
Toward Optimal Selection of Information Retrieval Models
for Software Engineering Tasks

Md Masudur Rahman
Department of Computer Science

Purdue University
West Lafayette IN, US
rahman64@purdue.edu

Saikat Chakraborty, Gail Kaiser, Baishakhi Ray
Department of Computer Science

Columbia University
New York NY, US

{saikatc, kaiser, rayb}@cs.columbia.edu

Abstract—Information Retrieval (IR) plays a pivotal role in
diverse Software Engineering (SE) tasks, e.g., bug localization
and triaging, bug report routing, code retrieval, requirements
analysis, etc. SE tasks operate on diverse types of documents
including code, text, stack-traces, and structured, semi-structured
and unstructured meta-data that often contain specialized vo-
cabularies. As the performance of any IR-based tool critically
depends on the underlying document types, and given the
diversity of SE corpora, it is essential to understand which models
work best for which types of SE documents and tasks.

We empirically investigate the interaction between IR models
and document types for two representative SE tasks (bug lo-
calization and relevant project search), carefully chosen as they
require a diverse set of SE artifacts (mixtures of code and text),
and confirm that the models’ performance varies significantly
with mix of document types. Leveraging this insight, we propose
a generalized framework, SRCH, to automatically select the
most favorable IR model(s) for a given SE task. We evaluate
SRCH w.r.t. these two tasks and confirm its effectiveness. Our
preliminary user study shows that SRCH’s intelligent adaption of
the IR model(s) to the task at hand not only improves precision
and recall for SE tasks but may also improve users’ satisfaction.

Index Terms—Information retrieval; IR metrics; project rec-
ommendation; bug localization

I. INTRODUCTION

Information retrieval (IR) plays a pivotal role in many Soft-
ware Engineering (SE) tasks. Haiduc et al. [1] identified more
than 20 different SE tasks, e.g., feature location, traceability
link recovery, bug localization and triaging, that benefit from
IR. IR techniques generally depend on three key components:
(i) a query that expresses the user’s information need; (ii)
a corpus of candidate documents from which the relevant
information is extracted; and (iii) an IR model that considers
a query and a corpus of candidate documents, and computes
a similarity score between the query and each candidate
document. Typically, the candidate documents are then ranked
by decreasing values of the similarity scores. Similarity scores
based on similar bag-of-words (e.g., VSM [2], BM25 [3]) and
context-based matching (e.g., LSI [4], WMD [5]) are some
well-known IR models that measure document similarities.

When applying IR to SE tasks, well-established models such
as the above are typically used as they are already stable,
fine-tuned and well-explored, and perhaps SE researchers are
primarily concerned with solving their SE problem rather than
exploring alternatives among IR models. Although further

tuning these models for SE tasks has been investigated [6],
IR models have been developed mainly for natural language
(NL) text corpora. But SE corpora, which often contain diverse
document types including source code, test cases, bug reports,
API documentation, project overviews, etc., are linguistically
quite different from conventional natural language even when
in text form [7]. For example, researchers have shown that
Google web-search, whose IR models are heavily optimized
for natural text, does not perform as well for code search [8].

Thus, we start this paper with a very simple question:
among the available IR models, are there any models (or their
combinations) that work better for a given SE task than others?
In particular, we investigate whether choice among IR models
has any significant impact on the SE task at hand—which
model is suitable for source code elements (e.g., method
names), which model is right for specific kinds of documents
(e.g., bug reports), which model is more appropriate for tasks
measuring the similarities across these two types of artifacts
(e.g., for bug localization)? We devise a lightweight framework
to automate the model selection, combination, and parameter
tuning process, and show that tools built with such informed
choices can outperform baseline tools by a significant margin.

We investigate two representative tasks—that often arise
during software maintenance—where IR techniques have often
been used in the past: (i) bug localization: given a bug
report as query, retrieve the most likely to be relevant source
file(s), so the developer can fix the bug [9]–[15], and (ii)
project recommendation: given a GitHub project as query,
find functionally similar GitHub projects, for the developer
to explore “issues”, test cases, reviews, and other artifacts that
may grant insights that could lead to improving the developer’s
own project [16]–[22]. These tasks are carefully chosen to
require using IR methods across multiple different kinds of
SE document types. While bug localization relies on similarity
computation between heterogeneous document types (code
vs. bug report), for project recommendation similarity needs to
be measured among multiple different but homogeneous types
of documents (code vs. code, GitHub description vs. descrip-
tion, GitHub readme vs. readme, etc.).

We studied 1100 bug reports for bug localization and 1832
GitHub projects for project recommendation considering a
range of different IR models. We found that BM25 performs
best for the code vs. bug report of bug localization, but

it is not as effective for project recommendation’s homoge-
neous document comparison. For the various natural language
comparisons of project recommendation, the LSI and WMD
context-aware models worked better, while the keyword-based
bag-of-words VSM model performs best for code vs. code.

Given the availability of many off-the-shelf IR models, it
is challenging to choose the right one for these and other
SE problems, particularly when any given model is likely to
require tuning to achieve its optimal performance for the task
and corpus at hand [23]–[25]. Moreover, for those SE tasks
that involve different mixes of comparisons across documents,
a single IR model may not be the best choice for all similarity
comparisons. We constructed our generic framework, SRCH
(Software Search), to automatically select the optimal IR
model, or set of models, for a given SE task.

We evaluate SRCH w.r.t. the two tasks introduced above: For
project recommendation, SRCH recommends similar projects
with a mean average precision of 76% for finding top-10
related projects (MAP@10). SRCH boosts the accuracy of
project recommendation up to 24% w.r.t. baseline tools that use
off-the-shelf VSM or LSI. SRCH also significantly outperforms
two state-of-the-art tools: CLAN [16] and RepoPal [22] by
186% and 107%, respectively, at MAP@10. The BM25-based
model selected by SRCH for bug localization outperforms the
VSM-based baseline, achieving up to 43% performance gain,
even though VSM has been previously been used in many
previous bug localization tools, e.g., [12], [26]–[28].

We also conducted a preliminary user study with 12
users to evaluate SRCH w.r.t. project recommendation: these
users found useful recommendations within top-5 outcomes
(MAP@5) for 88% of the example queries.

This paper makes the following contributions:
1) We provide empirical evidence that the success of IR-

based SE tasks depends significantly on the choice of
IR model(s), which in turn depends on the underlying
document type(s), and that careful selection, combination
and tuning of IR models can improve the accuracy of IR-
based SE tasks.

2) We propose and evaluate SRCH, our generic framework to
automate IR model selection and tuning for SE tasks. We
also show that SRCH can be used in legacy environments
to improve accuracy.

3) We curate a valuable dataset of 1832 GitHub projects
by retrieving their descriptions, readme contents, class
and method names, imported package usage, and APIs for
project recommendation, where we manually associated
each project with a fine-grained category that describes
its functionalities. Our dataset is publicly available at
https://github.com/masud99r/IR-in-SE

II. BACKGROUND

A. IR Models

1. Vector Space Model (VSM) [2] models represent docu-
ments (D) and queries (q) as N-dimensional vectors, where N
is the size of the vocabulary, and each dimension corresponds
to a separate word or term. Each vector element represents the

weight of the corresponding term; i.e., q = (qw1, ..., qwN)
and D = (Dw1, ..., DwN) where the qwi and Dwi are the
weights of the term i in a bag-of-words (BOW) representation
of vocabulary size N . An effective way to compute the term
weight is the term frequency-inverse document frequency (TF-
IDF), where TF represents the importance of the term in
a document, and IDF represents how valuable or rare the
term is across all the documents. Then the similarity between
two documents is computed as the cosine angle between
corresponding vectors as sim(q,D) = cos(q,D) = qTD

||q|| ||D|| .

