
Week 13, Lecture 1

Today we are going to look at recursive functions.

Interestingly, recent work has shown that crows are
capable of understanding the idea of recursion. So if they
can, I am very sure you can. :)

https://www.scientificamerican.com/article/crows-
perform-yet-another-skill-once-thought-distinctively-
human/

First, let’s just look at how function calls use program
stacks:

Your Python or C program is converted from the high-
level in which you write it into an executable form. You
can think of this as binary instructions. In this form it is
just called an executable or text. When this code actually
runs, it needs to access memory where program variables
are stored.

When the main program “main()” begins to execute, it is
given an “infinite” amount of memory where it can store
its variables, objects, lists etc. This area is called the
program stack. When main() calls a function, say
func1(x,y), the text of the main program will have a “jump
to address xxxx” in the place in the text where the call is
made. Here xxxx is the address of the first executable

https://www.scientificamerican.com/article/crows-perform-yet-another-skill-once-thought-distinctively-human/
https://www.scientificamerican.com/article/crows-perform-yet-another-skill-once-thought-distinctively-human/
https://www.scientificamerican.com/article/crows-perform-yet-another-skill-once-thought-distinctively-human/

instruction in the function func1(x,y).

Since func1(x,y) is a function just like main(), it must have
a stack on which it can store and manipulate its own local
variables. Since main() is making a call to func1(x,y), just
before the jump to func1() is done, main() sets up a new
stack frame for func1() on its own program stack (main()
says, I have used memory locations from 0 to 1024, say,
and since I am calling func1(), this function can start to
use the memory from 1025 onwards, and as much as it
needs). One final thing main needs to do before jumping
into the entry point of func1() is that it must place the
parameter values for x and y at the start of func1()’s stack
frame, so func1() can immediately access and use its
parameters when it starts to run.

When func1() returns, its stack is removed, and its return
tuple (if any) is assigned to some variable(s) on main()’s
stack, at the place where the call is made. In this way the
entire program stack grows and shrinks during program
execution, and disappears altogether when main()
terminates.

Now for recursion. Because it will be easier for you to
understand recursion by looking at actual code we’ll keep
this really brief.

Recursion occurs when some function, say func(n) calls
itself. Loot at the factorial function, for example.

def fact(n):

 if ((n == 0) or (n == 1)):
 return (1)
 else:
 return (n * fact(n-1))

It’s okay that we don’t have a main() program here. If we
make the call to fact(4), Python sets up a main program
stack and immediately calls fact(4). Of course, the
parameter n is given the value 4 before fact() starts to
run.

Function fact(4) executes a return(4*fact(3)), and it does
it on the current stack which is the stack of fact(4). It sets
up the computation 4 times R where in place of R it
makes a function call to fact(3). And in making this call it
must compute the n-1 value which is 3, and set it up
before jumping into fact() again on a new program stack.
That is, the stack of fact(3) is built on top of the stack for
fact(4). Now fact(3) will run again and set up the stack of
fact(2), and the whole process “bottoms” when fact(1) is
called.

When fact(1) executes a return(1), this tuple is returned
on the stack of fact(2), where the result 2*1 is made, and
now fact(2) returns this result 2 to fact(3)’s stack where
the result 3*2 is made, and this result is returned on
fact(4)’s stack where the final result 4*6 is made and the

recursion terminates. Notice how the sequence of calls
travels to the “bottom” where the “base case result” is
made and then the reverse happens as the returns bubble
up the chain.

Notice that the recursive code is simple and pretty. It
takes little time to write, if you understand the recursive
structure. However, because of the function calls and the
setup of program stacks, it can be (relatively) expensive
in terms of time and memory, when compared to non-
recursive (iterative — meaning loop-based) versions of
the code. But it many cases, it’s not a significant
difference.

In this lecture we’ll simply look at a number of examples
of recursion, starting with the simplest and working up to
a recursive binary search. You’ll notice how elegant a
recursive binary search is, compared to the iterative
version. It will look mathematical and precise, and often
one can usually develop mathematical recurrences (for
complexity analysis) simply by looking at the code and
writing down symbols for the recursive pattern. We’ll look
at an example or two of this later.

In the next lecture we’ll look at other recursions, and
revisit the Merge sort and a new sort called the Quicksort.

