
Veil: A Protected Services Framework for Confidential Virtual
Machines

Adil Ahmad
Arizona State University

Botong Ou
Purdue University

Congyu Liu
Purdue University

Xiaokuan Zhang
George Mason University

Pedro Fonseca
Purdue University

Abstract

Confidential virtual machines (CVMs) enabled by AMD SEV
provide a protected environment for sensitive computations on an
untrusted cloud. Unfortunately, CVMs are typically deployed with
huge and vulnerable operating system kernels, exposing the CVMs
to attacks that exploit kernel vulnerabilities. Veil is a versatile
CVM framework that efficiently protects critical system services
like shielding sensitive programs, which cannot be entrusted to
the buggy kernel. Veil leverages a new hardware primitive, virtual
machine privilege levels (VMPL), to install a privileged security
monitor inside the CVM. We overcome several challenges in de-
signing Veil, including (a) creating unlimited secure domains with
a limited number of VMPLs, (b) establishing resource-efficient do-
main switches, and (c) maintaining commodity kernel backwards-
compatibility with only minor changes. Our evaluation shows that
Veil incurs no discernible performance slowdown during normal
CVM execution while incurring a modest overhead (2− 64%) when
running its protected services across real-world use cases.

CCS Concepts

• Security and privacy→ Trusted computing.

Keywords

Confidential Virtual Machines, OS design, cloud security
ACM Reference Format:

Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca.
2023. Veil: A Protected Services Framework for Confidential Virtual Ma-
chines. In 28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 4 (ASPLOS ’23), March

25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3623278.3624763

1 Introduction

AMD Secure Encrypted Virtualization (SEV) is a promising hard-
ware mechanism to ensure the confidentiality and integrity of sen-
sitive computations in cloud machines. SEV allows users to process
their sensitive data in virtual machines (VMs) that are inaccessible
to the cloud hypervisor and external devices, as well as encrypted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0394-2/23/03. . . $15.00
https://doi.org/10.1145/3623278.3624763

in physical memory. The standard industry terminology for such
VMs is confidential virtual machines (CVMs) [31, 59]. Given the pop-
ularity of VMs in the cloud, SEV has been rapidly adopted by major
cloud providers like Microsoft Azure [93] and Google Cloud [58],
which now offer CVM services to their users.

Unfortunately, a limitation of SEV is that an operating system
kernel is part of its trusted computing base (TCB). In particular,
although formally-verified kernels [71] or micro-kernels [16] can
be used in a CVM, they typically require extensive system redesign,
and formal verification is not an absolute guarantee of full system
correctness [51]. Hence, users tend to employ commodity kernels
made for convenience and compatibility, making the TCB partic-
ularly large. In fact, SEV officially only supports Linux [1], which
has more than 31 million code lines and has hundreds of discovered
vulnerabilities each year [4]. Given Linux’s monolithic design, an
attacker that leverages such vulnerabilities can steal sensitive user
information or harm computational integrity in a CVM.

The lack of trust in large monolithic operating system kernels
has driven a significant body of research to design security monitors

that guarantee critical functionality despite kernel vulnerabilities.
Unfortunately, existing monitors have undesirable trade-offs, espe-
cially for CVMs. Specifically, a common monitor design leverages
a hardware-enforced privilege layer outside a virtual machine, e.g.,
the virtual machine monitor (VMM), to transparently monitor and
control an untrusted operating system’s behavior [30, 40, 66, 77, 94].
Unfortunately, external security monitors are at odds with the fun-
damental hardware-enforced CVM guarantee, which ensures in-
tegrity and confidentiality against outside software. While software
enforcement techniques [42, 43, 45, 46] have been proposed for a
security monitor, which could be leveraged within CVMs, these
techniques still suffer from performance overhead and capabilities
limitations that hinder deployment (§2).

This paper introduces Veil, a CVM security monitor framework
that efficiently protects critical system services—from preserving
kernel code to enabling robust forensics—without trusting the ker-
nel. Veil leverages virtual machine privilege levels (VMPLs), a new
hardware isolation mechanism available in all the latest AMD Mi-
lan server CPUs [27], to create a hardware-enforced privilege layer
inside the CVM. Veil only requires minor changes to commodity
CVM kernels, none of which are related to core operating system
functionality. Finally, the framework incurs a modest slowdown
(up to 18%) when protected services are used while showing no
discernible slowdown under normal execution.

VMPLs complement x86 rings to enforce additional memory
isolation within a CVM. In particular, a VMPL (from 0 − 3) can
be assigned to a virtual CPU (VCPU) during its initialization. VC-
PUs assigned higher privilege levels (e.g., VMPL-0) can define what

https://doi.org/10.1145/3623278.3624763
https://doi.org/10.1145/3623278.3624763

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

memory region is read, written, or executed by VCPUs executing at
lower privilege levels (e.g., VMPL-3). Once initialized, a VCPU can-
not change its level, even if it can execute code in supervisor mode
(CPL-0). This allows supervisor computations (e.g., the kernel) on
such VCPUs to execute normally within their allowed regions while
still enforcing memory isolation outside those regions.

Designing a security monitor framework using VMPLs requires
addressing several challenges. First, VMPL provides a limited set of
privilege levels, which are insufficient to support all needed services.
Second, a security monitor and protected services must execute
on all VCPUs (e.g., like the kernel), but VMPL only allows a VCPU
instance to execute permanently at one privilege level. Third, in the
presence of a security monitor, the operating system must execute
at a lower privilege level where it is architecturally restricted by
the hardware to leverage critical system features.

Veil overcomes the aforementioned challenges (§5). In particu-
lar, Veil carefully uses the limited VMPLs and combines them with
traditional protection rings to enforce isolation between potentially-
unlimited services. Instead of statically partitioningVCPUs between
trusted and untrusted software, Veil replicates a single VCPU into
copies that each executes a different software layer at a specific
VMPL. Finally, Veil delegates all operating system functionality
that is architecturally-restricted at lower privilege levels to its
higher-privileged security monitor to maintain compatibility.

Veil can protect critical system services that require both confi-
dentiality and integrity (§6). In particular, we show the flexibility of
Veil by implementing three services, two of which require strong in-
tegrity guarantees to protect kernel code and system logs from cor-
ruption, while the third requires both confidentiality and integrity
to shield sensitive user computations in protected enclaves [32, 92].

We built a Veil prototype (§7) to evaluate its practicality, secu-
rity, and performance. Our prototype suggests that the CVM Linux
kernel and host hypervisor can support Veil with minor (less than
1200 lines) code changes, making it easy to adopt. The framework
and protected services required ∼4100 code lines, small enough
to be rigorously tested. We also analyzed and experimentally vali-
dated Veil’s security (§8) to show that it can successfully defend
itself against a broad class of attacks from the operating system.
Finally, we evaluated the performance of Veil and its protected
services using carefully-crafted custom benchmarks and real-world
case-studies (§9). Our evaluation results show that Veil increases
CVM boot time by less than 2 seconds, introduces a modest perfor-
mance overhead between 2% − 64% to real-world programs that
utilize a protected service, and has a negligible impact on system
performance under normal CVM execution.

2 A Security Monitor for CVMs

Convenience and backwards-compatibility typically drive the
use of commodity operating system kernels inside CVMs, resulting
in a vulnerable software TCB [4]. One way to avoid this problem
is to leverage a security monitor, a tiny software root-of-trust that
enforces security invariants (e.g., sensitive data protection). This
section describes current security monitor approaches and their
trade-offs, which guide our CVM security monitor principles.

2.1 Current Approaches and Trade-Offs

Existing approaches implement security monitors by (a) leverag-
ing a privileged hardware-enforced layer or (b) deprivileging the op-
erating system using software techniques. We call these techniques
external hardware-based enforcement and internal software-based

enforcement, respectively, and discuss them below.
External hardware-based enforcement. Several systems [38,
40, 65, 66, 94, 112] leverage the introspection and control capabili-
ties of VM monitors (VMM) to implement security monitors. For
instance, the BlackBox system [65] leverages a tiny VMM and uses
nested page tables (NPT) to restrict the operating system’s access
to a protected container’s memory. Unfortunately, VMM-based se-
curity monitors are incompatible with CVMs, which prevent VM
introspection because components outside CVM are not trusted.

In non-x86 systems, researchers have also leveraged software-
controlled privileged layers (e.g., ARM TrustZone [30, 49], RISC-V
machine mode [77]) that are both external to the VM and VMM
for security monitors. Unfortunately, in practice, these layers are
designed for machine management and are too privileged for cloud
providers to allow access to cloud users. For instance, a cloud user
that executes their security monitor in ARM TrustZone has access
to all memory regions and could leak information from other users.
While virtualization of the TrustZone layer is possible [67], it would
still require trusting the cloud provider and their system admins.
Internal software-based enforcement. A security monitor can
reside in the same hardware-enforced privilege layer as the operat-
ing system inside the CVM if the operating system is deprivileged
using compilers [42, 43, 46] or source code instrumentation [45].
The remaining paragraphs in this section explain the trade-offs of
these approaches in terms of performance and security.

Compiler approaches instrument the operating system’s code to
(a) implement bound checks on memory access operations to avoid
corruption of trusted regions and (b) enforce control-flow integrity
(CFI) to prevent unauthorized jumps to trusted regions. While these
approaches can be ubiquitously applied to any system, they unfor-
tunately incur non-negligible overheads even under normal system
execution by requiring software checks on a significant number of
memory accesses and branch instructions. For instance, the Virtual
Ghost system increases system call latency for all computations by
3.9 times on average [42] which is undesirable.

In contrast to compiler approaches, the Nested Kernel [45] manu-
ally instruments the kernel’s source code to force a security monitor
call for sensitive operations (e.g., page table changes). The integrity
of code instrumentation is ensured using binary code scanning and
the x86 write-protection feature (CR0.WP [68]).

While the Nested Kernel is faster than compiler approaches, it is
only designed to enable integrity by leveraging CR0.WP, and not
confidentiality. Hence, the Nested Kernel (in its proposed form)
cannot provide services like shielding sensitive programs from
untrusted operating systems, since such services require confi-
dentially keeping secret keys (e.g., for a secure communication
channel between an application and a remote user). In fact, even
services like system log tampering prevention that on the surface
only seem to require integrity, indirectly require confidentiality for
secure authentication [21] if the logs must be sent to remote parties
through untrusted channels (e.g., the untrusted kernel’s network

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Operating system

Confidential VM

Hypervisor

VMSAcpu0

GHCBcpu0

write

exit
read

enter
GPRegs
CRegs
CPL
vCPU-ID
VMPL

1

2 4

3

Fig. 1: Communication between a CVM and hypervisor on

non-automatic exits (e.g., I/O-related).

stack [52]). Note that the Nested Kernel system can be updated to
enable memory confidentiality (e.g., by mapping and unmapping
regions from kernel page tables which are controlled by the Nested
Kernel). However, this comes at an additional performance cost.

2.2 CVM Security Monitor Principles

Given existing security monitor approaches and their trade-
offs, we decide on two principles for our framework: (a) internal
hardware-based enforcement and (b) versatile confidentiality and

integrity protection. In particular, hardware-based enforcement has
the potential to obviate the high overhead of software mechanisms
and avoid significant kernel changes for deprivileging. However,
since CVMs only trust their protected context, the hardware-based
enforcement must result in a security monitor internal to the VM.
Additionally, a security monitor framework for CVMs should have
both confidentiality and integrity guarantees, since it increases the
versatility of protected services that the framework can support.

3 AMD SEV-SNP Background

This section describes how AMD’s latest SEV product, SEV-SNP
(Secure Nested Paging), protects CVMs and the workings of its new
hardware feature, VMPL.
CVM protection at runtime. SEV-SNP prevents several direct
and indirect attacks against CVMs from external software, includ-
ing the hypervisor and BIOS, at runtime. This is achieved during
address translation by checking the reverse map (RMP) table, which
tracks the CVM’s physical pages and their corresponding virtual
addresses [23]. Direct attacks are prevented by ensuring CVMmem-
ory cannot be read to or written from outside. Indirect attacks are
prevented by ensuring that a CVM’s page tables (controlled by the
hypervisor) remain consistent throughout the CVM’s execution.
CVM protection at exits. A CPU executing a virtual machine,
also called a virtual CPU (VCPU), must exit the virtual machine and
invoke the hypervisor at hardware interrupts and hypercalls. For
CVMs, SEV-SNP ensures that the VCPU state (e.g., general-purpose
and control registers) is protected when an exit occurs. This state is
saved in the virtual machine save area (VMSA), a per-VCPUmemory
region inside the CVM. When the VCPU resumes the CVM, its state
is restored from the protected VMSA.
CVM-hypervisor communication. The hypervisor needs a por-
tion of a VCPU’s register state to service some hypercalls (e.g.,

IO-related). Hence, SEV-SNP allows the CVM to voluntarily pro-
vide this information to the hypervisor. This is achieved using a
new instruction, VMGEXIT, and a shared memory region called the
guest-hypervisor communication block (GHCB) [25]. Prior to the
start of the communication, the CVM provides the GHCB’s loca-
tion to the hypervisor by writing this location to a model-specific
register (MSR) that can be read by the hypervisor.