Implications: The VSM model is effective and simple to
implement. However, as a BOW-based approach, it ignores
token order. In the cosine similarity formula, the magnitudes
of the document vectors (||q|| and ||D||) are in the denominator
and give smaller cosine values for larger dimensional vectors.
Thus, longer documents may be penalized because they have
more components that are indeed relevant.

2. BM25 [3] (BM stands for Best Matched, 25 refers to a
standard encoding) is a different BOW model that looks for
how many of the query terms are present in a document. It
ranks the document with the highest number of query terms,
normalized by document length, at the top.

Implications: A distinguishing feature of BM25 is that it
treats a matching term’s importance in the document and in the
query differently, and also gives special attention to that term’s
frequency in the query. This improves performance when the
query and document are of different types. Then document
length normalization enables more accurate rank prediction
when candidate documents are of various lengths. Despite
these advantages, BM25 is (like VSM) a keyword-matching
model that ignores word order. Thus BM25 might fit well
where document length varies and token order doesn’t matter.

3. Latent Semantic Indexing (LSI) [4] assumes that words
with similar meaning will have similar context. LSI projects
a higher dimensional document-term co-occurrence frequency
matrix into a lower dimensional latent space to create doc-
ument vectors. An effective way of using LSI is to use
the TF-IDF weight instead of the raw co-occurrence count
of a term. The IDF can be estimated from the document
corpus. After inferring the lower dimensional vector of both
query and candidate documents, cosine similarity computes
the similarity between two document vectors as equation
sim(q,D) = cos(q,D) = qTD

||q||||D|| .
Implications: Intuitively, the dimension reduction step com-

putes similarity scores for every word w.r.t. every other based
on their co-existence in a common context. In this way, LSI
captures the meaning of synonyms and homonyms in the latent
space. As opposed to VSM and BM25, LSI can differentiate
documents with synonymous and homonymous words but few
semantic similarities.

4. Word Embedding. This approach also assumes that similar
words should have similar context [29]. In Word Embedding,
a natural language processing (NLP) technique, each word
w is represented by a d-dimensional vector of real numbers.
This vector is learned from the context formed by the words

preceding and following w in a sentence. Similar words
should have similar context thus similar embedding. Many
popular similarity measures like cosine similarity can be used
to measure similarities between the embedded documents.
Among them, Word Mover’s Distance (WMD) has proved to
be the winner [5]. For each query term, WMD searches for the
semantically closest term in each document, where the distance
between two terms is calculated as a Euclidean distance in
the word embedding space. The summation of the minimum
distances for all query terms represents the distance from a
query to a candidate document.

Implications: As word embedding captures the words’
contextual information, WMD bridges the semantic gap be-
tween documents. For example, say the descriptions of two
projects are “image gallery app for Lollipop” and “Android
photo viewer”. They are very close in meaning but have
no shared words. Thus, traditional similarity measures like
a keyword-based BOW model could not find any similarity
between these two documents. In contrast, WMD can effi-
ciently judge that they are highly similar since they have
very similar word embeddings. In SE artifacts, synonymous
terminology is common;e.g.,upgrade and update are often used
interchangeably. WMD may be useful to detect similarity
among documents with no identical words.

B. Studying SE Tasks

We analyze the effect of different IR models on different
types of software documents w.r.t. two tasks that often arise
during software maintenance:

(i) Bug Localization. Given a bug report as the query,
this task ranks all the source files in the project repository
based on their relevance to the query [9]–[15]. The files that
top the ranking are more likely to contain the root cause of
the bug. For example, for bug report id 369884 [30] in the
Eclipse-Platform-UI [31] project, file E4Application.java [32]
was fixed (see Table IV). A perfect bug localization tool would
rank this file at top if queried with the above bug report.

(ii) Project Recommendation. During projects’ evolution,
developers often look for similar applications from which to
port similar features [33], [34], explore relevant test cases and
library usage [35], and look for other artifacts that may grant
insights to improve the developer’s own project [16]. Given a
project as a query, this task tries to find functionally similar
projects from GitHub. A ranked list of projects is retrieved
with the most relevant projects at the top [16]–[22]. For
example, screenbird [36] and FFmpegRecorder [37] are both
Video Recorder software. For a query with the first project,
the tool should return a list of Video Recorder projects that
includes the second project (see Table VI).

III. METHODOLOGY

A. Study Subjects

We analyze a wide variety of projects for studying the two
SE tasks introduced in Section II-B. For bug localization,
Table Ia, we collect a benchmark bug report dataset [26],
[38] that contains 1100 bug reports from four projects. For

project recommendation, Table Ib, we use a total 1832 GitHub
projects across 112 functional categories.

B. Data Collection
Collecting Bug Report Data. The bug report dataset, which
has been used previously for bug localization in [26]–[28],
[38], studies four projects: Birt [39], Eclipse Platform UI
(Eclipse-UI) [31], Eclipse JDT [40], and SWT [41]. Each bug
report contains a summary, description, report time, and status
of its fix along with the bugfix commit. We downloaded the
before-fix version of each project, and treated its files that
were deleted or modified in the bugfix commit as the true
buggy files. Any files added to the before-fix version cannot
be predicted, so are not part of the evaluation.

TABLE I: Study Subjects
(a) Bug Localization task

Time Range # bug # Java files in versions # API
Project (mm/yy) reports median total entries

Birt 06/05 -12/13 200 8770 1770K 957
Eclipse-UI 10/01 - 01/14 200 6141 1228K 1314

JDT 10/01 - 01/14 500 8819 4421K 1329
SWT 02/02 - 01/14 200 2794 559K 161

(b) Project Recommendation task

#Java #Method #Import
#Project #Category File Class #API Package

Method-A 1590 78 216K 4.9M 1.5M 2.04M
Method-B 242 55 14K 0.3M 0.1M 0.12M

Total 1832 112 230K 5.2M 1.6M 2.16M

Collecting GitHub Projects. For studying project recom-
mendation, we collect GitHub open source projects using the
following two approaches: First, in (i) Method-A, we search
GitHub with keywords representing project functionalities
(e.g., media player, text editor, etc.), and download the relevant
projects. However, as GitHub search primarily looks at project
descriptions, a project without a proper description will not
be retrieved in this step. Hence, in (ii) Method-B, we instead
found GitHub projects with Google Play links and utilized
their Google Play descriptions.
Method-A. Given a project functionality (e.g., Video
Recorder), we use GitHub search API [42] to search for
relevant projects using the functionality term as the search
keyword. We select different types of functionalities using
the DMOZ Ontology [43], which is a hierarchical directory
of the Web. In this ontology, any category under ‘software’
represents a meaningful functionality (e.g., Spelling Software,
Grammar and Spell Checkers, etc.). We remove homonyms to
reduce confusion of the search task. This approach gives us
90 different types of project functionalities.

We use these functionalities to retrieve different types of
Java projects from GitHub. We exclude the forked projects
as they include near-identical projects and overfit our project
similarity data. For each query, we select the top 1, 000
projects with 3-star rating and above from the search results.
We end up with 2180 unique projects under 90 categories,
where some projects may belong to multiple categories.

We further manually investigate the associated categories
of each project, because GitHub search is mostly based on
keyword matching and in some cases it leads to inaccurate cat-
egorization. For example, project Eid-Applet [44]’s description
is “eID Applet to enable BE eID cards within web browsers
and it is retrieved by the query Web Browser”. The retrieved
project is certainly not a Web Browser but an Applet. While
manually investigating the project annotation, we further mod-
ify, delete, and add categories (i.e. functionalities) as needed.
We also remove some ambiguous projects. This reduces to
1590 projects under 78 different functionalities.

