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In preparation
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Can Graph Neural Networks Learn to Generalize   
Beyond their Training Domains through extra  
Architectural Symmetries?
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or 
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Symmetries in Human Learning

4

six

My son’s kindergarten homework

Any simple CNN can distinguishing 6 and 9 
even before training starts

VS

[Sidman and Tailby, 1982]  
[Sidman et al., 1982, “A search for 
symmetry in the conditional 
discriminations of rhesus monkeys, 
baboons, and children”] 

VS
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Talk Overview
• Knowledge Graphs


• Graph Foundation Models Desiderata


• The Symmetries of Graphs and Graph Tasks


• A Solution to the Diversity in Graph Task Symmetries


• A Solution to the Diversity of Graph Attributes


• Parting Thoughts
5
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Knowledge Graph Adjacency Tensor
• Nodes = entities

• Edge type = type of relation

6

Wikipedia’s 

knowledge graph

A ∈ ℤn×n×p

Adjacency tensor: 

- If  relation have ids,  
special value means no relation 

- If p = <number of relations> 
relations are one-hot encoded

p = 1

More generally, we will encode other 

node features and edge features in 

dimension p
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What is a “Graph Foundation Model”?
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What is a “Graph Foundation Model”?

8
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A Definition of a Foundation Model
• Massive Heterogeneous Training Data: Foundation models are trained on enormous 

heterogeneous datasets, which can include text, code, and time series. 

• Transfer Learning: They have the ability to transfer knowledge gained from one task/
domain to other tasks/domains, often through pre-training on general-purpose 
objectives


• Self-Supervised Learning: Foundation models often leverage self-supervised learning 
techniques, allowing them to learn meaningful representations from unlabeled data.


• Broad Task Applicability: Due to their flexible nature, foundation models can be 
applied to a wide range of tasks/domains

9
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A Definition of a Graph Foundation Model
• Massive Heterogeneous Training Data: Graph foundation models are trained on 

enormous heterogeneous graph datasets, which can include text, code, and time series. 

• Transfer Learning: They have the ability to transfer knowledge gained from one graph 
task/domain to other graph tasks/domains, often through pre-training on general-
purpose objectives


• Self-Supervised Learning: Graph foundation models often leverage self-supervised 
learning techniques, allowing them to learn meaningful representations from unlabeled 
data.


• Broad Task Applicability: Due to their flexible nature, graph foundation models can be 
applied to a wide range of graph tasks/domains

10
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Desiderata for Graph Foundation Models 

11
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Desiderata for Graph Foundation Models (GFMs)

Minimal Requirement: 
GFMs should train on diverse graph tasks/domains 

Desiderata: 
1. Task transferability 

2. Feature space universality  

3. Spatio-temporal transferability  

4. Interoperability with sequence models
12
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Desiderata for Graph Foundation Models
1. Task transferability: Graph foundation models should be capable pretraining on 

a diverse set of tasks then fine-tune on diverse downstream tasks

13

Optimized

Optimized
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Desiderata for Graph Foundation Models
2. Feature space universality: Graph foundation models should be able to handle graphs 

with heterogeneous node and edge feature spaces (both categorical, discrete and 
continuous), allowing for seamless integration of diverse data types and sources

14
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Desiderata for Graph Foundation Models
3. Spatio-temporal transferability: Graph foundation models should learn patterns that 

are transferable across graphs of varying sizes, across time, and across graph locations

15
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Desiderata for Graph Foundation Models
4. Interoperability with sequence models: Graph foundation models should be able 

to communicate effectively with sequence foundation models

16
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1. Task Transferability 
  
Reconciling Task-Specific Symmetries in 
Graph Representation Learning 

17
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Part 1.1: 
The Symmetries of Graph Neural Networks 
(Recap) 

18



vs

In 2012 Google declared web 
search as “things, not strings”. 


19

In 2022 OpenAI demoed ChatGPT, 
“strings-only” method.


Knowledge search: Strings (text) or things (graphs)?



Graphs are “strings” + symmetries

• Graphs are sequences of edges with associated (permutation) symmetries since 
node ids are arbitrary [Murphy et al., 2019, Xu et al., 2019, Morris et al., 2019].


• In statistics this assumption is called exchangeability

20

Graph sequence isomorphism: Graphs with distinct sequences can be the same 
graph.