Fig. 1 illustrates the communication process. Before executing a
hypercall, the CVM VCPU stores required information in its shared
GHCB (1). Then, it executes a VMGEXIT to exit to the hypervi-
sor (2). At this exit, the hardware stores the VCPU’s state in its
VMSA. The hypervisor reads the GHCB and provides the relevant
hypercall service (3). Finally, the hypervisor executes VMENTER to
resume the VCPU’s context from its stored VMSA (4).

Importantly, this new communication mechanism is only needed
for exits that require some state to be sent to the hypervisor (e.g.,
IO calls), which AMD calls non-automatic exits [23]. For other
exits (e.g., timer interrupts) where no guest state is needed, called
automatic exits, the VCPU directly exits (like a normal VMEXIT).
Virtual machine privilege levels (VMPL) This is a new privilege
isolation mechanism available in SEV-SNP. It complements the
existing computer privilege levels (CPL)—also called protection rings
in x86—and allows the CVM to enforce what memory regions are
accessible to any software running on a VCPU.

SEV-SNP provides four VMPLs, i.e., VMPL-0 to VMPL-3, where
lower numbered levels are more privileged (like CPL). When a
VCPU instance is created, its VMPL is assigned in its created VMSA
and remains constant throughout the VCPU’s lifetime. Note that
apart from the boot VCPU instance, which is always created by
the hypervisor at VMPL-0, all remaining VCPU instances (and
their VMSAs) are created by the operating system in the CVM [25].
Hence, a CVM can freely assign any VMPL to its non-boot VCPUs.

Memory access control policies for VMPLs are hierarchical and
expressive. For instance, privileged software on a VMPL-0 VCPU
can specify access permissions for all VCPUs at lower levels, while
software executing at VMPL-1 can only specify access permis-
sions for VMPL-2 and VMPL-3. Additionally, an expressive set of
permissions—read, write, user-execution, and supervisor-execution—
can be assigned or restricted at each VMPL. Permissions are tracked
in the RMP. A VMPL-0 privileged software (e.g., operating system)
can modify permissions using a new instruction, RMPADJUST.

4 Veil Overview

Built on our guiding principles (§2.2), Veil is a general, trust-
worthy security monitor framework that ensures the correct execu-
tion of critical system services in the presence of a buggy untrusted

CVM operating system. Inspired by the services enabled by prior
work [42, 43, 45, 66], we show that Veil is general enough to im-
plement three major services in CVMs: (a) ensuring kernel code
integrity, (b) protecting sensitive user computations in isolated exe-
cution contexts (commonly called enclaves [92]), and (c) preserving
system logs for forensic analysis and attack reconstruction.
4.1 Threat Model and Assumptions

We trust that the AMD processor is correctly implemented. In
particular, we trust it to correctly prevent direct access into theCVM
from the outside world (e.g., other VMs), implement protection

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

features (e.g., VMPL), and perform all necessary operations for the
remote CVM attestation protocol [47]. We follow the typical SEV
threat model and assume that a hypervisor like InkTag [66] cannot
be trusted since it is installed by untrusted cloud administrators.

Thanks to SEV remote attestation, a user can attest the load-time
correctness of an installed operating system [47]. Hence, we assume
that the attacker initially only controls all software and hardware
external to the CVM (e.g., hypervisor, host machine BIOS). How-
ever, since the operating system contains exploitable vulnerabilities,
we assume that the attacker will interact with the CVM (through
network packets or hypervisor communication) and eventually
compromise the CVM’s operating system kernel. The attacker will
use the compromised operating system and try to extract sensitive
user information provided to the CVM or harm its integrity.

SEV does not guarantee availability and neither does our system.
We also exclude data leaks through side channels [79, 89, 124, 127,
130], micro-architectural defects [34, 72, 87], and physical attacks
(e.g., memory bus snooping [76], voltage scaling [33, 97]). Finally,
we do not consider software bugs in the toolchain (e.g., CVM BIOS)
provided by AMD to create CVMs [1].

4.2 Key Observation and Challenges

Our observation is that virtualmachine privilege levels (VMPL) (§3)

can be employed to design a CVM security monitor framework based

on our principles (§2.2). In particular, if Veil executes its trusted soft-
ware (e.g., a monitor) at a higher-privileged VMPL (e.g., VMPL-0)
and the operating system at a lower-privileged VMPL (e.g., VMPL-
3), it can leverage VMPL’s protection to ensure correct execution of
trusted software. This makes Veil a hardware-enforced privilege
layer inside the CVM with the ability to leverage efficient hardware
checks. Also, VMPL protection can be enabled for both read and
write accesses, ensuring both confidentiality and integrity.

Unfortunately, leveraging VMPL for our framework introduces
several challenges as noted below:
C1: Insufficient implemented VMPLs. In theory, Veil requires
a separate VMPL to isolate each protected service or enclave, but
the limited (4) VMPLs severely limit the number of implementable
services or enclaves. A naive solution is to have a VMPL for all
trusted components and one for all operating system components.
However, this is insecure. For instance, the operating system might
create a malicious enclave to run at the VMPL of trusted software.
C2: Resource-hungry VMPL assignment. A VCPU can switch
between protection rings during execution (e.g., using SYSENTER to
switch to the operating system’s code at a system call), but itsVMPL
is statically assigned during creation (§3). Naively, all services and
sensitive user computations must all have separate VCPUs, which
is highly wasteful and severely limiting in terms of resources.
C3: Legacy kernel incompatibility. Since the kernel cannot exe-
cute at VMPL-0 anymore, it becomes architecturally-restricted for it
to perform two essential functionalities: (a) boot additional VCPUs
and (b) collaborate with the hypervisor for memory allocations [25].
Without proper care, this breaks CVM kernel compatibility.

5 Veil Framework

Veil has four components, namely the monitor (VeilMon), pro-
tected services, enclaves, and the untrusted software (collectively

Hypervisor

CPL 0

VMPL-1VMPL-0 VMPL3VMPL-2

VeilMon (§5)
Domain manager

(§5.1)
VCPU replicat.

(§5.2)
Kernel compat.

(§5.3)

Enclave
(§6.2)Application

VeilS-LOG
(§6.3)

VeilS-ENC
(§6.2)

VeilS-KCIProt.
Services (§6.1)

Operating System

Application
CPL 3

Confidential VM

DomENC

DomUNT

DomSER

DomMON

Fig. 2: An illustration of Veil’s system components with

implemented multi-factor privilege domains.

called the operating system) (Fig. 2). Veil ensures that each com-
ponent executes in a secure environment depending on their trust-
worthiness (§5.1). To avoid splitting VCPUs between different com-
ponents, Veil creates a replica of each VCPU for every compo-
nent (§5.2). Finally, Veil delegates all VMPL-0 functionality from
the kernel to VeilMon to ensure legacy kernel compatibility (§5.3).

5.1 Secure Dual-Factor Privilege Domains

Veil implements four CVM privilege domains to securely exe-
cute its trusted software. We define a privilege domain as a new
mode of execution within a VCPU formed by the combined priv-
ileges of traditional protection rings and VMPLs. The rest of this
section explains how Veil leverages domains.
DomMon (VMPL-0 +CPL-0). This is the highest privileged domain
and it is occupied by VeilMon. It allows VeilMon to execute any
user or supervisor instruction and control VMPL memory access
permissions for all domains. It is also the only domain that is af-
forded the architectural capabilities to create additional domains
within the CVM (§5.2). The next paragraphs explain how VeilMon
is securely loaded into memory and initialized in DomMon.

The memory contents (code and initial data) of VeilMon are
measured during CVM launch and sent to the remote user for veri-
fication. In particular, these contents are compiled within the CVM
boot image, a software component that initializes the CVM. During
CVM launch, a SHA-256 hash of the boot disk image is generated
and sent in a signed digest to a remote user for attestation [26]. In
the attestation digest, the CPU also reports the VMPL of the soft-
ware that requested the digest and additional data (e.g., information
to establish a Diffie-Hellman shared key). Hence, the remote user
can establish a secure communication channel with VeilMon by
requesting an attestation digest from VMPL-0 software.

Veil modifies the CVM boot process to ensure that VeilMon
executes atDomMon. In particular, under native CVM execution, the
hypervisor creates a single VCPU to set up initial boot and run the
kernel at the highestCVM privilege (i.e.,DomMon).Veil replaces the
kernel in this process with VeilMon. As needed, VeilMon creates
new domains for protected services, the kernel, and enclaves.

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

DomSer (VMPL-1 + CPL-0). Protected services execute within
this domain. Compared to DomMon, this domain restricts access
to VMPL-0 regions (where VeilMon resides) and the creation of
additional domains. VeilMon achieves the former by executing
RMPADJUST on all memory regions in this domain, while the latter
is architecturally-restricted. None of the restricted functionality is
required by the protected services, since they can rely on VeilMon.
Hence, to better adhere to the principle of least privilege, we chose
this domain for protected services. Finally, like VeilMon, protected
services are also included in the CVM boot image.
DomEnc (VMPL-2 + CPL-3). Enclaves use this domain, which is
configured for mutual protection of both enclaves and the operat-
ing system. In particular, the protected service VeilS-Enc uses the
domain’s higher VMPL to prevent the operating system from ac-
cessing enclave memory. At the same time, VeilS-Enc ensures that
enclave cannot execute supervisor (CPL-0) instructions or access
unauthorized memory regions (DomSer, DomMon, and the operat-
ing system). If an enclave can execute supervisor code, it can remap
the page table entries and access a different enclave’s pages since
all enclaves execute at DomEnc (with VMPL-2). Moreover, the oper-
ating system can protect itself from an unprivileged enclave using
traditional address space isolation and retain control of core priv-
ileged functionality (e.g., memory allocations and management).
We provide more details about enclaves in §6.2.
Domunt (VMPL-3 + CPL-0/3). Finally, the untrusted domain is
used by the operating system and all its created processes. Execut-
ing at the least-privileged VMPL, the operating system is restricted
from accessing memory regions of higher VMPL software. Specifi-
cally, VeilMon executes RMPADJUST to remove access to all sensi-
tive memory and states from Domunt. These permissions cannot be
changed by the operating system: if it calls RMPADJUST for pages that
are restricted in Domunt, the CPU raises a nested page fault (#NPF)
which leads to a system halt [25]. Additionally, at Domunt, the
kernel cannot execute a few architectural features (§5.3). However,
they are only required during initialization and can be mediated
by VeilMon; hence, the kernel’s execution in Domunt results in a
typically negligible overhead (§9.1).

5.2 Replicated VCPUs for Domain Switch

Instead of resource-hungry static partitioning of VCPUs between
domains (§4.2), Veil creates replicas of every VCPU and assigns
them to different domains for efficient utilization. Static partitioning
wastes VCPU resources since a VCPU instance can only securely
execute one domain due to permanent VMPL assignment during
initialization (§3). For instance, if a VCPU initialized at DomMon

directly transitions into a lower-privileged software (e.g., kernel),
the software will gain all privileges of the security monitor. Replica-
tion ensures that the same VCPU can context switch to a different
software by transitioning to a VCPU instance initialized at the soft-
ware’s domain. As we explain in the next paragraphs, this switch
is completed using the hypervisor, and communication between
domains is through shared memory.
Per-domain VCPU replication. VeilMon follows four steps to
create a copy of a VCPU instance and assign it to a different do-
main. First, it allocates a new VMSA with the same VCPU-ID and
target domain VMPL. Second, for DomSer and DomEnc, it initializes

important architectural structures (e.g., stack, page tables, global
and interrupt descriptor tables). This is not needed for the Domunt,
since the operating system kernel automatically initializes these
structures. Third, VeilMon sets addresses for initialized structures
(e.g., location of the page tables) and the correct software entry
point (rip) in the VMSA. Finally, VeilMon executes a hypercall
(VMGEXIT) to ask the hypervisor to execute the new domain.
Inter-domain communication blocks (IDCBs). These are shared
memory regions used for bi-directional domain communication.
For any two domains, IDCBs are allocated in the less privileged
domain’s memory to ensure all parties can access it. For instance,
IDCBs between the operating system and VeilMon are allocated
in a reserved part of the kernel’s memory. Additionally, IDCBs are
assigned at a per-VCPU granularity to avoid contention.
Hypervisor-relayed domain switch. Switching a domain re-
quires exiting the VCPU context and re-entering using a different
domain’s VMSA; hence, it must be performed with the hypervisor’s
help. Fig. 3 shows inter-domain communication between VeilMon
and the operating system. In particular, the operating system first
transcribes its required service from VeilMon in the IDCB (1).
Then, the operating system writes a message to the hypervisor in
GHCB (2) asking for a domain switch to DomMon. It exits to the
hypervisor using VMGEXIT (3) and allows the hypervisor to process
the message (4). The hypervisor resumes theVCPU (with VMENTER)
but it uses DomMon’s VMSA (5). Hence, VeilMon executes (on
the same VCPU), reads the message in IDCB, and processes the
operating system’s request (6).
5.3 Privileged Functionality Delegation

Since the operating system kernel executes at Domunt, it be-
comes architecturally-infeasible for it to perform two functional-
ities: (a) boot VCPUs during initial system boot or hotplugging
scenarios and (b) accept pages from the hypervisor or change the
current page state. Hence, Veil delegates these functionalities to
VeilMon, which checks for correctness.
VCPU boot delegation. VCPUs can be hot-plugged into a CVM
at any time. Like domain creation, this process requires VMPL-0
software to create a new VMSA (using RMPADJUST) and start the
VCPU’s execution through a hypercall. We modify the kernel to
handle initialization of the required VCPU state, but perform a
domain switch to VeilMon for VMSA creation. VeilMon generates
the VMSA and boots the VCPU at Domunt (VMPL-3). For every new
hotplugged VCPU, Veil also creates replicas of the VCPU instance
to execute trusted domains (e.g., DomSer) (§5.2).
Page state change delegation. A CVM can receive additional
memory pages from the hypervisor and share some of its pages
with the hypervisor (e.g., to use as a software bounce buffer for
device I/O). However, before a page state occurs, the CVM must
execute PVALIDATE on that page. We modify the kernel to redirect
all PVALIDATE calls to VeilMon, which checks that these calls are
not made for trusted memory regions, then executes them.