Method-B. Here we collect 242 GitHub projects that have
Google Play links in their descriptions or README contents
but lack keywords about project functionalities. Again we
exclude forked projects and projects with less than 3 stars to
try to avoid toy projects [45]. Then we manually annotate these
projects using the details available in Google Play, particularly
the app description, similar app suggestion, category, etc.. We
found some new project functionalities not seen in Method-A.

Finally, our dataset has 1832 (1590 + 242) projects with
112 different functionalities, shown in Table Ib, where Media
Player, Search Engine, Database Systems, etc. are the top
functionalities with the most member projects.

For both methods, two authors of this paper (separately)
annotated by project category; they agreed in 95% of cases,
and resolved disagreements by discussion. As the annotator
needed to consult various documents (i.e. description, readme,
Google store, etc.) to determine functional category, it required
tremendous manual effort to annotate all the projects. Per
annotator, it took on average 3 minutes per project and in
total approx. 90 working hours.

C. Feature Extraction
Features of the bug localization task. We extract six different
features similar to Ye et al. [26]:
(i) Source Code: To begin with, we consider all the source files
as a single document. Next, to compare with the baseline [26],
we also implement another setting where only the method
bodies of a source file are considered eliminating import
statements, class names, etc.. We extract the method bodies
using an Eclipse JDT [40].
(ii) API Description: To bridge the lexical gap between text
and code, we leverage the API documentation. We build the
document for a source file by concatenating the description of
all the API classes used in the source files.
(iii) Collaborative Filtering Score: For a given bug report, the
bug-introducing files may be the same files that were fixed
before to fix similar prior bugs [46]. This feature prioritizes
the previously fixed files. For each file, we build a document
concatenating all the previous bug reports for which the file
was responsible. The similarity is calculated between the query
bug report and this constructed document.
(iv) Class Name: The existence of Class name tokens in a bug
report is a strong indication that the corresponding Class file
might be responsible for the bug. It is hypothesized that the
longer the Class name, the stronger the signal of bugs [26].
This feature concatenates all the class names per file.

(v) Bug-Fixing Time: If a source file was fixed recently, it
is more likely to contain bugs than a file that was fixed a
long time ago [26]. This score is calculated by the inverse
of the time difference in months between the query’s bug
reporting time and the most recent (previous) bug fix time
of the corresponding source file.
(vi) Bug-Fixing Frequency: It is also assumed [26] that if
a file has been responsible for fixing many previous bugs, it
is more likely to contain bugs in future. Thus, this score is
calculated as the number of bugs previously fixed in a file.

Features of project recommendation task. We choose five
types of SE artifacts:
(i) Project Description: This textual artifact is often short and
concisely represents the project functionality.
(ii) Readme Content: This textual artifact usually contains
a detailed description including how to install and run the
project.
(iii) Method & Class names: Developers often use meaningful
identifier names when implementing their project [47]. Thus,
it might be possible that projects with similar functionalities
use similar method or class names. For example, two text
editor applications may have similar methods with names
copy, paste, save, etc. To check this hypothesis, we retrieved
method and class names that are declared within a project.
(iv) Import Package name: Similar projects often use similar
API packages [16]. This motivates us to use imported API
package names and class names as features. We use the Eclipse
JDT [40] framework to collect these names.
(v) API name: The API Class refers to the classes defined
in system libraries or other third-party libraries or packages.
To extract these, using Eclipse JDT, we first extract all the
classes used in a project and then remove the classes defined
within the project from this list. The remaining class names
are assumed to be API names.

D. Data Pre-processing

For each feature, we use standard natural language process-
ing (NLP) techniques for data processing like tokenization,
normalization, stemming, and stopword removal. First, we
clean the documents by removing the special characters (i.e.
non-English) and punctuation. As a convention, Java uses
camel case format for class, method, and variable names. For
such compound tokens (e.g., TerminalFactory), in both text
and code artifacts, we further extract smaller token units (i.e.
Terminal and Factory). We also keep the original compound
token to keep actual keyword information. We then normalize
the tokens: remove numeric characters and convert to lower
case letters. To avoid bias from the frequently occurring but
less informative tokens we remove two types of stopword:
standard English stopwords (adopted from [48]) and Java
language related stopwords, i.e. keywords [49]: void, public,
while, etc. To reduce the unwanted lexical gap between tokens,
we apply the Porter Stemmer[50] to convert words to its base
form (e.g., convert computes and computed into comput).

E. Evaluation Metric
We evaluate an IR task w.r.t. its ground truth sets, i.e., given

a query and a candidate document, we check whether the
retrieved results match its corresponding ground truth. We use
several standard evaluation metrics [51] as described below:
1. Precision (P). For a given query q, precision is the fraction
of retrieved documents that are also present in the ground
truth set. Thus, P = r

d , where r is the number of relevant
items from the retrieved d documents.
2. Recall (R). For a given query q, recall is the fraction of
relevant documents that are retrieved. If t be the total relevant
documents for the query q, the recall is R = r

t .
3. Mean Average Precision (MAP). For a set of queries,
MAP is the mean of the average precision of individual
queries [51]. First, for each query, an average precision is
computed for each rank. Given a query(q) and its rank-
ing documents, the average precision of q is calculated as
AvgPrec(q) = (

∑R
i=1

i
ranki

)/R, where R is the total number
of relevant documents, ranki is the ranking position of the
relevant document i in the retrieved ranking and i/ranki = 0
if the relevant document i was not retrieved by the model.
Then we take the mean of this average precision across all the
queries using equation MAP (Q) = 1

|Q|
∑|Q|
j=1AvgPrec(qj)

to get MAP . Here, Q is the entire query set.
4. Mean Reciprocal Rank (MRR). Given a retrieved list for a
query, the reciprocal rank is computed as the multiplicative
inverse of the rank of the first relevant document. The mean
of such reciprocal rank across all the queries are taken using
equation MRR(Q) = 1

|Q|
∑|Q|
i=1

1
ranki

. Here, ranki is the
rank position of the first relevant document for the ith query.
5. Normalized Discounted Cumulative Gain (NDCG) is an-
other popular metric for evaluating search-related tasks, em-
phasizing retrieving highly relevant documents [51]. Instead
of binary judgment, relevant or irrelevant, higher value on a
scale of [0, r], where r > 2, indicates greater relevance.

We evaluate a search result by computing these evaluation
metrics at different rank cut-offs. During comparison we use
percentage gain computed as gain = (b − a)/a ∗ 100, any
metric value changes from a to b.

F. Model Configurations
Performance of IR models varies significantly with different

parameter settings [23], [25]. For a fair comparison, we tune
each model to its best performing configuration for each task,
shown in Table II. Since tuning is not the main focus of
the paper, we simply did an exhaustive search varying the
parameter values at regular intervals and chose the best.

TABLE II: Best performing models’ configurations
VSM BM25 LSI Word2Vec

Min Min Min Projected Min Window Vocab

DF DF k1 k2 b DF Dim. DF Dim. Size Size

project recommendation 2 2 1.5 1.5 0.75 2 100 5 300 5 18M

bug localization 1 2 1.5 1.5 0.75 15 100 5 100 10 21.8K

We train a skip-gram word2vec [52] word embedding model
which is used by WMD. We use a diverse collection of 3.7M

Wikipedia articles [53] for the training data. These articles
usually contain multiple paragraph descriptions of Wikipedia
concepts. Since a project description is usually shorter in
length and might not be represented by the Wikipedia articles,
we also include 7.5M GitHub project description collected
using GHTorrent [54]. We also tried other word2vec models
for import package and API, using corresponding documents
for training, but found the resulting embedding less effective
w.r.t. the project recommendation task. We use Gensim’s [55]
Python implementation of word2vec to train on our data.