Permutation

 is the

action of  into  
that permutes 

π ∘ A
π A

A
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learning?
ChatGPT used to fail at multi-hop reasoning [Dziri et al., 2023] 
(now it fails only on larger graphs).

21

• ChatGPT’s answers are sensitive to edge order

• Models respecting symmetries must treat all paths identically

Q: Give number of nodes reachable from 61 in exactly two hops

But if we reorder the edges in the prompt the answer changes.

• Order-sensitive models can struggle with tasks that require symmetries



Defining symmetries through groups

• Closure holds i.e., 

• Associativity holds  

• Identity element exists i.e.,   

• Inverse exists for every element and  

∀a, b ∈ 𝒢, a ⋆ b ∈ 𝒢

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) ∀a, b, c ∈ 𝒢

∃e ∈ 𝒢 s.t.  a ⋆ e = e ⋆ a = a ∀a ∈ 𝒢

a ⋆ a−1 = a−1 ⋆ a = e ∀a ∈ 𝒢

22

A group  is a set together with a binary operation  such that: 𝒢 ⋆

Credit: Bala Srinivasan



(Left) Group actions

23

For a group  , binary operation , and with identity , and a set ,  
a (left) group action is a function , such that

𝒢 ⋆ e X
∘ : 𝒢 × X → X

•
•

e ∘ x = x, ∀x ∈ X

π ∘ (h ∘ x) = (π ⋆ h) ∘ x, ∀π, h ∈ 𝒢, ∀x ∈ X

Credit: Bala Srinivasan

A function  is -invariant if 


A function  is -equivariant if 

f 𝒢 f(x) = f(π ∘ x), ∀π ∈ 𝒢, ∀x ∈ X

f 𝒢 π ∘ f(x) = f(π ∘ x), ∀π ∈ 𝒢, ∀x ∈ X



Group Equivariant and Invariant Neural Networks

24

x

y

Translate

Symmetries of a triangle (2D):
• Area of the triangle is invariant to translations
• Centroid of the triangle is equivariant to translations

x

y

centroid

X X

Y Yπ

f f

f(π ∘ x) = π ∘ f(x)

∀π ∈ 𝒢

π

-equivariant 
function

𝒢

∀π ∈ 𝒢
f(π ∘ x) = f(x)

-invariant 
function

𝒢

Let X  and Y  be two vector spaces 
Let  : X  Y be a neural network function

⊆ ℝd ⊆ ℝk

f →

centroid

Group representations of 
appropriate dimensions

Credit: Bala Srinivasan



Symmetries in relational learning

25

𝒁1

v

v=1
v

…
𝒁 ∈ ℝ𝑛×𝑑

GNN(A) = Z

• Permutation equivariance: A Graph Neural Network, , is a neural network that learns 
node embeddings from adjacency matrix . 
GNN node embeddings are equivariant to , where  and  is the permutation group

GNN(A)
A ∈ Rn×n×(p+1)

π ∘ A π ∈ 𝕊n 𝕊n

=A

π ∈ 𝕊n

 =π ∘ A GNN(π ∘ A) = π ∘ Z

𝒁2

…

v=2
v

A =
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GNN outputFood Web 
Graph

GNN

Figure from: On the Equivalence between Positional Node Embeddings and Structural Graph Representations 
(Srinivasan & R., ICLR 2020)

G-equivariances in Graph Neural Networks (GNNs): 

• Kondor, R., & Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of 
compact groups. ICML 2018.


• Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019, July). Weisfeiler and 
leman go neural: Higher-order graph neural networks. AAAI 2019.


• Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. ICLR 2019.



Downstream Task — Node Classification

27

f(A, u) ∈ ℝd

node u’s embedding 

Classifier
gθ : ℝd → {1,…, nclasses}

u

Node Classification 
(Downstream Task)

Example: 
Given a social network , 
predict the types of ads to 
serve user u

A

u

 
simplified tensor 

notation of the graph

A ∈ ℝn×n×(1+k+p)

  —   (Abstractly) A function that outputs node representations f f : ℝn×n×p × ℕ → ℝn×d, d > 0

