
Week 13, Lecture 2

Today we’ll only look at four program files and thus finish
the last topic in this course, which is recursion. The last
program (program 4, Quicksort) we’ll do is something
extra, and you are not required to know it, though it is
similar to the MergeSort (program 3) which is in your
book. You should know the insertion, selection, and
merge sorts; and you should know the linear and binary
searches. And you should know how the recursive
versions for some of these , i.e., the ones we have
covered (excluding Quicksort).

Program 1 shows you a simple recursive method to
compute x^n (some number x raised to the power of an
integer n). Instead of multiplying x out (n-1) times (which
would be an O(n) computation), we can use “divide and
conquer”. Think of the “tree” structure and visualize x^n
as the root of the tree. Keep it simple at the start and
assume n is even.

Then the left child of the root is x^(n/2) and the right
child of the root is x^(n/2).

The idea is that you compute x^(n/2) just once. Then
multiply it by itself to get x^n.

But we still have to compute x^(n/2). Assume for a
moment that n/2 is also even. Then the same procedure
we used above should work. In fact this procedure should

work until we get to the bottom of the tree. In other
words, the whole task is done in O(log n) steps (where
the log is to the base 2). Do you see how the pattern has
so much in common with the binary-search and merge-
sort structures? They all follow the same “tree” pattern
during computation. Trees and recursions are good
friends.

Whenever we arrive at a case where n or n/2 or n/4 etc. is
not even, we follow exactly the same procedure as before
but do one extra multiplication. Because, for example,
x^5 = x^2 * x^2 * x, where the last multiplication (i.e., “ * x
“) is the extra multiplication to handle the “odd” value.

This is useful when you raise a matrix to some large
power, because each matrix multiplication is an O(n^3)
operation.

Program 2 is a simple example of how you can reverse a
string recursively.

Program 3 is the Merge-sort (again). We go through the
same example as before, but step by step, so that you
see exactly what happens.

Program 4 is the (famous) Quicksort. You are not
required to know it, but you’ll see that it is simple, and
looks a lot like the merge sort, except without all the list
copying.

NOTE: We will not have class during ThanksGiving week.

If I have some time I may post some additional, off-
course material (perhaps a small video) next week. But if
not, I will see you the week after ThanksGiving — where
we will cover material which you will not need for your
exam. This last bit will mainly cover classes and objects.
You will see how it makes your code much cleaner,
besides having many other advantages.