For WMD in the bug localization task, we used a pre-trained
word2vec model which is trained on source code and API
documentation and found to be effective on the same dataset
for bug localization [38].

IV. EMPIRICAL STUDY

Our central question is, for a given SE task, whether the
choice of IR models matters significantly across different
types of SE artifacts. In general, IR models are applied either
on heterogeneous or homogeneous artifacts, depending on
whether queries and documents are of different or similar
types, respectively. The bug localization task is a classic
example of the former where query and candidate document
types are different (bug report vs. source code). In contrast,
in project recommendation, IR models are applied to homo-
geneous artifacts: code vs. code, description vs. description,
readme vs. readme, etc. We investigate the impact of different
IR models: For each model, we choose its best performing
configuration as shown in Table II.

RQ1. How well do different IR models perform across
heterogeneous SE artifacts for the bug localization task?

TABLE III: Impact of different IR models on the bug localization
task using heterogeneous artifacts

Birt Eclipse-UI JDT SWT

VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD

MAP@10 0.11 0.03 0.17 0.02 0.10 0.06 0.29 0.02 0.06 0.02 0.28 0.00 0.10 0.11 0.42 0.01

MRR 0.13 0.04 0.18 0.02 0.12 0.08 0.30 0.02 0.08 0.03 0.31 0.01 0.12 0.13 0.44 0.01

P@10 0.03 0.02 0.05 0.02 0.04 0.03 0.08 0.02 0.02 0.01 0.07 0.00 0.04 0.04 0.10 0.01

R@10 0.13 0.05 0.23 0.02 0.16 0.08 0.45 0.02 0.14 0.04 0.43 0.00 0.18 0.20 0.55 0.01

Best performing values are highlighted in Red (bold) for each project

We check the similarities between bug reports and source
files by studying 1100 bug reports from four projects. The
query is the bug report and the documents are different source
code files and meta-data. A successful IR model will rank the
actual buggy file(s) at the top. Table III summarizes the results.

TABLE IV: Sample results for bug localization
Bug Reports and Fixed File Rank

Bug 369884 [30] platform:/plugin/ not used for applicationXMI ... BM25=1
used for CSS resources or Icons. ... applicationXMI parameter. VSM=31
Also the e4 wizard should be adjusted to create the right URI. LSI=110
Fixed File : E4Application.java [32] WMD=5983

BM25 is the best performing model over all the models
(tuned following Section III-F) across all the projects it out-
performs other models significantly and achieves a percentage
gain of (MAP@10, MRR): Birt (54%, 38%), Eclipse-UI
(190%, 150%), JDT (366%, 287%), and SWT (320%, 266%),

TABLE V: Impact of different IR models on project recommendation using homogeneous artifacts
Description Readme Method Class Import Package API

VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD

MAP@10 0.51 0.57 0.51 0.51 0.37 0.39 0.26 0.29 0.37 0.36 0.16 0.25 0.29 0.24 0.07 0.20 0.31 0.25 0.22 0.25
MRR 0.56 0.61 0.55 0.57 0.44 0.45 0.30 0.34 0.43 0.40 0.19 0.29 0.34 0.29 0.08 0.26 0.35 0.28 0.26 0.30
P@10 0.40 0.49 0.41 0.33 0.25 0.29 0.14 0.14 0.23 0.24 0.07 0.10 0.16 0.13 0.03 0.08 0.17 0.13 0.10 0.12
R@10 0.13 0.16 0.13 0.10 0.07 0.08 0.03 0.03 0.06 0.07 0.02 0.03 0.05 0.03 0.01 0.02 0.05 0.04 0.04 0.04

Best performing values are highlighted in Red (bold) for each project

compared to the second best VSM model. For all individual
queries these differences are statistically significant (p-value
≤ 0.05) with medium to large Cohen’s d effect size [56].
Table IV shows an example, where BM25 ranks the intended
file at top-1 position, whereas VSM ranks it at 31st place.
Discussion. Our documents are source code files and the query
is a bug report. Since source code files can vary significantly
in length, cosine similarity methods like VSM and LSI inad-
vertently hurt longer documents as the document length ||D||
is in the denominator of the cosine function (see Section II).
BM25 mitigates this with document length normalization.

Moreover, VSM and LSI assume both query and document
are of same type and represent them in the same conceptual
space. For heterogeneous artifacts, representing them in the
same space is not necessarily effective. Further, context-aware
models like LSI and WMD are less effective—the same term
can exist in different surroundings across two different types
of documents. In the example of Table IV, the term “e4”,
which is one of the most important terms to associate the
report with the file, appears in very different contexts: in the
query “e4” appears in the bug report text, while in the source
file document it is the class/file name.

Result 1: BM25 achieves best performance for measuring
similarities across heterogeneous documents for the bug lo-
calization task.

RQ2. How well do different IR models perform for
homogeneous SE artifacts for project recommendation?

Here, we study two types of SE artifacts: project documen-
tation (description and readme text) and source code (method
and class names, import package names, and API names).

For a given project set N , we take one project as the
query and consider the remaining N − 1 projects as candidate
documents. If the categories (i.e. functionalities) of a retrieved
project and the query project are identical, we consider that
as a success. We take the average performance across all the
projects in a query set to get overall performance. We apply
all four IR models to each feature and report the results for
200 query projects in Table V. We discuss the results mostly
w.r.t. MAP@10. However, a similar conclusion can be drawn
for all other evaluation metrics.

For the textual artifacts, in general, LSI achieves highest
performance for most of the evaluation settings. For project
description text, the LSI model performs best for all the
evaluation metrics and gains 11.76% compared to the second
best models (WMD, VSM, and BM25 perform comparably)
at MAP@10. Similarly, for readme files, the LSI model

TABLE VI: Top three Search Results for project recommenda-
tion task with description only feature. The keywords in bold
highlight the important keywords for matching.

Category Name : Description

Query
Video Recorder screenbird :a full cross platform video screen capture tool

and host. Java based screen recorder, and Django based web
backend distributed video processing engine that uses ffmpeg
... of AWS instances.

LSI
(1) Video Recorder FFmpegRecorder : An Android video recorder using ...

FFmpeg.
(2) Video Recorder FFmpegVideoRecorder : Customizable Android video

recorder library...
(3) Video Recorder jirecon : A Standalone recording container for ... video

recorder ...

VSM
(1) Video Recorder ScreenRecorder : containing service for recording video of

device screen
(2) Video Recorder VideoRecorder : Android video recorder project
(3) Media Player dttv-android : android video player based on dtplayer

BM25
(1) Video Recorder ScreenRecorder : containing service for recording video of

device screen
(2) Terminal Emulator DragonConsole : a cross platform Java based Terminal Em-

ulator.
(3) Search Engine LunarBase : real-time engine, ... records in one table, ... used

as a search engine

WMD
(1) Media Player supersonic : web-based media streamer ... audio and video

formats
(2) Readers Java java-manga-reader : directly from web. .., internet access is

required
(3) Search Engines SearchEngine : crawls seed web page ... search engine for a

website ...

performs best in most of the evaluation metrics —4.85%
improvement for MAP@10 w.r.t. VSM, the second best
model. Note that all the models are first tuned following
Section III-F to their best-performing configurations.

Table VI shows example ranked lists for all four models us-
ing only the description feature for a query project ‘screenbird’
with Video Recorders category. The top two projects retrieved
by LSI and VSM models are of the same categories as the
query. Notice that all these retrieved projects have keywords
“video” and “recording” in their descriptions. However, VSM
mistakenly retrieves a media player app as the third project
because of the word “video” in the description.