G-invariant embedding f(A, u) = f(π ∘ A, π ∘ u) ∈ ℝd , π ∈ 𝕊n



Downstream Task — Link (edge) Prediction

28

Example: 
Predict a relation between 
Taylor Swift and Terence Tao

6

11
10

7

3

9

2

5

8

1

4

f(A,1) ∈ ℝd

Node 2’s embedding 

Node 1’s embedding 

f(A,2) ∈ ℝd

 simplified 
tensor notation of the 

graph

A ∈ ℝn×n×p

  —   (Abstractly) A function that outputs node representations f f : ℝn×n×p × ℕ2 → ℝn×d, d > 0

Classifier

Link (edge) Classification 
(Downstream Task)

y1,2

gθ : ℝ2×d → {1,…, nclasses}

G-equivariant embedding π ∘ f(A) = f(π ∘ A)π∘u ∈ ℝn×d

?
, π ∈ 𝕊n

There is something wrong with this approach…
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Part 1.2: 
The Symmetries of Graph Tasks 

29



Equivariant node representations generalize poorly in link prediction

• Edge-based tasks have symmetries that are incompatible with the 
symmetries required for node tasks 

• If , then any  that learns to predict 
edge (Lynx, Coyote) must also predict edge (Orca, Coyote) 

g : ℝd × ℝd → {link, no link} g

30colors according to GNN embeddings
g( , ) = {link, no link}
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Graph Task Symmetries
• Node classification

• Link prediction

• Triangle counting


• These all require different 
neural network symmetries

31

On the Equivalence between Positional Node 
Embeddings and Structural Graph Representations 
(Srinivasan & R., ICLR 2020)
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All -node Tasks Require -node Equivariancesk k
• Theorem (Task Equivariances) [summary]. The neural networks that can learn tasks 

over  nodes should have distinct equivariances depending on . 

• Theorem (Task Equivariances). Let  be an attributed graph, with 
 as nodes,  as edges,  as node and edge attributes. Let  be 

a set of  nodes (w.l.o.g. ). Consider a random variable  

encompassing the nodes in  that we wish to learn with a neural network  via 
supervised learning: . Then,  must be described by two 

permutation groups: the normal subgroup  that defines the equivariances of  
related to the nodes  in the task and the normal subgroup  which describes 
the invariance of  to all remaining nodes in the graph.

k ∈ {1,…, n} k

G = (V, E, X)
V = {1,…, n} E X Sk ⊆ V

k Sk = {1,…, k} YSk

Sk f
P(YSk

|Sk, G) = f(Sk, G) f
𝕊k f

Sk 𝕊n\𝕊k
f

32R., “A Mathematical Framework for Graph Foundation Models”, in preparation



“All -node Tasks Require -node Equivariances”k k

• Example with k=3

33

Example of 3-node task

On the Equivalence between Positional Node Embeddings and Structural Graph Representations 
(Srinivasan & R., ICLR 2020)

𝕊3 ⊂ 𝕊n
G-equivariance on target nodes

𝕊n\𝕊3
G-invariance 

on remaining nodes
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Impossibility Result

34

Then, there are no Graph Foundation Models  
that can pretrain informative node embedding vectors  

 over multiple graph taskszv ∈ ℝd, v ∈ V? 👎

Unknown authors, ”Holographic Node Representations: Pre-Training Task-
Agnostic Node Embeddings” ICLR 2025 submission 
https://openreview.net/forum?id=tGYFikNONB

https://openreview.net/forum?id=tGYFikNONB
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What happens if pertaining with the wrong -node equivariance?k

Pretrain: link prediction task (k=2 task)

Task: transfer learning for node classification (k=1 task)


• SEAL: has equivariance for k=2 on a node (k=1) task

• NBFNet: has equivariance for k=2 on a node (k=1) task

• GNN: has equivariance for k=1 on a node (k=1) task

• HoloGNN: New equivariant-universal embedding 

approach

35

Best

AUC

CORA dataset

(Error bars too small to show)

Figure: Unknown authors, ”Holographic Node Representations:

Pre-Training Task-Agnostic Node Embeddings” ICLR 2025 submission

Optimized

Optimized
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Pretrain on a graph task, Transfer learn on another task

36
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Potential Solution: Holographic Node Embeddings

• Holographic representations is the first step to solve task pertaining issue


• Variable-dimensional node embeddings , where  would depend 
on the collection of training graphs.

zv ∈ ℝm×d, v ∈ V m ≤ n

37

👍

Unknown authors, ”Holographic Node Representations: Pre-Training Task-Agnostic Node 
Embeddings” ICLR 2025 submission

Graph neural network equivalent of eigenvalue 
multiplicities, needed for reduction map
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Holographic Node Embeddings
• Expansion map tries to be permutation sensitive 

(not G-equivariant)

• Reduction map restores the appropriate  

k-node equivariances broken by expansion map

38

👍

Details:


• Property (1): The composition of expansion and reduction ( ) produces structural 

representations (one for each set of  nodes), i.e.,  for 

any .