6 Veil Protected Services

Veil ensures the correct execution of system services in the
presence of an untrusted CVM operating system. Any service can
leverage such protection usingVeil. We implemented three services
to showcase different applications of Veil.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

 Operating system
 Confidential VM

 Hypervisor

request switch

exit to HV

read
request

1

3
2

4

VeilMon

IDCBOS-Mon

write message

VMSAVeilMon-cpu0VMSAOS-cpu0

5
restore

VeilMon

 read message
6

OS-GHCBcpu0

Fig. 3: An illustration of inter-domain communication be-

tween the operating system and VeilMon.

6.1 VeilS-Kci: Kernel Code Integrity

Kernel code injection allows attackers to arbitrarily modify the
kernel. Hence, operating systems likeWindows [94] and Samsung’s
Android OS [30] use an external privileged security monitor (e.g.,
at the VMM [111]) to enforce kernel code integrity—only approved
kernel code executes inCPL-0. Fortunately, even though external se-
curity monitors are incompatible with CVMs (§2), Veil can enforce
kernel code integrity using a protected service, VeilS-Kci.
Kernel memory W⊕X protection. VeilS-Kci ensures that the
write-or-execute (W⊕X) semantic is upheld for kernel memory re-
gions at Domunt using VMPL. Hence, even if the attacker tricks the
kernel into disabling its own prevention measures (e.g., by using a
write gadget to unset the Not-eXecutable bit of a page table entry),
they still cannot run malicious code in supervisor mode. VeilS-
Kci achieves W⊕X by executing RMPADJUST and disabling (a) write
permissions on all kernel code pages and (b) supervisor execution
permissions from all kernel data pages.
Module signature verification and loading. Operating systems
are designed to execute signed loadable kernel modules (e.g., addi-
tional device drivers) at runtime. VeilS-Kci securely supports this
functionality in CVMs. A naive implementation would be for VeilS-
Kci to only check signature integrity of a kernel module. This is
insecure because it results in a classical time-of-check-to-time-of-use

(TOCTOU) vulnerability. In particular, an attacker that has gained
root privilege can modify module contents after the signature is
verified. Hence, except for memory allocation which is left to the
operating system, VeilS-Kci performs the remaining module ini-
tialization steps. This includes verifying the signature on a kernel
module, loading the module in memory, relocating symbols using
a protected symbol table, and write-protecting the prepared text
region (by executing RMPADJUST).

6.2 VeilS-Enc: Shielded Program Execution

CVMs run sensitive computations containing user’s personal
information. We designed the VeilS-Enc service to provide addi-
tional protection to such sensitive computations from an untrusted

CVM operating system. This approach creates a nested trusted exe-
cution environment for sensitive computations inside the CVM that
is protected from the hypervisor and operating system.

VeilS-Enc shields sensitive computations through the in-process
isolation model, which has been particularly successful in the cloud
given the wide availability of Intel’s Software Guard eXtensions
(SGX) [92]. This model allows an application to create a protected
context (or an enclave) inside its address space, which is inaccessible
to all software outside the enclave. All sensitive code and data
are stored in the enclave’s memory. The enclave has well-defined
protected entry points (e.g., starting functions), and it must exit to
the untrusted application to execute code outside its context (e.g.,
on system calls and interrupts). VeilS-Enc’s provided design and
security abstractions are functionally-equivalent to SGX’s (as we
discuss in the remaining paragraphs of the section and §10).
Enclave initialization andmeasurement. The operating system
lays out the initial memory regions of the enclave. Then, VeilS-Enc
protects the enclave region from further direct modifications by
the operating system and measures the region’s initial state. This
measurement is provided to the remote user for enclave attestation.

The program to be shielded inside an enclave is provided as a self-
contained binary (e.g., with its own C library) with no outside calls.
Using IOCTL to a kernel module (§7), the process asks the operating
system to install the binary within an enclave. The operating system
copies the binary into memory, relocates its symbols, and initializes
other needed memory regions (e.g., stack). After installation, the
operating system invokes VeilS-Enc to finalize the enclave.

VeilS-Enc ensures the operating system cannot access the en-
clave’s memory or change its layout post-installation. In particular,
VeilS-Enc asks VeilMon to create an enclave domain (DomEnc

in §5.1) and revoke all permissions from enclave regions at Domunt

(using RMPADJUST). VeilS-Enc also clones the user process’s page
tables into its protected memory and performs several initialization
scans (next paragraph). An enclave uses these protected page tables
during execution, ensuring its initial layout is preserved.

VeilS-Enc ensures two invariants are satisfied while scanning
page tables during initialization. First, there should be a one-to-one
mapping between virtual and physical pages. This avoids malicious
remapping from the operating system and simplifies enclave mea-
surement for remote attestation. Second, each enclave’s allocated
set of physical pages should be disjoint. Since all enclaves execute at
DomEnc, a common physical page will allow a malicious enclave to
steal another enclave’s contents. If either invariant is not satisfied,
VeilS-Enc terminates the enclave initialization process.

After protecting enclave memory and layout, Veil creates a
measurement of this region and reports it to a remote user. This
measurement is a SHA-256 cryptographic hash like other enclave
systems [77, 92] and it is derived from both page contents and
metadata (e.g., permissions). The measurement is sent to the user
through VeilMon’s secure user communication channel which is
established after the SEV remote attestation process (§5.2).
User-mapped GHCB for entry and exits. The untrusted appli-
cation enters the enclave for secure computation. Later, the enclave
exits to the untrusted world for the handling of system calls and
interrupts. This section discusses the challenge in enabling enclave
entry and exits, and our solution to address the problem.

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

During enclave entry and system call exits, an unprivileged
(CPL-3) process must send a message to the hypervisor for a do-
main switch between Domunt and DomEnc (§5.2). Recall that this
message is sent through a guest-hypervisor communication block
(GHCB) which requires a privileged write to a model-specific regis-
ter (wrmsr) (§3). However, an unprivileged process is architecturally-
restricted from executing this privileged write. Veil solves this
problem by instructing the operating system to (a) automatically
set the GHCB MSR before scheduling an enclave-running process
and (b) map a per-thread GHCB to the process’ address space. Both
the application and the enclave can write their messages to the
mapped GHCB and execute a hypercall (VMGEXIT) for a domain
switch. To prevent errant hypercalls, the hypervisor is instructed
to only allow domain switches between Domunt and DomEnc us-
ing this GHCB. If the operating system does not map the GHCB
correctly, the CVM crashes on an attempted domain switch. Hence,
the operating system cannot leverage control over the GHCB to
harm the enclave’s confidentiality.

Apart from system calls, enclaves also incur exits at interrupts.
Enclaves rely on the untrusted world for I/O (through system calls),
hence all interrupt exits faced by an enclave do not require any
information from the enclave context and the CVM automatically
exits to the hypervisor (§3). Veil instructs the hypervisor to relay
these interrupts to Domunt for handling. If the hypervisor does not
relay interrupts and forces interrupt handling at DomEnc, the CVM
will halt with a nested page fault (#NPF), since the operating system
interrupt handler is inaccessible at DomEnc (previous heading).
Secure collaborative memory management. The enclave pro-
cess’ memory region is collaboratively and securely managed by
the OS and VeilS-Enc during execution. This process is analogous
to how the SGX microcode and OS collaboratively manage SGX
enclave regions [92]. The main difference is that enclave page tables
are kept by VeilS-Enc (instead of the OS which maintains SGX
enclave page tables), hence all updates to enclave page tables are
made by VeilS-Enc. The rest of this section describes how secure
collaboration works for demand paging and permission changes.

At runtime, if the operating system must free an enclave page, it
will send a request to VeilS-Enc. At this request, the service creates
an integrity hash of the enclave page with a freshness counter.
Then, it encrypts the page’s contents using a per-enclave secret
key, removes the page mapping from the enclave page tables, and
allows the OS to access the page and free it. Subsequently, when
the enclave tries to access the page, it raises a page fault.

Page faults during enclave execution are trapped to the hyper-
visor, which is instructed to send them to the operating system
(Domunt). After retrieving the faulted page from disk, the operat-
ing system sends a request to VeilS-Enc to decrypt and remap the
page into the enclave’s page tables. At this point, VeilS-Enc (a)
copies the page into protected memory, (b) decrypts the page, and
(c) verifies that the OS retrieved the correct page using the stored
fresh integrity hash. If the verification checks pass, VeilS-Enc adds
the mapping to the enclave page tables. To ensure the correctness
of remapping, the OS also tracks which physical page belongs to
which enclave virtual address, like SGX.

The OS is only allowed to change permissions (e.g., at mprotect)
of non-enclave regions, while enclave region permission changes

are directly handled by VeilS-Enc. In the latter case, permission
change requests are sent by the enclave to VeilS-Enc using the
enclave’s GHCB (previous section). Note that permission changes
to non-enclave regions must also be synchronized with enclave
page tables, since the enclave will use its own page tables to access
these regions. In this case, the OS is instructed to call VeilS-Enc for
synchronization of permission changes between both page tables.
System call redirection to untrusted application. System calls
require userspace buffers (e.g., read a file into a user buffer) from
a process’s context, but the enclave memory is inaccessible to the
operating system. Hence, the enclave must redirect system calls
to the application (like OCALLs in SGX [92]). In particular, the
enclave copies the required information for a system call (e.g., buffer
regions) from the enclave memory to shared application memory.
Then, the enclave exits and requests the application to execute the
system call on its behalf. On return from system calls, the enclave
must carefully sanitize results (e.g., check that returned pointers
do not belong to trusted memory regions before referencing) to
prevent IAGO attacks [37].
6.3 VeilS-Log: System Audit Log Protection

The operating system collects detailed audit logs of security-
critical machine events (e.g., kernel module installation) for foren-
sic analysis. Unfortunately, a key limitation of commodity system
auditing frameworks (e.g., Linux’s Kaudit [119]) is that an attacker
can trivially tamper with these logs after compromising the operat-
ing system [21, 103, 104]. VeilS-Log enables the CVM to securely
isolate logs from the operating system. A user can query VeilS-Log
through a secure channel (§5.1) to retrieve logs.
Reserved append-only log storage. VeilS-Log reserves a large
memory region for log storage (in DomSer) and provides APIs to the
operating system that allow append-only access to the storage. Note
that the size of the reserved region must be large enough that a user
can retrieve logs before it overflows. Typically, machines produce
about 1GB [63] of logs every day; hence, with a 1GB storage region,
the user should retrieve logs everyday.
Execute-ahead log protection. Logs are protected before the
system executes an event configured by the user to be critical (??).
This ensures that logs are available if the attacker compromises
the machine at said event. To achieve this, we insert a hook in
the operating system’s built-in auditing framework to send a log
entry to VeilS-Log using an inter-domain communication block
and a domain switch (§5.2). VeilS-Log appends the entry into the
reserved log storage and performs a domain switch back to the
operating system, which then executes the event. Note that the
operating system is only trusted to relay correct logs until the point
it is compromised. Logs until the kernel compromise are typically
sufficient to analyze the attack origin and vector.