While the performance of LSI is better in textual artifacts,
VSM dominates for code artifacts. Compared to LSI, VSM
performs slightly better for the method and class feature and
significantly better for import package and API names with
20.59% and 24.29% improvement, respectively, at MAP@10.

Discussion. Among the code features, method and class names
perform best. This suggests that similar projects actually have
similar method and class names. This finding also confirms
the hypothesis of Allamanis et al. [47] that developers use
meaningful identifier names while writing a software program.

Both the context-aware models LSI and WMD show a

similar decreasing trend in performance going from project
document artifacts to code artifacts (see Table V). This result
indicates that context sensitivity, which is quite effective in
natural language text, is not that helpful for source code
artifacts. Further, among source code artifacts, LSI and WMD
perform better for method and class names, suggesting context
is more meaningful for these kinds of names than import pack-
ages and API names. Interestingly, all the projects retrieved
by WMD in Table VI are wrong, and they have few keywords
overlapping with the query project. However, a closer look will
reveal the document and query terms are related. This indicates
GitHub projects descriptions are not very complex. We may
not need a word embedding-based similarity metric, where
contextual similarity plays a pivotal role, and may undermine
simple keyword-based matching.

Except for the description feature, BM25 performs signif-
icantly worse for the rest of the artifacts. BM25 treats query
and document differently (see scoring equation in Section II),
although for homogeneous artifacts the query and documents
are linguistically identical. BM25 also assumes all the terms
in the query are important and does not normalize w.r.t. query
length. For example, in Table VI, all except the top project are
not correct for BM25. As it ignores inter-relationships among
query terms, BM25 emphasizes all parts of the query equally
so is misguided by the query’s variety of concepts. Thus, a
verbose query may hurt BM25 performance.

Result 2: For the homogeneous SE artifacts of the project
recommendation task, the context-aware LSI model performs
better for textual artifacts while the simple Bag-Of-Word based
VSM outperforms others for code artifacts.

The empirical study demonstrates that different IR mod-
els, or combinations of models, do better than others for
different SE tasks involving different mixes of document
types.

However, with many different IR models and their number
of available tuning parameters, the search space of finding a
suitable IR model (or combination of models) is quite large,
so it is non-trivial to find the optimal one. To facilitate the tool
builder, we devise a light-weight framework that automatically
selects the right model(s) for a given SE task.

V. SRCH FRAMEWORK

For a given SE task, SRCH takes as inputs a query and a set
of documents on which the query will operate, and a potential
set of IR models that SRCH will explore. Each document
is associated with some document features (F1, ..., Fn). For
example, for bug localization task bug report is a query and
source code, API description, etc. are the document features.
At a high-level, for each feature (Fi), SRCH selects an optimal
performing model and then aggregates all the chosen models
to generate the final model. The final model associates a
similarity score to each potential query-result candidate. The
final output is a ranked list of these candidates based on the
final score (S) attributed to them.

Thus, for a given candidate output (τ), SRCH generates
score linearly combining all the per-feature models, i.e.,

S=
∑

i λiM̂i(Fi,τ), where
∑

i λi=1 (1)

where, M̂i is the output of optimal performing IR model for
feature Fi, i.e.,

M̂i=argmaxmj∈M{mj(Fi,τ)} (2)

SRCH involves two main steps: (i) Parameter Tuning. To
achieve an optimal performance SRCH empirically tunes the
underlying parameters using a set of training data. The training
data contains queries, documents, and ground truth results
(e.g., true buggy files for bug localization task). First, for
each document feature, SRCH selects the optimal performing
model using equation 2. Note that all the models are tuned
with their best-performing configuration before choosing the
best one. Next, SRCH linearly combines the output scores of
per-feature optimal model with an weighted average, as shown
in equation 1. SRCH empirically selects weights (λi)’s based
on training data satisfying the constraint ∑

i λi=1.
(ii) Ranking Search Results. With the tuned final model, SRCH
assigns scores to each potential query-result candidate (τ1, ...,
τm). For each of the document τj , SRCH generates score Sj
with equation 1. Then SRCH sorts the target documents based
on their corresponding scores.

A. Framework Evaluation

RQ3. Can bug localization be improved using the SRCH
framework?

TABLE VII: Optimal models for different features identified by
SRCH framework for the bug localization task

Source API Collab. Class Bug Fix Bug Fix
Code Descr. Filter Name Time Freq

BugSrch BM25 BM25 BM25 N/A N/A N/A

BugSrch-VSM
(baseline) VSM VSM VSM N/A N/A N/A

SRCH systematically combines the optimal IR models
for bug localization features and produces a final model,
BUGSRCH. Among the six features used in this task (see
Section III), three features—Class Name, Bug fix time, Bug
fix frequency—are meta information that do not require any
IR model. We follow a similar technique to Ye et al. [26] to
compute the other feature values for both BUGSRCH and a
baseline we call BUGSRCH-VSM, which uses only the VSM
model (see Table VII). In RQ1 we observed that VSM is the
second best performing model on the bug-report dataset. Thus,
we only report and compare BUGSRCH w.r.t. BUGSRCH-VSM
here. Additionally, VSM has been popularly used in many
previous bug localization tools (e.g., [12], [26]–[28]).
Compare with State-of-the-art. We also compare BUGSRCH
results with a state-of-the-art bug localization tool, LR, pro-
posed by Ye et al. [26]. LR is methodologically similar to
our BUGSRCH as both use the same feature set to build a
combined model. LR also leverages a learning to rank model

to compute optimal feature weights, to generate a combined
model score. Thanks to Ye et al. [26] providing us the ranked
results for the original LR model, we could compute the
reported results of LR [26] for the same test set. For this
evaluation, we use the latest 200 bug-reports for JDT and 100
each for three other projects from the benchmark dataset of
Section III. The performance of the combined model heavily
depends on the assigned weights (λs). To mitigate such impact,
we calibrate the weights and report the best performance for
both BUGSRCH and BUGSRCH-VSM.

TABLE VIII: Percentage gain of BUGSRCH over baseline and
state-of-the-art tool. A positive value indicates an improvement

Gain over BUGSRCH-VSM Gain over LR
MAP@10 MRR P@10 R@10 MAP@10 MRR P@10 R@10

Birt 3.70 0.00 15.94 25.85 75.00 76.47 86.05 56.07
Eclipse-UI 8.82 8.33 16.67 18.01 12.12 11.43 55.56 14.44

JDT 43.33 42.42 39.10 28.32 2.38 4.44 -3.65 -9.31
SWT 21.74 22.92 13.98 11.96 27.27 28.26 12.77 8.80

Table VIII shows that the performance gain of BUGSRCH
over BUGSRCH-VSM and LR [26] in different evaluation met-
rics for the different projects. A positive gain value indicates
an improvement. We see BUGSRCH outperforms BUGSRCH-
VSM for all the projects, achieving up to 42% and 43% gain
at MRR and MAP values, respectively. Compared to the state-
of-the-art tool LR, BUGSRCH achieves improved performance
in most of the evaluation metrics for all the projects, achieving
up to 75% MAP, 76% MRR gain, and 86% better precision.

As noted, the LR tool combines the weights of different
features using a learning to rank method [26]. In contrast,
BUGSRCH uses the weight-tuning approach. Thus, the only
difference between BUGSRCH-VSM and LR is how they deter-
mine the combined weights, as both the tools use VSM as their
underlying IR model. The results of Table VIII also indicate
that a good weight-tuning might be better than a learning-
to-rank approach. Nonetheless, BUGSRCH outperforms both
tools, showing the effectiveness of our SRCH framework.

