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Abstract

The deluge of sequential text data has been a boon for artificial intelligence,
but it may be dwarfed by a largely untapped reservoir of human knowledge:
graph-structured data, which underlies the Web’s topology and the relational
databases that govern our digital lives. Yet, despite its ubiquity, learning uni-
versal Al models for graph data remains a stubborn challenge. Here, we take up
the task of establishing fundamental mathematical frameworks to facilitate the
development of AI models that can effectively learn useful patterns from diverse
graph-structured data. We will explore the theoretical and practical hurdles for
tackling these unique challenges.

In preparation
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or

Can Graph Neural Networks Learn to Generalize
Beyond their Training Domains through extra
Architectural Symmetries?
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Symmetries in Human Learning

i -3 [Sidman and Tailby, 1982]
MATCH;NG LINE.--S [Sidman et al., 1982, “A search for
sppercareiana symmetry in the conditional
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Talk Overview

 Knowledge Graphs

 Graph Foundation Models Desiderata

 The Symmetries of Graphs and Graph Tasks

* A Solution to the Diversity in Graph Task Symmetries
* A Solution to the Diversity of Graph Attributes

* Parting Thoughts
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Knowledge Graph Adjacency Tensor

e Nodes = entities

| Wikipedia’s
 Edge type = type of relation knowledge graph

instance of student of
A € 7 3
instance of & % . 2
. ber of sports tean-:' a «’n‘-‘- instance of SOtTales
Adjacency tensor: Brazil naﬁonal footl;all team w hu:a-n
participatin_g @eam .
- If p = 1 relation have ids, 1 T
special value means no relation N U | .
1982 FIFA World Cup e — —
. Socrates
- If p = <number of relations> e Shepets men
occupation

relations are one-hot encoded

. ractice ; '/”;' Ly
More generally, we will encode other prectiosd by e
node features and edge features in acotor . WPA0f s occupator

Ancient Greek medicine

dimension p

medicine



What is a “Graph Foundation Model”?

Bruno Ribeiro, Purdue



What is a “Graph Foundation Model”?

Bruno Ribeiro, Purdue



Bruno Ribeiro, Purdue

A Definition of a Foundation Model

 Massive Heterogeneous Training Data: Foundation models are trained on enormous
heterogeneous datasets, which can include text, code, and time series.

* Transfer Learning: They have the ability to transfer knowledge gained from one task/
domain to other tasks/domains, often through pre-training on general-purpose
objectives

» Self-Supervised Learning: Foundation models often leverage self-supervised learning
techniques, allowing them to learn meaningful representations from unlabeled data.

 Broad Task Applicability: Due to their flexible nature, foundation models can be
applied to a wide range of tasks/domains
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A Definition of a Graph Foundation Model

Massive Heterogeneous Training Data: Graph foundation models are trained on
enormous heterogeneous graph datasets, which can include text, code, and time series.

Transfer Learning: They have the ability to transfer knowledge gained from one graph
task/domain to other graph tasks/domains, often through pre-training on general-
purpose objectives

Self-Supervised Learning: Graph foundation models often leverage self-supervised
learning techniques, allowing them to learn meaningful representations from unlabeled

data.

Broad Task Applicability: Due to their flexible nature, graph foundation models can be
applied to a wide range of graph tasks/domains

10
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Desiderata for Graph Foundation Models

11
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Desiderata for Graph Foundation Models (GFMs)

Minimal Requirement:
GFMs should train on diverse graph tasks/domains

Desiderata:
1. Task transferability

2. Feature space universality
3. Spatio-temporal transferability

4. Interoperability with sequence models

12
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Desiderata for Graph Foundation Models

1. Task transferability: Graph foundation models should be capable pretraining on
a diverse set of tasks then fine-tune on diverse downstream tasks

Pre-training Fine-tuning

Graph Task 1 r Graph Task 2 1| Graph Task 3 )
(node task) (edge task) (trlangle task)

Graph Foundation Model
I:I I:I % Frozen Parameters

-——eeemeem) - - ememememe wml) - -m-m-—-- - o ----

/ ‘ Downstream 1} [Downstream 2] [Downstream 3} Optimized

A4 \d \d

Graph Foundation Model Graph Task 1 Graph Task 2 Graph Task 3
(node task) (edge task) (triangle task)

Shared Task Parameters g:I w
----- ®------"-"-"-"@---"-"-"-"-"-"-@---- g
?