7 Implementation

This section describes the implementation steps we took. We
will open-source our prototype to help foster development.
CVM Linux kernel support for Veil. We modified the Linux
kernel v5.16.0-rc4 provided in AMD’s GitHub repository for SEV-
SNP guests to support Veil. None of our implemented changes are
made to the core functionality of the kernel (e.g., memory and page
table allocation). Instead, they either support kernel execution at

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

Domunt (§5.3) or hook the kernel’s execution to Veil’s protected
services. For the latter, we modified Linux’s kernel audit (kaudit)
to call VeilS-Log once a log entry is created (at the audit_log_end
function), as well as the kernel module loading and unloading
routines (load_module and free_module) to call VeilS-Kci. In total,
we removed ∼50 lines of code and added ∼560 lines of code to the
native kernel source code.We also wrote a kernel module to support
enclave creation and protection. The module creates and initializes
a protected region in a program’s address space, allocates a GHCB
for the program, and calls VeilS-Enc to finalize the enclave. The
kernel module was written with ∼700 lines of code.
Hypervisor support for Veil. Our host ran Ubuntu 20.04.3 LTS
with Linux v5.14.0-rc2 provided in AMD’s GitHub repository [1]
for SEV-SNP hosts. We made three changes to its KVM hypervisor.
These changes (a) maintain VMSAs for newly-created domains (in
struct vcpu_svm), (b) install hypercall handling routines for domain
switching, and (c) switchDomEnc toDomunt on automatic interrupt
exits during enclave execution. The changes required ∼10 lines of
code deletion and ∼400 additional lines of code.
Framework and protected services. Veil’s security monitor and
protected services are written as a C library. VeilMon currently
does not implement cryptographic functionality for communica-
tion and measurement. We expect this functionality to work like it
does for other enclave systems [42, 77]. Moreover, at runtime, Veil
reuses some portion of the kernel’s code. This was done only to
ease the implementation burden (e.g., reuse module loading prim-
itives). In the future, all such functionality can be independently
implemented in Veil’s protected services. Finally, VeilMon’s func-
tionality is implemented with ∼4100 lines of code in total. This is
small enough to be ported to a safer language (e.g., Rust), provided
formal guarantees (e.g., Komodo [49]), or robustly tested using
existing system software testing approaches [55, 56, 88].
Enclave software development kit (SDK). We built this kit to
facilitate the development of enclaves for VeilS-Enc. It contains a
modified C library, based on musl-libc [98]. The library automati-
cally (a) communicates with the Veil kernel module to initialize
and remove enclaves, (b) handles enclave entries and exits through
well-defined APIs that invoke VMCALL to the hypervisor, and (c) han-
dles system call redirection by copying system call-related memory
regions (e.g., argument pointers) from enclave memory to untrusted
memory (§6.2). The SDK also implements an internal heap allocator
for enclaves using the dlmalloc [75] implementation. To implement
this SDK, we added ∼2200 lines of C code to musl-libc.

One of the challenges in implementing the SDK was automati-
cally inferring grammar for enclave system call handling. We ad-
dressed this by implementing a system call sanitizer that leverages
system call grammar rules from a famous and well-maintained OS
fuzzer, Syzkaller [57]. In particular, our sanitizer uses the rules to
create a C library that performs a deep copy of each system call
argument and included memory pointers. While the specifications
provided by Syzkaller proved to be generally robust, we found dis-
crepancies in several system calls using our unit-tests. Hence, we
manually refined our sanitizer to address them.

The sanitizer is guided by both a call and type specification. The
call specification encodes the high-level information about argu-
ments used in each system call. The type specification contains

the signature of various types used in system call arguments (e.g.,
struct, pointer). It also contains high-level semantic information,
such as the length constraint relationship between different argu-
ments. For instance, in the write system call, the third argument
specifies the length of the second argument, which is a buffer. Our
system call sanitizer was written in ∼1100 lines of Go code, and we
wrote ∼500 lines of C-based unit-tests to refine the sanitizer.

Since our SDK is in prototype stage, it has some limitations, none
of which we believe significantly impact our performance results.
In particular, the SDK and VeilS-Enc currently only support single-
threaded enclaves and do not support secure collaborative page
swapping (§6.2), instead all enclave pages are mapped during initial-
ization. Supporting multiple enclave threads requires two changes.
First, the OS kernel’s scheduler must request the scheduling of the
correct enclave thread from VeilMon. Second, VeilMon must cre-
ate a VMSA for the enclave thread on each VCPU and synchronize
them so that the thread can execute on any VCPU. Note that the
OS changes are minor, while a significant portion of Veil’s code
can be reused to implement VMSA creation and synchronization
in the future. To avoid synchronization issues across VCPUs, we
currently leverage taskset to pin the single enclave thread to one
VCPU during its execution.

Our SDK prototype supports 96 system calls, but additional sys-
tem calls can be ported using our sanitizer. Also, our SDK only
enables basic protection against IAGO attacks [37] by ensuring all
pointers returned by the operating system on system calls (e.g.,
at mmap) belong to memory regions outside the enclave. Complete
protection against IAGO attacks is an active area of research [44]
orthogonal to our key contribution.
Syscall coverage using Linux Test Project (LTP). We evalu-
ated our SDK’s system call handling by conducting tests using the
LTP suite [5]. LTP’s kernel tests contain testcases that (a) specif-
ically evaluate system call robustness [8] and (b) general system
functionality [6]. We evaluated our SDK on both.

On the system call robustness cases, our prototype successfully
completed all tests for 85/96 supported system calls. We believe the
reason for some system calls not passing all tests is that we did
not implement support for all their semantic cases, opting instead
to focus on the more common functions used by real-world appli-
cations. Prior study [123] shows that only a subset of the system
call interface is required to run the majority of applications. This is
why musl and popular library OSs also only support a subset of the
POSIX semantics [73, 98, 122]. For the unsupported system calls,
our SDK is designed to kill the enclave and exit on their execution.
Hence, our SDK failed all tests for these system calls. In total, our
SDK passed 276 out of 1393 system call test cases.

Our SDK also successfully executed 180 out of 639 system func-
tionality tests. These evaluate different system aspects like cryp-
tographic implementations and filesystems. A large chunk of the
tests that passed were related to the supported filesystem calls. The
remaining failed because they executed unsupported system calls
(e.g., ioctl [7]) or bash scripts [9].

Although our SDK only passes a small portion of the LTP tests,
it is still robust enough to run many important real-world pro-
grams (§9.2). Finally, a future Library OS integration can help ad-
dress the shortcomings of our prototype (§10).

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Potential attacks against Veil’s framework and im-

plemented defenses (§5.1–§5.3)

Attack Veil defence

At boot-time

Load mal. code at DomMon/DomSer Remote attestation
During domain enforcement

Read/write at DomMon/DomSer Restricted by VMPL
Adjust VMPL restrictions RMPADJUST prohibited
Overwrite sensitive registers Protected in DomMon

Overwrite page tables Protected in DomMon

Create VCPU at DomMon/DomSer Control creation
During inter-domain comm.

Overwrite IDCB Protected in DomSer

OS sends malicious request OS request sanitized

8 Security Analysis and Validation

This section analyzes the security of Veil by first discussing
various attacks against the framework and implemented services. It
concludes with the results of our experimental security validation.
8.1 Analyzing Framework Security

The Veil framework is the root-of-trust for protected services.
The attacker can try to (a) attack the framework during boot-time
loading, (b) circumvent Veil’s domain enforcement at runtime, or
(c) harm inter-domain communication.Veil implements protections
for attacks at each of these stages (Table 1).
Preventing boot-time attacks. At boot-time, the attacker can
try to load a malicious boot disk into the CVM, instead of Veil’s
boot disk. This would allow the attacker to execute malicious code
at the privileged DomMon and DomSer. Veil prevents this attack by
leveraging SEV’s remote attestation to measure and report initial
disk contents to a remote user.
Preventing domain enforcement attacks. At runtime, an at-
tacker can try to directly access a trusted domain’s memory con-
tents, overwrite their architectural state, and spawn new attacker-
controlledVCPUs at privileged domains.Veil prevents direct access
into privileged domains by leveraging VMPL’s restrictions. These
restrictions cannot be removed by the attacker, since the attacker is
unable to execute RMPADJUST on higher-privileged domain memory
regions. Additionally, all sensitive domain state (e.g., registers, page
tables) is protected in DomMon, which is inaccessible to the attacker.
The attacker can try to spawn a new VCPU to access DomMon, but
only VeilMon can create a new VCPU (by executing RMPADJUST
for a new VMSA), and it only allows new VCPU instances to the
operating system at the restricted Domunt (§5.3).
Preventing inter-domain communication attacks. The at-
tacker can try to overwrite the messages passed between different
domains (e.g., to trick VeilMon into lifting VMPL permissions). Ex-
cept for messages from the operating system, all IDCBs are stored in
protected memory regions (DomSer) (§5.2). The messages received
from the operating system are sanitized to ensure enforcement.
Specifically, the OS passes pointers during its communication with
VeilMon and protected services; hence, it could try to pass a pointer
to protected regions and trick trusted software to overwrite these
regions. To prevent this attack, before referencing an untrusted

memory address pointer, VeilMon checks that it does not point to
a protected region (e.g., VeilMon memory). VeilMon can perform
this check since it keeps track of all protected memory regions
at runtime. VeilMon also provides this information to protected
services so that they may also perform the check.

8.2 Analyzing Protected Services Security

This section describes how each Veil protected service enforces
security invariants inside CVMs.
Enforcing kernel code integrity with VeilS-Kci. The attacker
can try to inject malicious code into the kernel by overwriting
existing text regions, creating new text regions, or loadingmalicious
kernel modules. VeilS-Kci enforces write⊕supervisor-execute on all
kernel memory using VMPL restrictions (§6.1). Hence, even if the
attacker can disable the operating system’s protections (e.g., SMEP,
NX bits), they still cannot overwrite existing text regions or create
new text regions. Moreover, these enforcements are never disabled
at Domunt and all kernel modules are loaded through VeilS-Kci,
which checks their signature before installation.
Shielding program execution with VeilS-Enc. The attacker
can try to compromise an enclave using the operating system and
a different attacker-controlled enclave. In particular, the attacker
can try to load a malicious binary into the enclave to steal provided
user data, read or write enclave regions, and overwrite sensitive
enclave states. VeilS-Enc prevents all these attacks (Table 2).

VeilS-Enc ensures the load-time correctness of the enclave by
measuring the initial memory contents and layout. This trusted
measurement is provided to the remote user for attestation through
VeilMon’s secure channel. Only after attestation passes, the remote
user sends their sensitive information to the enclave.

At runtime, if the operating system tries to access enclave mem-
ory regions or the enclave’s interrupted processor state (inside the
VMSA), the CVM halts on a nested page fault (#NPF) since these
regions are protected in DomEnc and DomMon, respectively. Addi-
tionally, the enclave’s page tables are protected in DomSer (during
initialization), hence the attacker cannot modify them either.

An attacker might try to load a malicious enclave at DomEnc to
steal or modify other enclave contents. VeilS-Enc prevents attacks
from malicious enclaves by ensuring that each enclave is initialized
with a disjoint set of physical pages. Hence, even though amalicious
enclave executes at DomEnc, it cannot read another enclave’s pages.
Moreover, the enclave is not allowed to execute supervisor code in
DomEnc, therefore it cannot change defined mappings.

Finally, the attacker can also try to launch two attacks using
the hypervisor and leak sensitive enclave information. First, the
hypervisor can attempt to modify the enclave register state stored
in the VMSA [96]. Second, the hypervisor can refuse to relay inter-
rupts to the untrusted world during enclave execution, and force an
execution of the operating system’s code at DomEnc. The attacker
is unsuccessful on both accounts. In particular, the enclave’s VMSA
is stored inside the CVM, hence it cannot be accessed. Additionally,
DomEnc cannot access kernel code (since it is unmapped in the
enclave’s page tables) and neither can the enclave execute supervi-
sor instructions (since it is restricted using VMPL). Hence, if the
hypervisor does not relay interrupts to Domunt, the CVM halts
with a continuous set of #NPFs due to permission violation.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

Table 2: Potential attacks against enclaves and implemented

defenses (§6.2).

Attack VeilS-Enc defence

From CVM OS

Load incorrect binary Enclave attestation
Read/write memory Restrictions in Domunt

Modify physical layout PTs protected in DomSer

Violate saved state (e.g., rip) VMSA protected in DomMon

Incorrect GHCB mapping CVM crash on VMGEXIT
From hypervisor

Violate saved state (e.g., rip) VMSA protected in CVM
Refuse interrupt relay CVM halts with #NPF
From malicious enclaves

Access memory from DomEnc Disjoint physical pages
Execute OS code in DomEnc Disallowed in DomEnc

Protecting system audit logs with VeilS-Log. A compromised
kernel can try to modify the stored log entries (produced by the
kernel in an honest state) by directly overwriting the log buffer. The
log buffer cannot be accessed in the operating system’s Domunt—it
can only be accessed at DomSer. Only the remote user can ask for
stored logs to be removed (after retrieval) through an authenticated
and secure communication channel.