Result 3: The informed combination of IR models built by
SRCH significantly improves the bug localization performance
and significantly outperforms the example baseline and state-
of-the-art tools.

RQ4. Can project recommendation be improved using the
SRCH framework?

For project recommendation, SRCH generates a combined
model, which we call PROJSRCH.

Baseline Selection. To evaluate the effectiveness of PROJSRCH
(the combined model generated by SRCH), we build two
baseline tools: (i) PROJSRCH-LSI: uses only the LSI model
for all features, and (ii) PROJSRCH-VSM: uses only the VSM
model for all features. We choose LSI and VSM as they are
popular IR models and used by previous project recommen-
dation tools [16], [19], [22]. We use the same weights as
PROJSRCH for these baselines where they also achieve optimal
performance. Table IX shows the model assignments in detail.

TABLE IX: Optimal models for different features identified by
SRCH framework for the project recommendation task

Feature
Description Readme Method-Class Package API

ProjSrch LSI LSI VSM VSM VSM
ProjSrch-LSI LSI LSI LSI LSI LSI
ProjSrch-VSM VSM VSM VSM VSM VSM

State-of-the-art tools selection. We also compare PROJS-
RCH with two state-of-the-art project recommendation tools:
CLAN [16] and RepoPal [22]. CLAN compares JDK APIs
(packages and classes) used in the studied projects using the
LSI algorithm to establish similarities. Since CLAN’s source
code is not available, we reimplemented CLAN adhering to
the paper details. We further extended CLAN to incorporate
all the APIs studied by PROJSRCH, for a fair comparison. We
also tune the feature weights and report the best results at
weight import package = 0.9 and API = 0.1.

We find that VSM is the best performing metric for the
features used by CLAN (see RQ1). Thus, we build a modified
version of CLAN, PROJSRCH-vsmCLAN, where we replace
the similarity metric used by CLAN with VSM. We also
tune the weights and report the best results at weights import
package = 0.6 and API = 0.4.

The other state-of-the-art tool RepoPal [22] uses the GitHub
project popularity metric star-count and the readme content to
detect similar projects. They assume that projects starred by
the same user within a short period are similar. Thus, they cal-
culate star-relevance between two projects. They also calculate
a readme-relevance score based on the readme contents of the
two projects using VSM, and combine with the star-relevance
score to get the final similarity score. We use the publicly
available star-relevance implementation of RepoPal to get the
star-relevance score. As the other part of their system is not
available, we follow the paper’s descriptions to reimplement
the readme-relevance module and the combined model.

Note that the omission of any meaningful feature in any
project might hurt the performance of the model that uses that
feature. As different tools are using different combination of
features we exclude the projects we annotated using method-B
as this set might contain projects with a missing feature (e.g.,
description). We also exclude the projects used as the query in
RQ1 to avoid any model selection bias for PROJSRCH. Finally,
we select a set of 1590 projects and report the results for a
query set of 1390 projects.

Results. Table X shows the percentage gain of PROJSRCH
over baseline tools PROJSRCH-LSI and PROJSRCH-VSM. We
see that PROJSRCH outperforms both the baseline tools in all
evaluation metrics, achieving a performance gain ranging from
4.88 to 24.79. This shows that an informed model choice for
feature artifacts boosts the performance of PROJSRCH.

TABLE X: Percentage gain of PROJSRCH over baselines

MAP@10 MRR P@10 R@10

PROJSRCH-LSI 6.56 4.88 13.34 17.56
PROJSRCH-VSM 12.58 9.38 21.51 24.79

We also compare the effectiveness of these models w.r.t.
two state-of-the-art tools, CLAN [16] and RepoPal [22], on

the same query set. In Figure 1, we see that PROJSRCH out-
performs the previous tools—it achieves 186%, and 162% gain
over CLAN for MAP@10 and MRR measures, respectively,
and w.r.t. RepoPal, PROJSRCH achieves 107% and 97% gain
for MAP@10 and MRR measures.

Fig. 1: Comparison with state-of-the-art tools

SRCH systematically selects the best similarity metrics for
each feature and generates a combined similarity score. These
results show that the model selection helps PROJSRCH to
improve over RepoPal and CLAN. In addition, PROJSRCH
extracted useful features from GitHub projects, which might
play a role to boost PROJSRCH’s performance. Unlike the
other tools, RepoPal uses an additional star-relevance feature,
which boosts its performance [22].

On the other hand, CLAN uses only import package and
API. To compare them on the same ground, we further evaluate
the impact of model selection and restrict PROJSRCH to use
the same feature set as CLAN. We name this version as
PROJSRCH-vsmCLAN. SRCH chose VSM for these features
as it is the best performing one. We observe that, even with
the same feature set, PROJSRCH-vsmCLAN performs better
than CLAN: 26 to 35 percent performance gain is achieved
under different evaluation metrics.

All these results strongly suggest that, with the right choice
of IR model per feature, a project recommendation tool can
outperform its predecessors.

Result 4: A project recommendation tool built by SRCH
framework with an informed choice of IR models can signif-
icantly outperform both baselines and state-of-the art tools.

B. Informal User Study

We asked human evaluators for their opinions about the
performance of the PROJSRCH generated by SRCH. For each
query project, we provided the top 10 ranked projects retrieved
by PROJSRCH, and for all projects, we provided the project’s
name, description, and associated GitHub URL. We asked
the user to give a relevance score on a scale of 0 to 5
(where 0 means not relevant, and 5 means most relevant) for
each of the retrieved results considering functional similarities
between query projects and corresponding retrieved projects.
We instructed the user to look into the project’s readme file,
source code, etc. on Github in addition to looking at the
project name and description. We also asked the user to give a
partial score if two projects are partially similar. We selected
25 queries from our project dataset and gathered relevance

judgment scores from 12 users (CS Professionals(3), non-CS
Professional(1), and CS Grad Students(8)).

PROJSRCH achieved evaluation scores 0.88 and 0.84 for
NDCG@5 and NDCG@10, resp. Intuitively, in 88% of the
cases users encountered relevant (satisfactory) results when
they examined the top 5 returned documents. Higher NDCG
values indicate PROJSRCH, hence the SRCH framework, is
deemed useful to the users. One user commented after using
our tool: “I can usually find a relevant app/project in your
top 3 results, which is impressive”. Another user said: “The
most interesting case I found is clickerfree under the calculator
category. This app does not have a highly relevant terms like
calculator, but it indeed has the calculation functionality, which
may not be found by the existing search techniques.”

VI. STUDY IMPLICATIONS

(i) Generalization of SRCH. To demonstrate the effectiveness
of SRCH we use the four IR models and discussed them
for the two SE tasks. However, any new models and tasks
can be plugged in as needed. Assuming the availability of
training data, any machine learning-based approach can be
incorporated into the Model Combination module. SRCH’s
individual metric score calculations can be done in parallel
or distributed settings to reduce clock time.
(ii) Implications for Code Search. Beyond the Software
Maintenance tasks presented here, SRCH could also be lever-
aged in general purpose code search. It has been observed
that current code search engines perform poorly [8], [57],
[58]. The inherent challenge of such systems is that the
search engine has to consult a diverse set of documents (e.g.,
API documentation, StackOverflow posts, GitHub issues, etc.),
where relying on a single IR model might result in a worse
overall performance than might be achieved by combining
models. In contrast, SRCH provides a systematic way to
leverage all available similarity metrics.
(iii) Implications of Empirical Findings. RQ1 and RQ2
characterize the interactions between four IR models and
diverse SE document types. Such characterizations can be
extended to other mode models and document types as well.
Our results can be leveraged by other SE tasks, such as bug
triaging, that depend on the studied document types [59].

