
Week 3 (Wednesday) [No lecture on Monday -
Labor Day]

Let’s summarize what we have done so far to get to
the programming stage:

Variables

x, abcd, Abcd, ABCD, Joe ….

(Use variables that have meaning, i.e., total = sum1
+ sum2 + sum3)

Algebraic Expressions and Functions

>> 3+8
11

>> 3*2
6

>> 3*2.0
6.0

>> 5/2
2.5

>> 4/2
2.0

5 has no decimal point, so it is type int (int means
“integer”)

5.0 has a decimal point, so it is type float (float
means “floating point”)

Why call it “floating point”? Because the decimal
point can be moved anywhere
Convenient (say, to represent the number) without
changing its value.

5.5 is same as 0.55 x 10

You can keep moving the decimal point right or left

In a computer word, 5.5 will be represented as 0.55
x 10

You already know how to represent 0.55 in binary.
Use the 48 right-most bits (called “lower order

bits”) to represent 0.55 in binary,
and use the 16 left-most bits (called “Higher order
bits”) to contain the number 1. The understanding is
that 1 is the exponent of 10.

This is how floating point numbers are represented
…. by splitting a 64-bit word
Into two pieces, the low 48-bits holding the
fractional part (“mantissa”), and the
high 16-bits holding the exponent (with the
understanding that it’s the exponent of
10).

Accuracy

This means the size of the exponent is constrained
by 16 bits. So how large or how small can the
exponent be?

Let’s see. Suppose a computer word had only 3
bits. How many numbers could it hold?

000 = 0
001 1
010 2

011 3
100 4
101 5
110 6
111 7

So 3 bits can hold 8 numbers. Now these are all
positive numbers. So a total of 8 positive numbers
can be held in 3 bits.

2**3 = 8

So 12 bits could hold 2**16 positive numbers.

0, 1, 2, 3,……, (2**16)-1.

(2**12)-1. = 65535

So the largest positive exponent we can have in 16
bits is 4095

I.e., 10**65535

What about negative exponents?

If there was a way we could signal that the number
contained in the 16 bits is a negative number (and

yes, there is;
we’ll see this way a bit later), then we could store
the negative exponents

-65536, …….., -1

That means you can represent a number such as

395 x 10**(-100)

(Python will evaluate this as
3.9500000000000004e-98)

If the number is too small for Python to print, it will
print 0.0

Notice this “trade-off” with accuracy,
depending on how we split the 64 bits into the two
parts that contain the mantissa and the exponent.
We don’t
have a choice. The computer hardware/software
decides.

Reduce the 16 bits to 12 bits or 8 bits and the
exponent range gets smaller, but the accuracy of
the number gets larger because we have more bits
on the other side to represent the mantissa (the

number of digits after the decimal point).

Increase the number of bits for the exponent to 20
(say), and the accuracy of the mantissa
representation gets smaller, because fewer bits are
left to hold it.

Final point:

To represent 5.5, we would put

0.55 in the mantissa bits and

1 in the exponent bits

So that we have the number (10**1) * 0.55

which is 5.5

Making sure the number after the decimal point is
not 0 is called the “standard form”.

In other words, we would not use a representation
like

(10**2)* 0.055, or

(10**3)*0.0055 etc.

even though these are mathematically correct. We
want to avoid losing valuable bits to the 0’s after the
decimal point, since we have only 48 bits to hold
that fraction.

__

Data Types

3, 99, 17537531. Int

3.3, 99.76 float

“Gosh! He talks a lot!” String (just a run of
characters between quotes)

Algebraic expressions ALWAYS evaluate to a
number:

>> 3*99
297

What kind of number (int, float) you get as a result
depends on what the inputs are. You saw this in the
lecture on using *, /, //, % operators.xpressions

BOOLEAN EXPRESSIONS:

An important class of expressions do not evaluate
to numbers. They evaluate to
True or False.

These are called Boolean expressions. We use
these to make a program take one of two or three or
four or umpteen different directions depending on
what a particular expression evaluates to. We use
the word “conditional” to describe that expression.

This is not Python code. Just demonstrating the
idea.

If (temperature > 90F) then
 print(“Dress like Tarzan!”)
Else
 If (temperature < 42F) then
 print(“Dress like an Eskimo!”)
 Else
 print(“Dress normally!”)

Expressions such as “temperature > 90f” have only
one of two values: True or False.
They are Boolean expressions because a Boolean

variable can take on only one of two values: True or
False.

Python understands Booleans.

>> 5 < 6
True

>> 6 < 5
False

>> 600 + 500 > 1200
False

>> 3 == 3
True

>> 3 == 714
False

>> 5 + 6 + 7 == 7 + 6 + 5
True

When the expression evaluates to “True”, the
indented block under the “if” is executed.
When the expression evaluates to “False”, the
indented block under the “else”

Is executed.

So this is called an “if-else” statement, or an “if-
then-else” statement. It makes your program go
one way or another way depending on the
conditions.