8.3 Validation

We designed and executed two attacks to validate the correctness
of implemented protections. We found that Veil’s protections hold
against both attacks. The first attack tried to overwrite VeilMon
page table entries, and harm the monitor’s integrity. For this attack,
we mapped the page tables to the operating system’s address space.
When we tried to modify the page tables from the operating system,
the CVM halted with continuous nested page faults (#NPFs). This
signals an expected VMPL violation. The second attack tried to
overwrite a kernel module’s text region after VeilS-Kci was acti-
vated. We set the write bit in the operating system’s page tables to
disable page table-based W⊕X protections. On overwrite attempt,
the CVM halted with continuous #NPFs again.

9 Performance Evaluation

This section describesVeil’s performance through several micro-
benchmarks and case-studies. All experiments were executed on a
server machine with an AMD EPYC 7313P 16 core CPU, 80 GB of
DDR4-3200 memory, and a 500 GB SATA SSD storage drive. On this
machine, we created an SEV-SNP virtual machine with 4 hardware-
accelerated VCPUs, 2 GB of memory, and a 50 GB storage drive
(using VIRTIO [13]), using AMD’s GitHub repository [1] scripts.

9.1 Micro-Benchmarks and Analysis

Initialization time. During CVM boot, Veil must initialize and
protect DomMon and DomSer. We measured the time taken (using
RDTSC) to complete these steps during 10CVM boot-ups. On average,
Veil increased boot time of theCVM by∼2 seconds. Over 70% of this
time is needed to protect domain state, which requires executing
RMPADJUST on all physical pages. This results in a memory access to
every page before adjusting permissions. Nevertheless, this is only

a 13% increase over the native CVM boot time (which is already
longer than regular VM boot times) and a one-time cost.
Domain switch cost. To measure the average cost of a hypervisor-
relayed domain switch (§5.2), we performed 10,000 domain switches
between the operating system and VeilMon and measured time
using RDTSC. We found the average cost to be 7135 cycles for a
domain switch. The major cost is SEV-SNP’s register state save
and restore that occurs on VMGEXIT and VMENTER (§3). State save
and restore is known to be expensive for other trusted execution
environments like SGX [101] too. Notably, a normal exit (using
VMCALL) on a non-SEV-SNP VM takes ∼1100 cycles on our machine.
Nevertheless, the impact of this extra cost is limited if the CVM
does not switch domains frequently (as described next).
Background system impact. Even by default, the kernel exe-
cutes at Domunt and relies on VeilMon for a few architectural
functionality (§5.3). To measure the impact of this reliance, we ex-
ecuted SPEC CPU 2006 [117], a well-known collection of system
benchmarks, memcached [11], and NGINX [100] inside a native
CVM and a Veil CVM. The workloads and settings for memcached
and NGINX are provided in Table 5. We noticed negligible differ-
ence (<2%) in performance for all three tests. This is because the
overwhelming majority of system functionality required through
VeilMon, namely booting VCPUs and validating CVM memory
regions (§5.3), happens during initialization, not at runtime.
Runtime monitor cost analysis. Excluding the cost of imple-
mented services (which we discuss in §9.2), the runtime cost of
any security monitor implementation is the cumulative cost of a
domain switch to the monitor (𝐶𝑑𝑠) multiplied by the number of
times a domain switch occurs (𝑁𝑑𝑠).

Software security monitors like the Nested Kernel [45] have a
very small 𝐶𝑑𝑠 since they neither require a ring-level switch nor a
VM exit. However, the Nested Kernel has a large 𝑁𝑑𝑠 since it is fre-
quently invoked (e.g., whenever the kernel needs to update its page
tables or update control registers). This can result in non-negligible
background overhead (e.g., a reported 15 − 20% bandwidth reduc-
tion in some cases [45]). If the Nested Kernel is updated to support
memory unmapping in page tables for read protection-based ser-
vices (the importance of which we discussed in §2), its𝐶𝑑𝑠 will also
include an expensive TLB flush. Compiler-based monitors [42, 43]
already support read protection but they require the expensive
kernel CFI, which can reportedly incur more than 50% slowdown
for webservers like NGINX [15].

Hypervisor-based monitors like BlackBox [65] do not require
frequent context switches (small 𝑁𝑑𝑠) since they rely on additional
architectural features (e.g., EPT) for memory isolation instead of
regular page tables. In CVM contexts, the difference in𝐶𝑑𝑠 between
VeilMon and a hypervisor-based solution is that the hypervisor
𝐶𝑑𝑠 is roughly half of the cost of a VeilMon 𝐶𝑑𝑠 , since it would
not need to resume VeilMon’s VCPU. However, this additional
cost (incurred by Veil) is not significant, given that the alternative
requires trusting cloud providers for hypervisor-based monitors.

In contrast to other monitors, while VeilMon’s 𝐶𝑑𝑠 is higher,
it still incurs negligible background impact at runtime (previous
section) since it’s𝑁𝑑𝑠 is very low under normal execution. It also has
several other advantages like a versatile read and write protection

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

open read write mmap munmap socket printf
0

2

4

6

P
er

fo
rm

an
ce

ov
er

h
ea

d
(t

im
es

)

Fig. 4: Cost of redirecting popular system calls from a VeilS-

Enc enclave to the outsideworld (CS2). The system call bench-

mark parameters are provided in Table 3.

Table 3: Settings for enclave system call benchmarks (Fig. 4).

Benchmark Parameters

open Open a text file with read and write permissions

read Read 10 KB from a file to a memory-mapped region

write Write 10 KB from a memory-mapped region to a file

mmap Map a 10KB region using the NULL file descriptor

munmap Unmap the 10KB region previously-mapped

socket Open a socket using AF_INET and SOCKSTREAM

printf Print a "Hello World!" message to the console

scope (§2) and does not require trusting cloud providers. Hence, we
believe that VeilMon offers a good trade-off.

9.2 Case Studies on Protected Services

CS1: Secure module load/unload overhead. To measure the
performance overhead of module installation when VeilS-Kci is
activated, we loaded and unloaded a custom kernel module that
prints out a statement to the kernel’s debug message log. We chose
this small module (of binary size 4728 bytes and final in-memory
installed size of 24 kilobytes) since a large module load/unload will
already take a long time and the additional VMPL protection update
time will become amortized. We repeated the process 100 times and
averaged results. We measured an average increase of 55k cycles
at load and unload. It was similar for load and unload, since the
additional steps (adjusting permissions using RMPADJUST) required
are the same. This resulted in a 5.7% increase in load time and 4.2%
increase in unload time, which is a small per-module cost to pay
for kernel code integrity.
CS2: Enclave system call and runtime overhead. Wemeasured
the runtime overhead of enclaves using a system call benchmark
and several real-world programs.

Fig. 4 shows enclave performance on common system calls re-
lated to file system, memory allocation, network, and console mes-
sages. On our machine, we ran these natively and inside an enclave
for 10,000 iterations. Predictably, system calls in enclave contexts
are between 3.3 − 7.1× slower since they require two costly do-
main switches (from DomEnc to Domunt and back) and system
call argument copies (§6.2). This is also true for other enclaves. For

GZip UnQlite MbedTLS Lighttpd SQLite
0

10

20

30

40

50

60

70

P
er

fo
rm

an
ce

ov
er

h
ea

d
(%

) Syscall-Redirect

Enclave-Exit

Fig. 5: Performance overhead incurred while shielding real-

world programs using VeilS-Enc (CS2). The combined cost

of the stacked bars is the complete overhead incurred by the

application inside an enclave. From left to right, the enclave

exit rate/second was 0.08k, 35.5k, 9.3k, 4.8k, and 22.4k.

Table 4: Settings for running enclave programs (Fig. 5).

Program Parameters

GZip Compressed a 10MB file generated using /dev/urandom

SQLite Inserted 10k random entries into a test database

UnQlite Ran provided huge-db test which inserts 1 million
random entries into a test database

MbedTLS Ran provided a self-test benchmark which executes 2.8k
tests for AES, SHA, RSA, ChaCha etc.

Lighttpd Ran locally with 1 worker thread and benchmarked
using ApacheBench (ab) [121] for 10,000 (10KB) files

instance, Virtual Ghost enclaves incur 4.7× times performance over-
head on file system benchmarks [42], while SGX with an optimized
library operating system still incurs at least 4× slowdown for the
read system call [36]. This cost becomes amortized during enclave
execution, especially when system calls are infrequent.

We also used our SDK (§7) to port 5 real-world programs that
can benefit from enclave protection. They include a webserver
(lighttpd [86]), two databases (SQLite [118] and UnQLite [12]), a
cryptographic program (MbedTLS [10]), and a compression en-
gine (Gzip [3]). Each program required ∼200 lines of code changes
to enable enclave initialization, as well as configuration changes
to build statically-linked binaries. Since many of these programs
have tens of thousands of code lines, we believe this porting effort
is minor. Note that the official SGX SDK [14] requires developers
to manually specify pointers and lengths for system calls, a con-
siderably more complex undertaking. Additionally, in the future,
enclave initialization can be automated by changing the startup
functions of musl-libc (e.g., __libc_start_main). Table 4 shows the
settings and workloads for each program.

Fig. 5 shows the average performance slowdown of enclave
protection for evaluated programs under 10 runs. We observed
performance overheads from 4.9% to 63.9%. Since enclave slowdown
is due to system call redirection and enclave exits, we divide the bar
into overhead incurred by source. In general, we notice that enclave
exit cost dominates, except when very large regions are copied at
system calls (e.g., lighttpd must copy 10kB pages outside the enclave

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

OpenSSL 7-zip Memcached SQLite NGINX
0

5

10

15

P
er

fo
rm

an
ce

ov
er

h
ea

d
(%

) Kaudit (IM)

VeilS-LOG

Fig. 6: Performance overhead while auditing different real-

world programs using VeilS-Log (CS3). From left to right,

the log rate/second was 1.5k, 1.8k, 61k, 2.3k, and 38k.

Table 5: Settings for auditing real-world programs (Fig. 6).

Program Parameters

OpenSSL Phoronix benchmark: pts/openssl [108]

7-Zip Phoronix benchmark: pts/compress-7zip [107]

Memcached Ran locally with 4 worker threads and benchmarked
using memaslap [134] with 90:10 GET:SET split for 60s
and a concurrency level of 16

SQLite Phoronix benchmark: pts/sqlite-speedtest [109]

NGINX Ran locally with 2 worker threads and benchmarked
using ApacheBench (ab) [121] for 10,000 (10KB) files

on client requests). This is expected given the performance overhead
we observed in the system call benchmarks (previous section). It
is also expected that enclave overhead is dependent on enclave
exit rate. In particular, SQLite which incurred ∼36k exits/second
incurred the highest overhead. The cost of enclave exits can be
reduced by implementing exitless handling [29, 101, 116].

In general, VeilS-Enc’s cost is modest and comparable to other
enclave systems (e.g., SGX). Hence, we find it a promising solution
to address the critical problem of running sensitive computations
in CVMs with untrusted operating systems.
CS3: Secure system call auditing overhead. We compared the
performance of VeilS-Log’s protection with the native Linux sys-
tem audit framework (Kaudit [119]) using real-world programs. We
ran 5 programs—NGINX, Memcached, OpenSSL, 7-Zip, and SQLite.

The test parameters and benchmarks for each application are
provided in Table 5. We configured the CVM (using the Linux
auditctl [2] command) to log system calls1 based on the ruleset
used by prior work [21, 103, 104]. The ruleset includes important
file creation, network access, and process execution calls.

We made one change to Kaudit to ensure fair comparison. In
particular, natively Kaudit uses a user-space component called Au-
ditd to write logs to disk. This component is known to be very
inefficient [90], and is different from VeilS-Log which keeps logs
in-memory. Hence, we modified Kaudit to keep logs in-memory
too for both experiments.
1read, readv, write, writev, sendto, recvfrom, sendmsg, recvmsg, mmap, mprotect, link,
symlink, clone, fork, vfork, execve, open, close, creat, openat, mknodat, mknod, dup,
dup2, dup3, bind, accept, accept4, connect, rename, setuid, setreuid, setresuid, chmod,
fchmod, pipe, pipe2, truncate, ftruncate, sendfile, unlink, unlinkat, socketpair, splice.

Fig. 6 shows the incurred overhead for Kaudit and VeilS-Kci
over native execution. VeilS-Kci incurred a performance overhead
of 1.4% to 18.7% while Kaudit incurred an overhead of 0.3% to 8.7%,
compared to native execution. This performance gap is not very
high, even under the very high log production rates of tested pro-
grams, and it shows that VeilS-Kci is suitable for system logging.

9.3 Key takeaways

Veil’s protected services incur modest performance overhead,
which is comparable to other widely-deployed systems (e.g., SGX).
When a protected service is not used, Veil incurs no discernable
performance overhead. Hence, we believe that Veil can be readily-
adopted to secure today’s CVMs.