VII. RELATED WORK

Comparison and Combination of IR models for SE tasks.
Researchers have previously empirically evaluated different
models, e.g., Gethers et al. [60] proposed an integrated ap-
proach to combine orthogonal IR techniques—VSM, the prob-
abilistic Jensen and Shannon (JS) model [61], and Relational
Topic Modeling (RTM) [60], [62]—for the traceability recov-
ery task [63], [64]. Evaluating on one repository (EasyClinic)
containing 37 target/candidate documents, they analyzed the
impact of artifact types (i.e. use cases, UML diagrams, and test
cases) on multiple combinations of IR models (JS, JS+RTM,
VSM and RTM+VSM). They found that combination with
RTM is highly valuable when tracing with the UML diagrams
artifact. In contrast, we propose a generic framework and eval-
uate it on much larger data sets consisting of 1832 projects and

1100 bug reports, respectively, for two different SE problems,
where we also evaluate each of the individual models on
each type of artifact separately. We further characterize the
properties of the artifacts that might influence the models’
performance. Thus we confirm their findings, but at a much
larger scale for different IR models, document types and tasks.

The type of the query document has previously been found
to influence best choice of similarity metric [65], also con-
firmed by our findings. Other factors that we have not studied
yet may also influence the performance of SE tasks. For
example, incorporating user interaction has been found to be
effective in relevance feedback [66].

Panichella et al. [6] propose a Genetic Algorithm-based
approach to automatically configure and assemble IR models.
Other researchers propose heuristics-based [23] and search-
based [24], [25] optimization techniques to calibrate IR models
for improved performance. Automatically learning weights
while combining different IR models has also been pro-
posed [26], [67]. We complement these works by focusing
on similarity metrics choice for different SE document arti-
facts and demonstrate that an informed choice based on the
document features can lead to better performance.

Project Recommendation. Some prior researchers used
code clone analysis to establish project similarity [68]–[71],
designed to identify plagiarized apps. In contrast, we are inter-
ested in conceptual or functional similarities between projects.
Researchers also considered other collections of code-related
features such as API package and class names [16], identifier
names [17], method names, class names and code com-
ments [18] to establish project similarities. Other available
metadata has been used to find similar applications: col-
laborative tagging [19], GUI layout [20], API call intents,
permissions, and sensors [21], project popularity [22], etc..
In contrast, we perform an in-depth analysis of the role of
each sub-component and the different similarity metrics in
determining project similarities. Thus, we complement this
prior work. We have also empirically shown that an informed
combination of IR models and SE artifacts can outperform a
state-of-the art project recommendation tool.

Bug Localization. Many researchers have studied bug local-
ization using IR techniques [9]–[15]. Zhang et al. [72] presents
a survey. Proposed approaches to improve the bug localization
task include combining bug reports’ metadata [15], [26],
modifying standard IR models [12], identifying similar bug
fixes [12], [26], bug fix history [26], [73], source code meta-
data [73], combining topic models in a ranking metric [74],
program spectrum [75], software changes [76]. In contract, we
leverage the best performing similarity metrics on bug reports
and source code artifacts to improve this task, demonstrating
the use of SRCH rather than focusing on tool development.

Deep learning-based models DNNLOC [28], HyLoc [77]
have been found effective compared to LR [26], but deep
learning models come with huge cost (time and resources). In
contrast, we demonstrate that even a simple informed choice
of similarity metric can lead to significant improvement.

Researchers have also compared different IR models for

the bug localization task and found that simple text models
perform better than a topic model-based approach [10]. BM25-
based models were also found to be effective for finding
duplicate bug reports [78] and the bug localization task [79].
Our experimental results confirm their findings.

VIII. THREATS TO VALIDITY

From our experimental setup, some threats arise to internal
validity. Apart from similarity metric, there are some other
steps: preprocessing, stopword removal, stemming, etc. that
can impact performance [6]. We minimize the impact by ap-
plying similar techniques to all considered models in each step.
We also tune each model to its best performing configuration
to reduce parameter configuration bias [23], [25].

Due to the unavailability of previous tools, we re-
implemented CLAN [16] and part of Repopal [22]. To miti-
gate this threat, we confirmed our implementation by cross-
checking results with the reported results [22].

As GitHub hosts many open-source projects, our datasets
might not be representative, a threat to external validity (gener-
alizability). To increase the diversity in our project dataset, we
use the DMOZ Ontology [43], which is believed to represent
the whole Web. However, GitHub recently allows users to tag
their projects. Though tags are not available for all projects,
this tag information can be a possible alternative for DMOZ
category. To curate the dataset for project recommendation,
we manually annotated GitHub projects. To mitigate bias, two
annotators worked separately, and then reached consensus.

A further threat to external validity is our evaluation on only
two kinds of SE tasks. Future work will explore additional
tasks amenable to IR models.

IX. CONCLUSION

We argue that the SE community should not blindly use
any or even the best state-of-the-art IR model devised for
conventional natural language text. Instead, we should choose
carefully among competing IR models.

This work presents an in-depth empirical study to under-
stand the interaction between IR models and SE artifacts.
We found that an SE task’s mix of similarity comparisons,
between documents of the same or different types, has a
significant impact on the performance of different IR models.
Further, composing different models for different comparisons
required by the same task may be better than tuning a single
model. With this insight, we developed SRCH, a framework
to automatically select and compose IR models for the mix
of document type comparisons appropriate for the SE task at
hand. We evaluate SRCH and confirm its effectiveness on two
representative SE tasks selected to show different mixes of
document type comparisons, where our approach outperforms
baseline and state-of-the-art tools.

ACKNOWLEDGMENTS

Ray is funded in part by NSF CCF-1619123, CNS-1842456,
CNS-1618771, and CCF-1822965. Kaiser is funded in part by
NSF CNS-1842456, CCF-1815494 and CNS-1563555.

REFERENCES

[1] S. Haiduc, V. Arnaoudova, A. Marcus, and G. Antoniol, “The Use of
Text Retrieval and Natural Language Processing in Software Engineer-
ing,” in 38th International Conference on Software Engineering (ICSE).
Austin, TX, USA: ACM, 2016, pp. 898–899.

[2] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[3] S. Robertson, H. Zaragoza et al., “The probabilistic relevance frame-
work: Bm25 and beyond,” Foundations and Trends R© in Information
Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[4] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representa-
tion of knowledge.” Psychological review, vol. 104, no. 2, p. 211, 1997.

[5] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From
word embeddings to document distances,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML 2015), 2015, pp.
957–966.

[6] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “Parameterizing and assembling ir-based solutions for se
tasks using genetic algorithms,” in 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 314–325.

[7] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the
best choice for modeling source code?” in 11th Joint Meeting on the
Foundations of Software Engineering (FSE). ACM, 2017, pp. 763–773.

[8] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,
C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how developers use
general-purpose web-search for code retrieval,” in 15th International
Conference on Mining Software Repositories (MSR). ACM, 2018, pp.
465–475.

[9] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Reverse Engineer-
ing, 2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp.
155–164.

[10] S. Rao and A. Kak, “Retrieval from software libraries for bug localiza-
tion: a comparative study of generic and composite text models,” in 8th
Working Conference on Mining Software Repositories (MSR). ACM,
2011, pp. 43–52.

[11] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2013, pp. 345–355.

[12] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in 34th International Conference on Software Engineering
(ICSE). IEEE Press, 2012, pp. 14–24.

[13] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in 22nd IEEE/ACM international conference
on Automated Software Engineering (ASE). ACM, 2007, pp. 433–436.