• Property (2): For any undirected graph  and isomorphic nodes , with  
and having different neighborhoods, there exists a  such that, the expansion maps are different.

Rψ ∘ Eθ

k π ∘ Rψ(Eθ(A, V1)) = Rψ(Eθ(π ∘ A, π ∘ V1))
π ∈ 𝕊n

G = (V, E, X) u, v ∈ V u ≠ v
θ
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2. Feature Space Universality 

39
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Maybe an Impossible Dream

40

Pretrain a single foundation graph model over multiple graphs with distinct feature spaces

• Node/edge features can be a mix of


• , real-valued features (totally ordered sets)


• , discrete features (totally ordered sets)

• Categorical features (unordered sets) 

ℝ
ℤ
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PCA, ICA, and other Inverse Mixing Models
• One way to learn over distinct real-valued node feature spaces: 


• Assume features of node  in domain  is:  , where


•  sampled for node  from some distribution  in a common feature space across 
domains (not sampled independently with respect to other nodes in the graph)


•  is a source mixing matrix for domain 

• Goal:


• Find  for each domain as to project features in the same feature space


• Limitations for Graph Foundation Model use: 
• Inverse map obtained via test-time adaptation (solving optimization on test data)

• Inverse map may need to depend on graph structure (for most methods they are not)

• No categorical features (unordered sets)

• Inverse function space must be known (often restricted to linear maps)

i m Xi,m = HmZi

Zi ∼ μ i μ

Hm m

H−1
m

41R., “A Mathematical Framework for Graph Foundation Models”, in preparation
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A Different Paradigm:  
New Equivariances for Feature Space Embedding

42
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A Special Case of this New Paradigm:  
Relation Types in Knowledge Graphs

43

https://arxiv.org/abs/2302.01313



Note that entity and relation ids are arbitrarily defined.

44

• Pattern transferability: E.g.: Common interests (relations) could imply friendship, 
regardless of what the interests are.

Further Equivariances in Knowledge Graphs



Double-Equivariance
Solution: assume permutation symmetries of both entity ids and relation ids, a 
notion dubbed Double-Exchangeability [Gao et al., 2023].

Double equivariant models can learn higher-order logical relations beyond what 
can be learned from data alone.

45

Train:

Test:
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Transferability over Multiple Domains?
• Can we transfer the relational patters we learn in  

Sports to predict relations in Organizations?

46

Train data: Sports Test data: Organizations

Change in 

domain

1-Hop

Relations
Are

Variables

Nodes
Are

Variables

Test has
New Nodes &
New Relations

Test

racin
g drive

r racing driver
teammate

teammate

team principle

Christian Horner

Max Verstappen  Sergio Pérez

Red Bull Racing

occupationoccupation

Training
based in

Formula One Driver

employee employee?
co-worker

co-worker

CEO

Sundar Pichai

Peter Norvig Jeff Dean

Google

field offield of

Computer Science

headquarter in

1-Hop

Relations
Are

Variables

Nodes
Are

Variables

Test has
New Nodes &
New Relations

Test

racin
g drive

r racing driver
teammate

teammate

team principle

Christian Horner

Max Verstappen  Sergio Pérez

Red Bull Racing

occupationoccupation

Training
based in

Formula One Driver

employee employee?
co-worker

co-worker

CEO

Sundar Pichai

Peter Norvig Jeff Dean

Google

field offield of

Computer Science

headquarter in
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Our Benchmark: Wikipedia KG Domains

47

• We created a benchmark for  
pre-training, zero-shot 
transferability


• Domains have non-overlapping 
entities and relations
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New Knowledge Graph Isomorphism

48

1-Hop

Relations
Are

Variables

Nodes
Are

Variables

Test has
New Nodes &
New Relations

Test

racin
g drive

r racing driver
teammate

teammate

team principle

Christian Horner

Max Verstappen  Sergio Pérez

Red Bull Racing

occupationoccupation

Training
based in

Formula One Driver

employee employee?
co-worker

co-worker

CEO

Sundar Pichai

Peter Norvig Jeff Dean

Google

field offield of

Computer Science

headquarter in

≡

Test: OrganizationsTrain: Sports

 If 

   1. , and

    2.    