10 Discussion and Future Work

VeilS-ENC and other enclave solutions. VeilS-Enc’s abstrac-
tions are inspired by SGX. Like SGX, VeilS-Enc divides the process
into untrusted and enclave regions, while ensuring enclave memory
cannot be shared with any other software. Moreover, while SGX
allows the operating system to maintain an enclave’s page table
unlike VeilS-Enc, the latter still allows the OS to securely make
changes to the page tables (e.g., for collaborative demand paging)
and manage enclave memory like SGX (§6.2).

Although its abstractions are functionally-equivalent to SGX
and others [41], VeilS-Enc offers a more flexible tiered security
approach than alternatives. In particular, SGX-like approaches only
enable protection for computations inside enclaves; hence, enclaves
must be used for all programs that require any degree of protection.
With Veil, users can leverage native CVM protections (against
untrusted hypervisors) for programs that are not highly sensitive,
while only relying on VeilS-Enc for highly sensitive programs
(e.g., servicing personally-identifiable information). This gives users
more control over the security-performance trade-off.

Another advantage of VeilS-Enc is that it can be flexibly molded
into non-SGX enclave models depending on user scenario. For in-
stance, Chancel [18] leverages expensive compiler software fault
isolation (SFI) to securely share a single SGX enclave’s memory for
multi-client applications. In contrast,VeilS-Enc canmodify enclave
page tables to securely and efficiently share memory regions be-
tween two mutually-trusting enclave processes. Additionally, since
VeilS-Enc executes at a privileged mode (unlike SGX enclaves), it
can leverage CPU features like MPK for fine-grained intra-enclave
component isolation [20, 106]. Finally, like eOPF [22], VeilS-Enc
can leverage privileged instructions (e.g., WBINVD) to isolate and
invalidate CPU structures and defeat enclave side-channels.
System call batching. A significant cost for enclave solutions
(including VeilS-Enc) are synchronous system call exits [29, 101]
since the enclave must incur a high exit cost and busy-wait while a
system call is handled (§9.2). One way to minimize synchronous
exits is by batching system calls and leveraging free background
threads to process the batched calls [116]. This optimization can
be incorporated for VeilS-Enc alongside multi-threaded enclave
support (§7) to improve performance. We leave this to future work.
Library OS (LibOS) integration. LibOSs offer robust system call
support and other advantages like fully-containerized filesystems
to enclaves [32]. Given the functional equivalence of VeilS-Enc

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and SGX, the best integration choice for the former is an SGX Li-
bOS (e.g., Graphene [36]). The main porting effort in this case would
be writing a custom platform abstraction layer that would trans-
form SGX commands and instructions into Veil-specific requests.
For instance, the SGX entry instruction (EENTER) would become a
hypervisor-relayed domain switch request (§5.2). Employing Veil
with LibOSs can benefit from fast process-level startup techniques,
such as on-demand fork [131], and fast in-process sandbox [106]
to overcome VM and kernel overheads.

11 Related work

Concurrent VMPL research. Concurrent with this work, two
other recent systems–SVSM and Hecate–leverageVMPL.

AMD released a secure VM service module (SVSM) [24] written
in Rust to provide migration and a virtual TPM to CVMs. SVSM
considers a different threat model than Veil’s, where the CVM OS
is trusted but offloads some functionality to a higher privileged
software for simplicity. This module also uses VMPL protections,
but it does not support Veil’s services or domain isolation. In the
future, we plan to integrate Veil and SVSM, to bring the benefits
of Rust to Veil and extend SVSM with Veil’s services.

Hecate [53] leverages VMPL to securely lift-and-shift legacy
VMs to SEV-SNP. In particular, Hecate implements a monitor at
VMPL-0 that intercepts the legacy VM’s system interactions and
transparently translates them into SEV-SNP compatible operations.
In addition, the monitor optionally protects the kernel from mali-
cious network traffic and implements kernel code integrity. How-
ever, unlike Veil, Hecate does not leverage its design to enable
isolated security services or enclave abstractions to protect trusted
applications if the guest OS becomes compromised.
Kernel and hypervisor security monitors. SILVER [128] and
UCON [129] provide VM monitor-enforced access control policies
on sensitive kernel structures. Nooks [120] and LVDs [99] isolate
device drivers from the core kernel using MMU protections and
lightweight virtualization (VMFUNC), respectively. IskiOS [60] lever-
ages Intel MPK to create isolated shadow stacks. Many of the isola-
tion targets of these systems can be used by future Veil services to
enable additional kernel security.

In addition to monitors for operating systems, researchers have
proposed security monitors for cloud hypervisors. HypSec [85] pro-
tects VMs from large buggy hypervisors by introducing a minimal
core hypervisor. Nexen [114] leverages the Nested Kernel principles
to create a protected Xen hypervisor that prevents a wide-range
of known hypervisor vulnerabilities [50]. Like hypervisor-based
monitors (§2), these solutions are also incompatible with CVMs
since they do not trust any software outside the CVM.
Shielded program execution. Many systems protect computa-
tions from an untrusted operating system [18, 28, 40–42, 46, 48,
62, 65, 66, 77, 92]. VeilS-Enc leverages techniques used in these
systems, while maintaining compatibility with CVMs. vSGX [132]
is the only other SEV system that shields programs from the oper-
ating system. vSGX allows a single computation to run inside an
enclave CVM, while redirecting system calls to an untrusted CVM.
Hence, each computation needs its own CVM, which is wasteful
not just in terms of memory, but also because a platform can only

run a limited amount of CVMs [26]. In contrast, VeilS-Enc can
enable potentially unlimited enclaves inside a single CVM.
SEV attacks and defenses. SEV was found vulnerable to vari-
ous attacks, and is patched against many of these attacks in SEV-
SNP [23]. In particular, the earliest version of SEV kept CVM regis-
ter state unprotected in hypervisor memory, allowing an attacker
to compromise CVM integrity [64] or fingerprint programs run-
ning inside CVMs [125]. Attacks utilizing the ciphertext side chan-
nels [80, 83, 126] and insecure I/O implementations [82] of SEV
were also found. SEV-SNP mitigates these problems by saving reg-
ister state in protected CVM memory and disallowing hypervisor
access to encrypted memory regions. However, SEV is still vulnera-
ble to memory side channels [79, 81, 82, 84, 89, 95] and controlled
channels [124, 130]. Many software mitigations have been proposed
for these attacks, such as trying to detect attacks [39, 61, 115], isolat-
ing shared resources (e.g., cache) [22, 54, 70, 105, 113, 133], adding
noise to timer readings to make it imprecise [91, 102], and applying
cryptographic memory randomization [17, 19, 74, 110].
User-level isolation in privileged modes. Lord of the x86
Rings [78] is a portable approach for user-space privilege isola-
tion by leveraging intermediate x86 rings (ring 1 and 2). vTZ [67]
leverages ARM TrustZone to create a co-running secure VM for
each guest, where trusted guest programs execute. The former solu-
tion requires trusting the operating system, while the latter requires
a hardware layer that is not supported in the CVM threat model.
TrustZone-based systems also suffer from other problems including
controlled channel attacks as outlined by prior work [35].
Secure system auditing. Existing research prevents the operat-
ing system from tampering with system logs using tamper-evident
hashes [69, 103, 104], an external hardware device [21], or trusted
virtualization extensions [52]. Tamper-evident hashes only guaran-
tee log integrity verification, and some implementations [69, 103]
require a protected execution environment (e.g., SGX) to securely
keep these hashes. External hardware devices are incompatible with
CVMs since devices cannot be securely queried and virtualization
layers are occupied by the untrusted cloud hypervisor.

12 Conclusion

Veil is a CVM security monitor framework that efficiently en-
ables a wide-range of protected services—from kernel code integrity
to shielded program execution—in the presence of an untrusted
operating system. Our implementation shows that CVMs can sup-
port Veilwith minor changes, while incurring modest performance
overheads for using protected services.

Acknowledgment

We thank the anonymous reviewers and our shepherd for their
helpful feedback. This work was partly supported by the National
Science Foundation (NSF) under the grant CNS-2145888.

References

[1] AMDESE/AMDSEV: AMD Secure Encrypted Virtualization. https://github.com/
AMDESE/AMDSEV.

[2] auditctl(8) – Linux Manpage. https://linux.die.net/man/8/auditctl/.
[3] Gzip – GNU Project Free Software Foundation. https://www.gnu.org/software/

gzip/.
[4] Linux Kernel CVEs | All CVEs. https://www.linuxkernelcves.com/cves.
[5] Linux Test Project. https://github.com/linux-test-project/ltp.

https://github.com/AMDESE/AMDSEV
https://github.com/AMDESE/AMDSEV
https://linux.die.net/man/8/auditctl/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.linuxkernelcves.com/cves
https://github.com/linux-test-project/ltp

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

[6] Linux Test Project: ltp/testcases/kernel. https://github.com/linux-test-project/
ltp/tree/master/testcases/kernel.

[7] Linux Test Project: ltp/testcases/kernel/device-drivers. https://github.com/linux-
test-project/ltp/tree/master/testcases/kernel/device-drivers.

[8] Linux Test Project: ltp/testcases/kernel/syscalls. https://github.com/linux-test-
project/ltp/tree/master/testcases/kernel/syscalls.

[9] Linux Test Project: ltp/testcases/kernel/tracing. https://github.com/linux-test-
project/ltp/tree/master/testcases/kernel/tracing.

[10] mbedtls. https://tls.mbed.org.
[11] Memcached - A Distributed Memory Object Caching System. https://

memcached.org/.
[12] UnQLite – An Embedded NoSQL Database Engine. https://unqlite.org/.
[13] Virtio - KVM. https://www.linux-kvm.org/page/Virtio.
[14] 01org. Intel(R) Software Guard Extensions for Linux* OS (source code). https:

//github.com/01org/linux-sgx.
[15] Abubakar, M., Ahmad, A., Fonseca, P., and Xu, D. SHARD: Fine-Grained

Kernel Specialization with Context-Aware Hardening. In Proceedings of the 30th

USENIX Security Symposium (Security) (Virtual Event, Aug. 2021).
[16] Accetta, M. J., Baron, R. V., Bolosky, W. J., Golub, D. B., Rashid, R. F.,

Tevanian, A., and Young, M. Mach: A New Kernel Foundation for UNIX
Development. In Proceedings of the 2010 USENIX Annual Technical Conference

(ATC) (Boston, MA, June 2010).
[17] Ahmad, A., Joe, B., Xiao, Y., Zhang, Y., Shin, I., and Lee, B. Obfuscuro: A

Commodity Obfuscation Engine for Intel SGX. In Proceedings of the 2019 Annual

Network and Distributed System Security Symposium (NDSS) (San Diego, CA,
Feb. 2019).

[18] Ahmad, A., Kim, J., Seo, J., Shin, I., Fonseca, P., and Lee, B. Chancel: Efficient
Multi-client Isolation Under Adversarial Programs. In Proceedings of the 2021

Annual Network and Distributed System Security Symposium (NDSS) (2021).
[19] Ahmad, A., Kim, K., Sarfaraz, M. I., and Lee, B. OBLIVIATE: A Data Oblivious

File System for Intel SGX. In Proceedings of the 2018 Annual Network and

Distributed System Security Symposium (NDSS) (February 2018).
[20] Ahmad, A., Lee, S., Fonseca, P., and Lee, B. Kard: Lightweight Data Race

Detection with Per-thread Memory Protection. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS) (Virtual Event, Apr. 2021).
[21] Ahmad, A., Lee, S., and Peinado, M. Hardlog: Practical Tamper-Proof System

Auditing Using a Novel Audit Device. In Proceedings of the 43rd IEEE Symposium

on Security and Privacy (Oakland) (May 2022).
[22] Ahmad, A., Schultz, A., Lee, B., and Fonseca, P. An Extensible Orchestration

and Protection Framework for Confidential Cloud Computing. In Proceedings of

the 17th USENIX Symposium on Operating Systems Design and Implementation

(OSDI) (Jul 2023).
[23] AMD. AMD SEV-SNP: Strengthening SEV with Integrity Protections and

More. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[24] AMD. AMDESE/linux-svsm. https://github.com/AMDESE/linux-svsm.
[25] AMD. SEV-ES Guest-Hypervisor Communication Block Standardization. https:

//developer.amd.com/wp-content/resources/56421.pdf.
[26] AMD. SEV Secure Nested Paging Firmware ABI Specification. https://www.

amd.com/system/files/TechDocs/56860.pdf.
[27] AnandTech. AMD to Launch 3rd Generation EPYC on March 15: Milan

with Zen 3. https://www.anandtech.com/show/16537/amd-to-launch-3rd-
generation-epyc-on-march-15th-milan-with-zen-3.

