided asgit sub-modules

which are automatically pulled by the provided scripts.

A.3.2 Hardware dependencies The artifact evaluation

requires 64 GB RAM and ∼100GB hard disk.

A.3.3 Software dependencies The artifact evaluation

was tested on a machine running Ubuntu 22.04.

A.4 Installation

Please see the README file at https://github.com/rssys/

kaleidoscope-artifacts/blob/main/README.md for instruc-

tions on how to install the artifact.

A.5 Evaluation and expected results

The artifact evaluation will cover the following aspects that

serve as the key results of this paper: (1) the reduction in

the maximum and average points-to set sizes using the full

Kaleidoscope system (Table 3), (2) the average reduction in

the average number of CFI targets (Figure 11), and (3) the

distributions of the points-to set sizes and the numbers of

CFI targets (Figure 10, Figure 12), for sample applications.

The artifact provides the scripts to automatically run the

analysis pipeline and reproduce the results. For more details

regarding the evaluation, please refer to the README.md

file in https://github.com/rssys/kaleidoscope-artifacts/.
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