
Week 6, Lecture 1

Please read Chapter 6 of Zelle, on functions.

Today’s topic is “functions”.

Now you already know how to define functions, call 
functions, and have functions either

(a) run and do some work but return no value/values, or
(b) return one or more values.

You’ve seen that Python (the shell) will run any expression 
or sequence of expressions you give to it,
directly to the shell or via a file in which you type the 
expressions. You can do elaborate computations
that way, if you want.

It is, however, more convenient to use functions — 
because functions can be small or large units of 
computation
that take in arguments (parameters), and return values, 
and you can call these from anywhere in your
execution sequence.

Each function can have parameters, and yes, even main() 
can have parameters, though we’ll see that later.

Function main() acts as a manager. It is the first function 
to run, and it will also be the last to run, unless



some function makes a “sys” call for the program to exit() 
the CPU.

Every other function you write is either called by main() or 
by some other function.

_____________________________________________________________
___________________________________

When you use variables in functions you must be aware of 
what “kind” of variables they are. That is,
you must be aware of the SCOPE of each variable. The 
SCOPE of a variable has to do with whether
A variable inside a function is or is not accessible (i.e., can  
some other function see/touch it?) to
some other function.

So we have to know which variables are “local” to a 
function, which variables are parameters to a
function (all parameters are local to a function) etc. Local 
variables are also called “automatic”
Variables because they “come and go”, meaning they 
exist only as long as a function runs — not
before and not after.

You can make a variable “global” so that all functions in 
the module in which you declare this global 
will have access to this variable. You may be tempted to 
use such a variable in a crunch, because it
helps you avoid defining another parameter. But this is 
dangerous in general. Because the more easily



accessible a variable is to arbitrary functions, the more 
likely it is that things can go wrong. 

Later when learn about “classes” you’ll find that “static” 
variables do this work for you.

_____________________________________________________________
_______________________________________

Thus far, when we passed parameters to functions, the 
functions used those parameters, computed
some results and then returned some value(s) to the 
calling function. This is one way of doing things.

But sometimes we want to pass some information (i.e., 
parameters) to a function and need the function
to actually change the values of these parameters inside 
the function after doing some computation.
In this case the function need not return anything to the 
caller.  It’s work is reflected in how it changed
the parameter values. The important point is this: when 
the function returns, the calling function will
find that called function updated the variables (passed as 
parameters) inside the called function.
Unlike C, Python does this without the user having to 
work with “pointers”.

_____________________________________________________________
____________________________________________



Finally, we build a simple model of coin tossing. We make 
a sequence of n tosses of either a
fair coin (probability of Heads is 0.5), or an unfair coin 
(probability of Heads is not 0.5).

Experiment with this code and the probabilities, to see of 
the results make sense to you.

_____________________________________________________________
_______________________________________________