[28] ARM. Arm confidential compute architecture. https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture, 2022.

[29] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C.,
Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell, M., et al. SCONE:
Secure Linux Containers with Intel SGX. In Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI) (Savannah,
GA, November 2016).

[30] Azab, A. M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J., and
Shen, W. Hypervision Across Worlds: Real-Time Kernel Protection from the
ARM TrustZone Secure World. In Proceedings of the 21st ACM Conference on

Computer and Communications Security (CCS) (Scottsdale, Arizona, Nov. 2014).
[31] Azure, M. DCasv5 and ECasv5 Series Confidential VMs. https://learn.microsoft.

com/en-us/azure/confidential-computing/confidential-vm-overview.
[32] Baumann, A., Peinado, M., and Hunt, G. Shielding Applications from an

Untrusted Cloud with Haven. In Proceedings of the 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI) (Broomfield, CO, Oct.
2014).

[33] Buhren, R., Jacob, H.-N., Krachenfels, T., and Seifert, J.-P. One Glitch
to Rule Them All: Fault Injection Attacks Against AMD’s Secure Encrypted
Virtualization. In Proceedings of the 28th ACM Conference on Computer and

Communications Security (CCS) (Virtual Event, Nov. 2021).
[34] Bulck, J. V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,

Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order

Execution. In Proceedings of the 27th USENIX Security Symposium (Security)

(August 2018).
[35] Cerdeira, D., Santos, N., Fonseca, P., and Pinto, S. SoK: Understanding

the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland) (San
Francisco, CA, May 2020).

[36] che Tsai, C., Porter, D. E., and Vij, M. Graphene-SGX: A Practical Library OS
for Unmodified Applications on SGX. In Proceedings of the 2017 USENIX Annual

Technical Conference (ATC) (Santa Clara, CA, July 2017).
[37] Checkoway, S., and Shacham, H. Iago Attacks: Why the System Call API is

a Bad Untrusted RPC Interface. In Proceedings of the 18th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (March 2013).
[38] Chen, H., Zhang, F., Chen, C., Yang, Z., Chen, R., Zang, B., and Mao, W.

Tamper-Resistant Execution in an Untrusted Operating System Using A Virtual
Machine Monitor, 2007.

[39] Chen, S., Zhang, X., Reiter, M. K., and Zhang, Y. Detecting Privileged Side-
Channel Attacks in Shielded Execution with Déjá Vu. In Proceedings of the 24th

ACM Conference on Computer and Communications Security (CCS) (Dallas, TX,
Oct.–Nov. 2017).

[40] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Waldspurger, C. A.,
Boneh, D., Dwoskin, J., and Ports, D. R. Overshadow: A Virtualization-Based
Approach to Retrofitting Protection in Commodity Operating Systems. In
Proceedings of the 13th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS) (Seattle, WA, Mar.
2008).

[41] Costan, V., Lebedev, I., and Devadas, S. Sanctum: Minimal Hardware Exten-
sions for Strong Software Isolation. In Proceedings of the 25th USENIX Security

Symposium (Security) (Austin, TX, August 2016).
[42] Criswell, J., Dautenhahn, N., and Adve, V. Virtual Ghost: Protecting Ap-

plications from Hostile Operating Systems. In Proceedings of the 19th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS) (Salt Lake City, UT, Mar. 2014).
[43] Criswell, J., Lenharth, A., Dhurjati, D., and Adve, V. Secure Virtual Archi-

tecture: A Safe Execution Environment for Commodity Operating Systems. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP)

(Stevenson, WA, Oct. 2007).
[44] Cui, R., Zhao, L., and Lie, D. Emilia: Catching Iago in Legacy Code. In Pro-

ceedings of the 2021 Annual Network and Distributed System Security Symposium

(NDSS) (Feb. 2021).
[45] Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., and Adve, V. Nested

Kernel: An Operating System Architecture for Intra-Kernel Privilege Separation.
In Proceedings of the 20th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS) (Istanbul, Turkey,
Mar. 2015).

[46] Dong, X., Shen, Z., Criswell, J., Cox, A. L., and Dwarkadas, S. Shielding
Software from Privileged Side-Channel Attacks. In Proceedings of the 27th

USENIX Security Symposium (Security) (Baltimore, MD, Aug 2018).
[47] Enarx. AMD SEV Remote Attestation Protocol. https://enarx.dev/docs/

technical/amd-sev-attestation.
[48] Feng, E., Lu, X., Du, D., Yang, B., Jiang, X., Xia, Y., Zang, B., and Chen, H.

Scalable Memory Protection in the PENGLAI Enclave. In Proceedings of the 15th

USENIX Symposium on Operating Systems Design and Implementation (OSDI)

(Jul 2021).
[49] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Komodo: Us-

ing Verification to Disentangle Secure-Enclave Hardware from Software. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP)

(Shanghai, China, Oct. 2017).
[50] Fonseca, P., Wang, X., and Krishnamurthy, A. MultiNyx: A Multi-Level

Abstraction Framework for Systematic Analysis of Hypervisors. In Proceedings

of the 13th European Conference on Computer Systems (EuroSys) (Porto, Portugal,
Apr. 2018).

[51] Fonseca, P., Zhang, K., Wang, X., and Krishnamurthy, A. An Empirical Study
on the Correctness of Formally Verified Distributed Systems. In Proceedings of

the 12th European Conference on Computer Systems (EuroSys) (Belgrade, Serbia,
Apr. 2017).

[52] Gandhi, V., Banerjee, S., Agrawal, A., Ahmad, A., Lee, S., and Peinado, M.
Rethinking System Audit Architectures for High Event Coverage and Synchro-
nous Log Availability. In Proceedings of the 32nd USENIX Security Symposium

(Security) (Anaheim, CA, Aug 2023).
[53] Ge, X., Kuo, H.-C., and Cui, W. Hecate: Lifting and Shifting On-Premises

Workloads to an Untrusted Cloud. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security (Los Angeles, CA, USA,
2022).

[54] Godfrey, M., and Zulkernine, M. Preventing Cache-Based Side-Channel
Attacks in a Cloud Environment. IEEE Transactions on Cloud Computing (2014).

[55] Gong, S., Altinbüken, D., Fonseca, P., and Maniatis, P. Snowboard: Finding
Kernel Concurrency Bugs through Systematic Inter-Thread Communication

https://github.com/linux-test-project/ltp/tree/master/testcases/kernel
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/device-drivers
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/device-drivers
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/syscalls
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/syscalls
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/tracing
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/tracing
https://tls.mbed.org
https://memcached.org/
https://memcached.org/
https://unqlite.org/
https://www.linux-kvm.org/page/Virtio
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://github.com/AMDESE/linux-svsm
https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.anandtech.com/show/16537/amd-to-launch-3rd-generation-epyc-on-march-15th-milan-with-zen-3
https://www.anandtech.com/show/16537/amd-to-launch-3rd-generation-epyc-on-march-15th-milan-with-zen-3
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://enarx.dev/docs/technical/amd-sev-attestation
https://enarx.dev/docs/technical/amd-sev-attestation

Veil: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Analysis. In Proceedings of the 28th ACM Symposium on Operating Systems

Principles (SOSP) (Virtual Event, Oct. 2021).
[56] Gong, S., Peng, D., Altinbüken, D., Fonseca, P., and Maniatis, P. Snowcat:

Efficient Kernel Concurrency Testing using a Learned Coverage Predictor. In
Proceedings of the 29th ACM Symposium on Operating Systems Principles (SOSP)

(Koblenz, Germany, Oct. 2023).
[57] Google. google/syzkaller: syzkaller is an unsupervised coverage-guided kernel

fuzzer. https://github.com/google/syzkaller.
[58] Google. Introducing Google cloud confidential computing with confidential

VMs. https://cloud.google.com/blog/products/identity-security/introducing-
google-cloud-confidential-computing-with-confidential-vms.

[59] Google Cloud. Confidential computing concepts | Google Cloud. https://cloud.
google.com/confidential-computing/confidential-vm/docs/about-cvm.

[60] Gravani, S., Hedayati, M., Criswell, J., and Scott, M. L. Fast Intra-Kernel
Isolation and Security with IskiOS. In Proceedings of the 24th International

Symposium on Research in Attacks, Intrusions and Defenses (RAID) (2021).
[61] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., and Costa, M.

Strong and Efficient Cache Side-Channel Protection using Hardware Transac-
tional Memory. In Proceedings of the 27th USENIX Security Symposium (Security)

(Vancouver, BC, 2017).
[62] Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M., and Jaeger, T. Trust-

Shadow: Secure Execution of Unmodified Applications with Arm TrustZone.
In Proceedings of the 15th Annual International Conference on Mobile Systems,

Applications, and Services (MobiSys) (Niagara Falls, NY, 2017).
[63] Hassan, W. U., Bates, A., and Marino, D. Tactical Provenance Analysis for

Endpoint Detection and Response Systems. In Proceedings of the 41st IEEE

Symposium on Security and Privacy (Oakland) (San Francisco, CA, May 2020).
[64] Hetzelt, F., and Buhren, R. Security Analysis of Encrypted Virtual Machines.

ACM SIGPLAN Notices (2017).
[65] Hof, A. V., and Nieh, J. BlackBox: A Container Security Monitor for Protecting

Containers on Untrusted Operating Systems. In Proceedings of the 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI) (Carlsbad,
CA, July 2022).

[66] Hofmann, O. S., Kim, S., Dunn, A. M., Lee, M. Z., and Witchel, E. InkTag:
Secure Applications on an Untrusted Operating System. In Proceedings of the

18th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (Houston, TX, Mar. 2013).
[67] Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., and Guan, H. vTZ: Virtualizing

ARM TrustZone. In USENIX security symposium (2017).
[68] Intel. Intel 64 and ia-32 architectures software developer’s manual. Volume 3A:

System Programming Guide (2016).
[69] Karande, V., Bauman, E., Lin, Z., and Khan, L. SGX-Log: Securing System

Logs with SGX. In Proceedings of the 2017 ACM on Asia Conference on Computer

and Communications Security (ASIA CCS) (2017).
[70] Kim, T., Peinado, M., and Mainar-Ruiz, G. STEALTHMEM: System-Level Pro-

tection Against Cache-Based Side Channel Attacks in the Cloud. In Proceedings

of the 21st USENIX Security Symposium (Security) (Bellevue, WA, Aug. 2012).
[71] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,

Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,
H., and Winwood, S. seL4: Formal Verification of an OS Kernel. In Proceedings

of the 22nd ACM Symposium on Operating Systems Principles (SOSP) (Big Sky,
MT, Oct. 2009).

[72] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg,
M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre
Attacks: Exploiting Speculative Execution. In Proceedings of the 40th IEEE

Symposium on Security and Privacy (Oakland) (May 2019).
[73] Kuenzer, S., Badoiu, V.-A., Lefeuvre, H., Santhanam, S., Jung, A., Gain, G.,

Soldani, C., Lupu, C., Teodorescu, S., Raducanu, C., Banu, C., Mathy, L.,
Deaconescu, R., Raiciu, C., and Huici, F. Unikraft: Fast, Specialized Unikernels
the Easy Way. Proceedings of the Sixteenth European Conference on Computer

Systems (2021).
[74] Le, D. V., Hurtado, L. T., Ahmad, A., Minaei, M., Lee, B., and Kate, A. A Tale

of Two Trees: One Writes, and Other Reads. Optimized Oblivious Accesses to
Large-Scale Blockchains. In Proceedings of the Privacy Enhancing Technologies

Symposium (PETS) (2020).
[75] Lea, D. Dlmalloc, 2010.
[76] Lee, D., Jung, D., Fang, I. T., Tsai, C.-C., and Popa, R. A. An Off-Chip Attack

on Hardware Enclaves via the Memory Bus. In Proceedings of the 29th USENIX

Security Symposium (Security) (Boston, MA, Aug 2020).
[77] Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., and Song, D. Keystone:

An Open Framework for Architecting Trusted Execution Environments. In
Proceedings of the 15th ACM European Conference on Computer Systems (EuroSys)

(2020).
[78] Lee, H., Song, C., and Kang, B. B. Lord of the x86 Rings: A Portable User

Mode Privilege Separation Architecture on x86. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security (2018).
[79] Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., and Peinado, M. Inferring Fine-

grained Control Flow Inside SGX Enclaves with Branch Shadowing. In Pro-

ceedings of the 26th USENIX Security Symposium (Security) (Vancouver, BC, Aug

2017).
[80] Li, M.,Wilke, L., Wichelmann, J., Eisenbarth, T., Teodorescu, R., and Zhang,

Y. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. In 2022

IEEE Symposium on Security and Privacy (SP) (2022).
[81] Li, M., Zhang, Y., and Lin, Z. Crossline: Breaking "Security-by-crash" based

Memory Isolation in AMD SEV. In Proceedings of the 2021 ACM SIGSAC Confer-

ence on Computer and Communications Security (2021).
[82] Li,M., Zhang, Y., Lin, Z., and Solihin, Y. Exploiting Unprotected I/OOperations

in AMD’s Secure Encrypted Virtualization. In 28th USENIX Security Symposium

(USENIX Security) (2019).
[83] Li, M., Zhang, Y., Wang, H., Li, K., and Cheng, Y. CIPHERLEAKS: Breaking

Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel. In
30th USENIX Security Symposium (USENIX Security 21) (2021).