                   

 we say  are isomorphic

A ≠ A′ 

∃πe ∈ 𝕊n, ∃πr ∈ 𝕊m,
A′ = πe ∘ πr ∘ A

A ≡ A′ 
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Double equivariance for knowledge graph predictors
 
 

GNN2 → Double G-equivariant GNN to node and relation 
permutations 

 

 

s.t.   

̂θ, ̂θ′ = argmin
θ,θ′ 

− log pθ′ 
(yi,r′ ,⋆ |GNN2

θ(r′ , (A1, …, Ar))ir′ 
), label i and r′ )

GNN2
θ(r′ , π′ ∘ (π ∘ A1, …, π ∘ Ar)) = π ∘ GNN2

θ(π′ ∘ r′ , (A1, …, Ar)),
∀π′ ∈ 𝕊r , ∀π ∈ 𝕊n, ∀A1, …, Ar

49

Double equivariant GNN

For all graphsFor all relation sequence permutations

Double equivariance 
guaranteed by architecture 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Transferability through double equivariance (1)
• Pretrain up to 4x domains, zero-shot test on new domain (no overlapping 

relations) to predict relation (i,?,j)

50
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Transferability through double equivariance (2)
• Pretrain up to 4x domains, zero-shot test on new domain (no overlapping 

relations) to predict relation (i,r,?)

51
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Examples of double-equivariant models in the literature

• (ISDEA+) (Gao et al., 2023) arXiv:2302.01313


• (ULTRA) (Galkin et al., ICML 2024)


• (ULTRA-Query) (Galkin et al., NeurIPS 2024)


• (INGRAM) (Lee et al, ICML 2023)* [*embeddings equivariant in distribution, see 
(Gao et al., 2023)]

52
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Can we further generalize this 
approach?

53
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(Recap) Maybe an Impossible Dream

54

Pretrain a single foundation graph model over multiple graphs with distinct feature spaces

• Node/edge features can be a mix of


• , real-valued features (totally ordered sets)


• , discrete features (totally ordered sets)

• Categorical features (unordered sets) 

ℝ
ℤ
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55

Further Generalization of Feature Domain Transferability

Zero-Shot Generalization of GNNs Over Distinct Attribute Domains,
Shen, Zhou, Bevilacqua, Robinson, Kanatsoulis, Leskovec, Ribeiro, 2024 under submission



Bruno Ribeiro, Purdue

Distinct Feature Domains (Example)

56

• Domain e-commerce beds 

• Features: 


• Type: ’Twin’, ’Twin XL’, ’Full’, ’Queen’, ’King’, ’California King’


• Material: ‘Wood’, ’Metal’, ’Upholstered’, ’Bamboo’, ’Particle 
Board’, ’Composite’


• Bed frame included: True/False


• Headboard included: True/False


• Footboard included: True/False


• Box spring required: True/False


• Weight capacity lbs: int


• Bed size length (inches): int


• Bed size width (inches): int


• Bed size height (inches): int

• Domain e-commerce H&M (clothes) 

• Features: 


• Product type name: categorical


• Graphical appearance name: categorical


• Color: categorical


• Perceived color: categorical


• Perceived color master name: categorical


• Department name: categorical


• Index group name: categorical


• Section name: categorical


• Garment type: categorical
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Distinct Feature Domains (Example)

57

• Domain e-commerce smartphones  

• Features: 


• Display type:’OLED’, ’LCD’


• Display size (in): float


• Display resolution (pixels): <int,int>


• Processor type: categorical


• Ram (GB): int


• Storage (GB): int


• “Rear camera primary resolution (MP): int


• Front camera resolution (MP): int


• Operating system:’Android’, ’iOS’, ’HarmonyOS’, ’KaiOS’, ’Tizen’, 
’Ubuntu Touch’, ’PureOS’, ’Sailfish OS’, ’Plasma Mobile’