__

Built-in functions:

>> abs (-5.5)
5.5

>> min(5, 6, 7)
5

>>max(-5, -6, -7)
-5

Functions that are not built-in must either come
from existing libraries (e.g., like the sqrt() function
that we import from the math module):

import math #at the to of your Python file

>> x = math.sqrt(256)

>> x
16

or functions you must write yourself. Say your
teacher catches you giggling loudly in class and
makes you stay after class and write some
string (e.g., “I will not giggle in class!”) 100 times
on a sheet of paper. Being clever you learn Python
and write a function to do this:

def me_smart(s, n): #s is the string to be written
(printed) n times
 for k in range(n): #using k as index in a loop
going from 0,1,2 …. to n (stop at n-1)
 print(s)
return

>> me_smart(“I will not giggle in class!”, 100)

will print the string 100 times.
__

Type Conversions

>> 5 + 6 #algebraic expression
11

>> (5 < 6) #logical expression …. evaluates to
True or False. (Boolean)

Important:

True is treated as the integer 1

False is treated as the integer 0

So, if in the shell, you type:

>> 10 + True
11 #Python does IMPLICIT TYPE
CONVERSION because of the “+”
 #Converts True to the int 1 and
does integer addition

>>10 + False #False is converted to 0
because of the “+”
10

This means in the SET of integers (all the whole
numbers), the Boolean values

True and
False

are a SUBSET because they are 1 and 0.

The SET of integers are a subset of the FLOATS
(because any integer becomes a float if you place a
decimal point after it).

>> 4 + .4545. # 4 is int, but Python converts it to
float before addition
4.4545
__

The set of ints is contained in the set of floats. The
latter is a larger set.

BUT, the range of values that int objects can have is
much larger than the range of values that float
objects can have.

That means you cannot always convert an int value
to a float value (because the number of digits is too
large and
causes OVERFLOW)

>>> 2**10000 + 5
1995063116880758384883742162683585083

8234968318861924548520089498529438830
22194663191996168403619459789933112942
32091242715564913494137811175937859320
9632395785573004679379452676524655126
6059895520550086918193311542508608460
618104685509074866089624888090489894
8380092539416332578506215683094739025
5691238806522509664387444104675987162
6985453222868538161694315775629640762
8368807607322285350916414761839563814
5896946389941084096053626782106462142
733339403652556564953060314268023496
9400335934316651459297773279665775606
17258203140799419817960737824568376228
0037302885487251900834464581454650557
92960141483392161573458813925709537976
91192778008269577356744441230620187578
3632550272832378927071037380286639303
14281332414016241956716905740614196543
42324638801248856147305207431992259611
7962501309928602417083408076059323201
6126849228849625584131284406153673895
148711425631511108974551420331382020293
1640957596464756010405845841566072044
96286701651506192063100418642227590867
0900574606417856951911456055068251250
4060075198422618980592371180544447880

7290639524254833922198270740447316237
6760846613033778706039803413197133493
6546227005631699374555082417809728109
8329131440357187752476850985727693792
643322159939987688666080836883783802
76432827751722736575727447841122943897
33810861607423253291974813120197604178
2819656974758981645312584341359598627
8413012818540628347664908869052104758
0882615823961985770122407044330583075
8690393196046034049731565832086721059
13300903752823415539745394397715257455
29051021231094732161075347482574077527
3986348298498340756937955646638621874
56949927901657210370136443313581721431
1791398222983845847334440270964182851
0050729277483645505786345011008529878
1238947392869954083434615880704395911
89858151457791771436196987281314594837
83202081474982171858011389071228250905
82681743622057747592141765371568772561
4904582904992461028630081535583308130
1019876758562343435389554091756234008
4488752616264356864883351946372037729
324009445624692325435040067802727383
77553764067268986362410374914109667185
5705075909810024678988017827192595338

1282421954028302759408448955014676668
3896979968862416363133763939033734558
01407636741877711055384225739499110186
46821969658165148513049422236994771476
30691554682176828762003627772577237813
65331611196811280792669481887201298643
6607685516398605346022978715575179473
8524636944692308789426594821700805112
0322365496288169035739121368338393591
75641873385051097027161391543959099159
81546544173363116569360311222499379699
99226781732358023111862644575299135758
1750081998392362846152498810889602322
4436217377161808635701546848405862232
9792853875623486556440536962622018963
57102881236156751254333830327002909766
86505685571575055167275188991941297113
37690149916181315171544007728650573189
55745092033018530484711381831540732405
3319038462084036421763703911550639789
0007428536721962809034779745333204683
68795868580237952218629120080742819551
31794815762444829851846150970488802727
47215746881315947504097321150804981904
55803416826949787141316063210686391511
681774304792596709381

So no problem representing that integer. What if we
want a float?

>>> 2**10000 + 5.0
Traceback (most recent call last):
 File "<pyshell#37>", line 1, in <module>
 2**10000 + 5.0
OverflowError: int too large to convert to float

__

EXPLICIT type-conversion is the conversion you do
by yourself:

>> int (5.6)
5

>> int (-5.9)
-5

>> float(7)
7.0

>> int(“5.9”). #makes no sense, so Python will
give you a ValueError

There is also a str() function (actually a “string
constructor”, just like int() is the “int constructor”)
that converts an int into a string

>> x = str(5.9)
>> x
‘5.9’ #x is the string “5.9”

__