[84] Li, M., Zhang, Y., Wang, H., Li, K., and Cheng, Y. TLB Poisoning Attacks on
AMD Secure Encrypted Virtualization. InAnnual Computer Security Applications

Conference (2021).
[85] Li, S.-W., Koh, J. S., and Nieh, J. Protecting Cloud Virtual Machines from

Hypervisor and Host Operating System Exploits. In Proceedings of the 28th

USENIX Security Symposium (2019).
[86] Lighttpd. Lighttpd - fly light. https://www.lighttpd.net/.
[87] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,

Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown:
Reading Kernel Memory from User Space. In Proceedings of the 27th USENIX

Security Symposium (Security) (July 2018).
[88] Liu, C., Gong, S., and Fonseca, P. KIT: Testing OS-Level Virtualization for

Functional Interference Bugs. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (Vancouver, BC, Apr. 2023).
[89] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-Level Cache Side-

Channel Attacks Are Practical. In Proceedings of the 36th IEEE Symposium on

Security and Privacy (Oakland) (May 2015).
[90] Ma, S., Zhai, J., Kwon, Y., Lee, K. H., Zhang, X., Ciocarlie, G., Gehani, A.,

Yegneswaran, V., Xu, D., and Jha, S. Kernel-Supported Cost-Effective Audit
Logging for Causality Tracking. In Proceedings of the 2018 USENIX Annual

Technical Conference (ATC) (Boston, MA, July 2018).
[91] Martin, R., Demme, J., and Sethumadhavan, S. Timewarp: Rethinking Time-

keeping and Performance Monitoring Mechanisms to Mitigate Side-Channel
Attacks. In 2012 39th Annual International Symposium on Computer Architecture

(ISCA) (2012).
[92] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi, H.,

Shanbhogue, V., and Savagaonkar, U. R. Innovative Instructions and Software
Model For Isolated Execution. In Proceedings of the 2nd International Workshop

on Hardware and Architectural Support for Security and Privacy (HASP) (June
2013).

[93] Microsoft. Azure Confidential VMs Using SEV-SNP (DCasv5/ECasv5) are
Now Generally Available. https://techcommunity.microsoft.com/t5/azure-
confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-
ecasv5-are-now/ba-p/3573747.

[94] Microsoft Docs. Virtualization-Based Security (VBS). https://docs.microsoft.
com/en-us/windows-hardware/design/device-experiences/oem-vbs.

[95] Morbitzer, M., Huber, M., and Horsch, J. Extracting Secrets from Encrypted
Virtual Machines. In Proceedings of the Ninth ACM Conference on Data and

Application Security and Privacy (2019).
[96] Morbitzer, M., Huber, M., Horsch, J., and Wessel, S. Severed: Subvert-

ing AMD’s Virtual Machine Encryption. In Proceedings of the 11th European

Workshop on Systems Security (2018).
[97] Murdock, K., Oswald, D., Garcia, F. D., Van Bulck, J., Gruss, D., and Piessens,

F. Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland) (May
2020).

[98] Musl-Libc. musl-libc, 2017. https://www.musl-libc.org.
[99] Narayanan, V., Huang, Y., Tan, G., Jaeger, T., and Burtsev, A. Lightweight

Kernel Isolation with Virtualization and VM Functions. In Proceedings of the

16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments (VEE) (2020).
[100] NGINX Inc. NGINX High Performance Load Balancer, Web Server, & Reverse

Proxy. https://www.nginx.com.
[101] Orenbach, M., Lifshits, P., Minkin, M., and Silberstein, M. Eleos: ExitLess

OS Services for SGX Enclaves. In Proceedings of the 12th European Conference

on Computer Systems (EuroSys) (Belgrade, Serbia, Apr. 2017).
[102] Osvik, D. A., Shamir, A., and Tromer, E. Cache Attacks and Countermeasures:

the Case of AES. In Cryptographers’ Track at the RSA Conference (2006).
[103] Paccagnella, R., Datta, P., Hassan, W. U., Bates, A., Fletcher, C., Miller,

A., and Tian, D. CUSTOS: Practical Tamper-Evident Auditing of Operating
Systems Using Trusted Execution. In Proceedings of the 2020 Annual Network

and Distributed System Security Symposium (NDSS) (San Diego, CA, Feb. 2020).

https://github.com/google/syzkaller
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://www.lighttpd.net/
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.musl-libc.org
https://www.nginx.com

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

[104] Paccagnella, R., Liao, K., Tian, D., and Bates, A. Logging to the Danger
Zone: Race Condition Attacks and Defenses on System Audit Frameworks.
In Proceedings of the 27th ACM Conference on Computer and Communications

Security (CCS) (Nov. 2020).
[105] Page, D. Partitioned Cache Architecture as a Side-Channel Defence Mechanism.

Cryptology ePrint Archive (2005).
[106] Peng, D., Liu, C., Palit, T., Fonseca, P., Vahldiek-Oberwagner, A., and Vij,

M. uSWITCH: Fast Kernel Context Isolation with Implicit Context Switches.
In 2023 IEEE Symposium on Security and Privacy (Oakland) (San Francisco, CA,
2023).

[107] Phoronix. 7-Zip Compression. https://openbenchmarking.org/test/pts/
compress-7zip-1.9.0.

[108] Phoronix. OpenSSL Benchmark. https://openbenchmarking.org/test/pts/
openssl.

[109] Phoronix. SQLite SpeedTest Benchmark. https://openbenchmarking.org/test/
pts/sqlite-speedtest.

[110] Rane, A., Lin, C., and Tiwari, M. Raccoon: Closing Digital Side-Channels
through Obfuscated Execution. In Proceedings of the 24th USENIX Security

Symposium (Security) (Washington, DC, Aug. 2015).
[111] Riley, R., Jiang, X., and Xu, D. Guest-Transparent Prevention of Kernel Rootkits

with VMM-based Memory Shadowing. In Recent Advances in Intrusion Detection:

11th International Symposium (RAID) (2008).
[112] Seshadri, A., Luk, M., Qu, N., and Perrig, A. SecVisor: A Tiny Hypervisor to

Provide Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings

of the 21st ACM Symposium on Operating Systems Principles (SOSP) (Stevenson,
WA, Oct. 2007).

[113] Shi, J., Song, X., Chen, H., and Zang, B. Limiting Cache-Based Side-Channel
in Multi-Tenant Cloud using Dynamic Page Coloring. In 2011 IEEE/IFIP 41st

International Conference on Dependable Systems and Networks Workshops (DSN-

W) (2011).
[114] Shi, L., Wu, Y., Xia, Y., Dautenhahn, N., Chen, H., Zang, B., and Li, J. De-

constructing Xen. In Proceedings of the 2017 Annual Network and Distributed

System Security Symposium (NDSS) (San Diego, CA, Feb. 2017).
[115] Shih, M.-W., Lee, S., Kim, T., and Peinado, M. T-SGX: Eradicating Controlled-

Channel Attacks Against Enclave Programs. In Proceedings of the 2017 Annual

Network and Distributed System Security Symposium (NDSS) (San Diego, CA,
Feb. 2017).

[116] Soares, L., and Stumm, M. FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls. In Proceedings of the 9th USENIX Symposium on

Operating Systems Design and Implementation (OSDI) (Vancouver, Canada, Oct.
2010).

[117] SPEC. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[118] SQLite Consortium. SQLite home page.
[119] SUSE. Understanding Linux Audit. https://documentation.suse.com/sles/12-

SP4/html/SLES-all/cha-audit-comp.html.
[120] Swift, M. M., Bershad, B. N., and Levy, H. M. Improving the Reliability of

Commodity Operating Systems. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP) (Bolton Landing, NY, Oct. 2003).
[121] The Apache Software Foundation. ab - Apache HTTP Server Benchmark

Tool. https://httpd.apache.org/docs/2.4/programs/ab.html.
[122] Tsai, C.-C., Arora, K. S., Bandi, N., Jain, B., Jannen, W., John, J., Kalodner,

H. A., Kulkarni, V., Oliveira, D., and Porter, D. E. Cooperation and Security
Isolation of Library OSes for Multi-Process Applications. In Proceedings of

the 9th European Conference on Computer Systems (EuroSys) (Amsterdam, The
Netherlands, Apr. 2014).

[123] Tsai, C.-C., Jain, B., Abdul, N. A., and Porter, D. E. A Study of Modern
Linux API Usage and Compatibility: What to Support When You’re Supporting.
In Proceedings of the 11th European Conference on Computer Systems (EuroSys)

(London, UK, Apr. 2016).
[124] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R.

Telling your Secrets without Page Faults: Stealthy Page Table-Based Attacks
on Enclaved Execution. In Proceedings of the 26th USENIX Security Symposium

(Security) (August 2017).
[125] Werner, J., Mason, J., Antonakakis, M., Polychronakis, M., andMonrose, F.

The SEVerESt Of Them All: Inference Attacks Against Secure Virtual Enclaves.
In Proceedings of the 2019 ACMAsia Conference on Computer and Communications

Security (AsiaCCS) (2019).
[126] Wilke, L., Wichelmann, J., Morbitzer, M., and Eisenbarth, T. Sevurity: No

Security without Integrity: Breaking Integrity-Free Memory Encryption with
Minimal Assumptions. In IEEE Symposium on Security and Privacy (Oakland)

(2020).
[127] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. One Bit Flips, One Cloud

Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In Proceedings

of the 25th USENIX Security Symposium (Security) (August 2016).
[128] Xiong, X., and Liu, P. SILVER: Fine-Grained and Transparent Protection Do-

main Primitives in Commodity OS Kernel. In Proceedings of the 16th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID) (2013).

[129] Xu, M., Jiang, X., Sandhu, R., and Zhang, X. Towards a VMM-Based Usage
Control Framework for OS Kernel Integrity Protection. In Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies (SACMAT) (2007).

[130] Xu, Y., Cui, W., and Peinado, M. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (Oakland) (San Jose, CA, May 2015).
[131] Zhao, K., Gong, S., and Fonseca, P. On-demand-fork: A microsecond fork

for memory-intensive and latency-sensitive applications. In Proceedings of the

USENIX European Conference on Computer Systems (EuroSys) (2021).
[132] Zhao, S., Li, M., Zhang, Y., and Lin, Z. vSGX: Virtualizing SGX Enclaves on

AMD SEV. In 2022 IEEE Symposium on Security and Privacy (SP) (2022), IEEE.
[133] Zhou, Z., Reiter, M. K., and Zhang, Y. A Software Approach to Defeating

Side Channels in Last-Level Caches. In Proceedings of the 23rd ACM Conference

on Computer and Communications Security (CCS) (Vienna, Austria, Oct. 2016).
[134] Zhuang, M., and Aker, B. memaslap - Load Testing and Benchmarking a

Server. http://docs.libmemcached.org/bin/memaslap.html.

https://openbenchmarking.org/test/pts/compress-7zip-1.9.0
https://openbenchmarking.org/test/pts/compress-7zip-1.9.0
https://openbenchmarking.org/test/pts/openssl
https://openbenchmarking.org/test/pts/openssl
https://openbenchmarking.org/test/pts/sqlite-speedtest
https://openbenchmarking.org/test/pts/sqlite-speedtest
https://www.spec.org/cpu2006/
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://httpd.apache.org/docs/2.4/programs/ab.html
http://docs.libmemcached.org/bin/memaslap.html

	Abstract
	1 Introduction
	2 A Security Monitor for CVMs
	2.1 Current Approaches and Trade-Offs
	2.2 CVM Security Monitor Principles

	3 AMD SEV-SNP Background
	4 Veil Overview
	4.1 Threat Model and Assumptions
	4.2 Key Observation and Challenges

	5 Veil Framework
	5.1 Secure Dual-Factor Privilege Domains
	5.2 Replicated VCPUs for Domain Switch
	5.3 Privileged Functionality Delegation

	6 Veil Protected Services
	6.1 VeilS-Kci: Kernel Code Integrity
	6.2 VeilS-Enc: Shielded Program Execution
	6.3 VeilS-Log: System Audit Log Protection

	7 Implementation
	8 Security Analysis and Validation
	8.1 Analyzing Framework Security
	8.2 Analyzing Protected Services Security
	8.3 Validation

	9 Performance Evaluation
	9.1 Micro-Benchmarks and Analysis
	9.2 Case Studies on Protected Services
	9.3 Key takeaways

	10 Discussion and Future Work
	11 Related work
	12 Conclusion
	References