• Battery capacity (mAh): int


• Has gps: True/False


• Has nfc: True/False

…

• Domain e-commerce refrigerators 

• Domain e-commerce shoes 
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New Equivariances for Encoding Features in GNNs

Neural Network Train
Test


(Zero-shot)
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New Equivariances for Encoding Features in GNNs

Neural Network

Train
Test


(Zero-shot)

C
or

re
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ly
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s 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A New type of Graph Equivariance to Encode Node Features

• What if instead of learning over the original node features,  
we learned over the space that defines their dependencies with 

• (i) the features of the node’s neighbors

• (ii) the features and the task 

• This would be possible if we had a neural network that could learn to perform 
independence tests over

• (a) multiple random variables

• (b) accounts for graph topology


• We would like to translate these requirements into invariances

60
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Finding the right invariances
• Bell (1964) and later Berk & Bickel (1968) proved that a certain type of 

independence tests (rank tests) have invariances such that they are equivalent 
to most-powerful almost invariant tests.

• If most expressive, these tests are called maximal invariants 
• These tests are defined by their invariances.

• This means that a neural network can learn independence tests if it abides by 

the invariances of rank tests.

61
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A New type of Graph Equivariance to Encode Node Features

Component-wise order-preserving groupoids for graphs (COGG) equivariances 

• Intuitively, the full set of invariances required for domain transferability over  
a graph , where  are the node features: 

1. Invariance or equivariance to transformations of feature values that

1.1. Preserve the order statistics of the feature values of totally ordered sets

1.2. Invariant to the order statistics of the feature values of unordered sets  

2. Invariance or equivariance to permutations of feature variables

2.1. i.e., the order of the features should be irrelevant 

3. Invariance or equivariance to permutations of entities (nodes) in the graph, affecting both 
nodes  (and consequently  ) and the feature variables in X

G = (V, E, X) X

V E
62



Bruno Ribeiro, Purdue

Using these equivariances GNNs can generalize across feature domains

• 5 datasets: E-commerce beds, desktops, refrigerators, smartphones, shoes


• Task: Train on  dataset domains, zero-shot into held-out dataset.k ∈ {1,…,4}

63

Training on more domains 
(e.g., beds, desktops, 
shoes, fridges) 
improves prediction on  
held-out domain  
(e.g., smartphones)

 training domainsk
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Recap

64

1. Task transferability: 

• Graph tasks of  nodes need 

-permutation symmetries 

• New graph representations (holographic) 
provide first step towards task 
transferability

k
k

1. Feature space universality: 

• Node/edge feature heterogeneity 

between domains is a challenging 
problem 

• New neural network symmetries can 
unleash more universal feature space 
embeddings by encoding statistical 
dependencies rather than values
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Parting Thoughts
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• Imposing new GNN symmetries allows them to have better  
task and feature space transferability 

• Graph Foundation Models may not happen through engineering solutions 
& known methods (e.g., PCA-style) alone

• GNNs that can learn over diverse graph domains seem to require  

new neural network symmetries

Thank You!

@brunofmr
ribeiro@cs.purdue.edu

Symmetries
Deep  
LearningGraph 

Foundation  
Models
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(Backup) 
Symmetries in Human Relational Reasoning 
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Symmetries in Human Learning
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p q d b p q d b p q d b p q d b
six

His kindergarten homework

Any simple CNN can distinguishing 6 and 9 
even before training starts

VS
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Symmetries and learning
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Assuming symmetries is a key  
cognitive difference between the  
young children and other primates

Young children assume symmetries  
(and learn asymmetries when wrong)
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Learned

stimuli relations

Directly trained

Assumed symmetry 
(Mutual entailment)

Assumed transitivity

(Combinatorial mutual entailment)

[Sidman and Tailby, 1982]  
[Sidman et al., 1982, “A search for symmetry in the  
 conditional discriminations of rhesus monkeys, baboons, and children”] 

Human neurons assume some symmetries



Asymmetry Learning 
Hypothesis: Human brain 
assumes symmetries and learn 
asymmetries when needed 

Neural networks should also 
assume symmetries and learn 
asymmetries when needed
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Asymmetry Learning for Counterfactually-invariant 
Classification in OOD Tasks 
(Mouli, R., ICLR 2022 Oral)