[14] B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in 10th Working Conference on
Mining Software Repositories (MSR). IEEE Press, 2013, pp. 309–318.

[15] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE transactions on software
Engineering, vol. 39, no. 11, pp. 1597–1610, 2013.

[16] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 364–374.

[17] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “Mudablue: An
automatic categorization system for open source repositories,” Journal
of Systems and Software, vol. 79, no. 7, pp. 939–953, 2006.

[18] A. Michail and D. Notkin, “Assessing software libraries by browsing
similar classes, functions and relationships,” in 21st International Con-
ference on Software Engineering (ICSE). IEEE, 1999, pp. 463–472.

[19] F. Thung, D. Lo, and L. Jiang, “Detecting similar applications with col-
laborative tagging,” in 28th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2012, pp. 600–603.

[20] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in 36th International Conference on Software
Engineering (ICSE). ACM, 2014, pp. 1025–1035.

[21] M. Linares-Vásquez, A. Holtzhauer, and D. Poshyvanyk, “On auto-
matically detecting similar android apps,” in 24th IEEE International
Conference on Program Comprehension (ICPC). IEEE, 2016, pp. 1–
10.

[22] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on github,” in 24th IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
2017, pp. 13–23.

[23] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, pp. 465–500,
2014.

[24] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The
impact of classifier configuration and classifier combination on bug
localization,” IEEE Transactions on Software Engineering, vol. 39,
no. 10, pp. 1427–1443, 2013.

[25] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in 35th
International Conference on Software Engineering (ICSE). IEEE Press,
2013, pp. 522–531.

[26] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug
reports using domain knowledge,” in 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM,
2014, pp. 689–699.

[27] ——, “Mapping bug reports to relevant files: A ranking model, a
fine-grained benchmark, and feature evaluation,” IEEE Transactions on
Software Engineering, vol. 42, no. 4, pp. 379–402, 2016.

[28] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug lo-
calization with combination of deep learning and information retrieval,”
in 25th International Conference on Program Comprehension (ICPC).
IEEE Press, 2017, pp. 218–229.

[29] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[30] B. R. i. . of eclipse.platform.ui, “”https://bugs.eclipse.org/bugs/show
bug.cgi?id=369884”.”

[31] E. P. UI, “”http://projects.eclipse.org/projects/eclipse.platform.ui”.”
[32] C. V. E. of eclipse.platform.ui, “”https://github.com/eclipse/eclipse.

platform.ui/blob/master/bundles/org.eclipse.e4.ui.workbench.swt/src/
org/eclipse/e4/ui/internal/workbench/swt/E4Application.java”.”

[33] B. Ray and M. Kim, “A case study of cross-system porting in forked
projects,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE 2012,
pp. 53:1–53:11.

[34] B. Ray, C. Wiley, and M. Kim, “Repertoire: A cross-system porting
analysis tool for forked software projects,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ser. FSE 2012, pp. 8:1–8:4.

[35] M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some
from there: Cross-project code reuse in github,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 291–301.

[36] Adamhub, “”https://github.com/adamhub/screenbird”.”
[37] CrazyOrr, “”https://github.com/CrazyOrr/FFmpegRecorder”.”
[38] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings

to document similarities for improved information retrieval in software
engineering,” in 38th International Conference on Software Engineering
(ICSE). ACM, 2016, pp. 404–415.

[39] Birt, “”https://www.eclipse.org/birt/”.”
[40] E. JDT, “”https://www.eclipse.org/jdt/”.”
[41] SWT, “”http://www.eclipse.org/swt/”.”
[42] GitHub, “GitHub Search API,” https://developer.github.com/v3/search/.
[43] D.-O. February 2017 Dump, “” static mirror: http://dmoztools.net/. web-

site: http://www.dmoz.org/docs/en/rdf.html ”,” February, 2017 Dump.
[44] Eid-Applet, “”https://github.com/e-Contract/eid-applet”.”
[45] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

and D. Damian, “The promises and perils of mining github,” in 11th
Working Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 92–101.

[46] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design of bug fixes,” in 35th International Conference on Software
Engineering (ICSE). IEEE Press, 2013, pp. 332–341.

[47] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in 22nd ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE), 2014.

[48] E. S. List, “”http://www.lextek.com/manuals/onix/stopwords1.html”.”
[49] J. L. Keywords, “”https://docs.oracle.com/javase/tutorial/java/

nutsandbolts/ keywords.html”.”

[50] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[51] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[52] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[53] Wikipedia, “Wikipedia Dump,” https://dumps.wikimedia.org/enwiki/
20160305/.

[54] G. Gousios, “The ghtorrent dataset and tool suite,” in 10th Working
Conference on Mining Software Repositories (MSR), ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.

[55] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[56] M. E. Rice and G. T. Harris, “Comparing effect sizes in follow-up
studies: Roc area, cohen’s d, and r,” Law and human behavior, vol. 29,
no. 5, pp. 615–620, 2005.

[57] M. Hucka and M. J. Graham, “Software search is not a science, even
among scientists,” arXiv preprint arXiv:1605.02265, 2016.

[58] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes, “How well do
search engines support code retrieval on the web?” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 21, no. 1,
p. 4, 2011.

[59] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in 26th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2010, pp. 1–10.

[60] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On inte-
grating orthogonal information retrieval methods to improve traceability
recovery,” in 27th IEEE International Conference on Software Mainte-
nance (ICSM). IEEE, 2011, pp. 133–142.

[61] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique
for specifications,” in 16th IEEE International Conference on Program
Comprehension (ICPC). IEEE, 2008, pp. 103–112.

[62] J. Chang and D. M. Blei, “Hierarchical relational models for document
networks,” The Annals of Applied Statistics, pp. 124–150, 2010.

[63] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in 18th IEEE International Conference on Program
Comprehension (ICPC). IEEE, 2010, pp. 68–71.

[64] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang,
“Improving trace accuracy through data-driven configuration and compo-
sition of tracing features,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 378–388.

[65] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta, R. Oliveto, B. Russo,
and A. Marcus, “Query-based configuration of text retrieval solutions for
software engineering tasks,” in 10th Joint Meeting on the Foundations
of Software Engineering (FSE). ACM, 2015, pp. 567–578.

[66] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location,” in 25th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2009, pp. 351–
360.

[67] D. Binkley and D. Lawrie, “Learning to rank improves ir in se,” in
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2014, pp. 441–445.

[68] J. Crussell, C. Gibler, and H. Chen, “Scalable semantics-based detection
of similar android applications,” in Proc. of Esorics, vol. 13. Citeseer,
2013.

[69] ——, “Attack of the clones: Detecting cloned applications on android
markets,” in European Symposium on Research in Computer Security.
Springer, 2012, pp. 37–54.

[70] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
36th International Conference on Software Engineering (ICSE). ACM,
2014, pp. 175–186.

[71] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2012, pp. 62–81.

[72] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey
on bug-report analysis,” Science China Information Sciences, vol. 58,
no. 2, pp. 1–24, 2015.

[73] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE, 2011, pp.
263–272.

[74] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[75] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in 10th Joint Meeting
on the Foundations of Software Engineering (FSE). ACM, 2015, pp.
579–590.

[76] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from software
changes,” in 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2016, pp. 262–273.

[77] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining
deep learning with information retrieval to localize buggy files for bug
reports (n),” in 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 476–481.

[78] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2011,
pp. 253–262.

[79] Z. Shi, J. Keung, and Q. Song, “An empirical study of bm25 and bm25f
based feature location techniques,” in Proceedings of the International
Workshop on Innovative Software Development Methodologies and
Practices, ser. InnoSWDev 2014. New York, NY, USA: ACM, 2014,
pp. 106–114.