Optimized
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Desiderata for Graph Foundation Models

2. Feature space universality: Graph foundation models should be able to handle graphs
with heterogeneous node and edge feature spaces (both categorical, discrete and
continuous), allowing for seamless integration of diverse data types and sources

Molecular Graph Knowledge Graph Social Network
Node: Atomic Properties (Z, charge) Node: Entity Types, Text Node: User Demographic Features
Edge: Bond Types, Length Edge: Relations, Confidence Edge: Interaction Types, Time

Graph Foundation Model

Unified Processing of Heterogeneous Features

14
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Desiderata for Graph Foundation Models

3. Spatio-temporal transferability: Graph foundation models should learn patterns that
are transferable across graphs of varying sizes, across time, and across graph locations

[ Source Domain: Social Networks Target Domain: E-commerce Network
Small Network Medium Network Small Market Medium Market
= EEEEEEmEEm-=-=- . =T EEEEEEm=-=- . i"""""“l i""""""l
i 1 1 i
i ' 1 ' ] ' i '
1 ' I ' i ' i '
1 . I i . i
1 ' 1 ' ] ' i '
- : | . | . - :
1 1 ] i
i — ! e —— | i —— ! e —— |
User Interaction Pattern Extended Connections Product Purchase Pattern Product Category Cluster
arge Network arge Market

Not on this talk

Multiple Community Patterns Market Segment Patterns

B ————— T
Graph Foundation Model

Spatial and Size-independent Pattern Learning and Transfer
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Desiderata for Graph Foundation Models

4. Interoperability with sequence models: Graph foundation models should be able
to communicate effectively with sequence foundation models

| Graph Foundation Model I

Graph-Sequence Model Interoperability

Sequence Foundation Model

Structural Mapping Layer

° ° ! Graph — Sequence

~
Structure-Aware Tokenization D
o J
- N pos 1 pos 2 pos 3 posS_n
Sequence — Graph

Structure-Preserving Reconstruction

a )

Not on this talk

. J
Preserved Properties Preserved Properties
* Node Connectivity . » Sequential Order
» Graph Symmetries * Positional Context

Hybrid Model Integration

Graph Features Sequence Features
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1. Task Transferability

Reconciling Task-Specific Symmetries in
Graph Representation Learning
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Part 1.1:
The Symmetries of Graph Neural Networks
(Recap)




G openAI vs Google

Knowledge search: Strings (text) or things (graphs)?

In 2022 OpenAl demoed ChatGPT,

“strings-only” method.

What nerdy attractions one should not miss in Vienna?

Vienna is known for its rich cultural heritage, but it also has
plenty of attractions that could be interesting for someone with a
"nerdy" disposition, especially those interested in science,

technology, art, and history. Here are some you might consider:

1. Vienna Technical Museum: This museum features a broad
range of exhibits covering topics like energy, transportation,

communication, and heavy industry. For technology

enthusiasts, Regenerate response

In 2012 Google declared web
search as “things, not strings”.

Google The Keyword

SEARCH

Introducing the Knowledge
Graph: things, not strings

May 16,2012 - 4 min read < Share

e Amit Singhal
SVP, Engineering

Search is a lot about discovery—the basic human need to learn and broaden your
horizons. But searching still requires a lot of hard work by you, the user. So today I'm
really excited to launch the Knowledge Graph, which will help you discover new

information quickly and easily.

19



Graphs are “strings” + symmetries

» Graphs are sequences of edges with associated (permutation) symmetries since
node ids are arbitrary [Murphy et al., 2019, Xu et al., 2019, Morris et al., 2019].

» In statistics this assumption is called exchangeability

Graph sequence isomorphism: Graphs with distinct sequences can be the same
graph.

Permutation

A T € Sy
Y
4 5
toString() toGraph 7o A is the toStrlng( toGraph

@ g @ % @ action of rinto A @ g g 2 @
that permutes A

= (A1, A12, A1s, .. A23, .., Ass) VG?TOA =(Aq1, A12, A1s, . . A23, .., Ass)

20
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Why are symmetries relevant in relational
learning?

ChatGPT used to fail at multi-hop reasoning [Dziri et al., 2023]
(now it fails only on larger graphs).

* Order-sensitive models can struggle with tasks that require symmetries

Q: Give number of nodes reachable from 61 in exactly two hops

In the given undirected graph, there are two nodes that are exactly 2-hops away from node 17 k23 @
61. These nodes arg 17 and 19.

But if we reorder the edges in the prompt the answer changes. 19 53

In the given graph, there are three nodes that are exactly 2-hops away from node 61. These

nodes arefl7, 19, and 47. @

« ChatGPT’s answers are sensitive to edge order
 Models respecting symmetries must treat all paths identically .
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Defining symmetries through groups

A group G is a set together with a binary operation x such that:

e Closure holdsi.e., Ya,be €, a*xbe &
e Associativity holds (a x b)) x c=a *x (b *xc) Va,b,c € &
e [dentity element existsi.e, de € & sit. axe=e*xa=a Vae g

e Inverse exists for every elementand a xa '=a ' xa=e Vae &

Credit: Bala Srinivasan 22
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(Left) Group actions

For a group & , binary operation x, and with identity ¢, and a set X,
a (left) group action is a function o : & X X — X, such that

ecox=2x, VxeE€X

oo(hox)=(m*xh)oex, Vo,he &, VxeX
A function fis G-invariant if f(x) = f(rex),Vn e &, Vxe X

A function fis Z-equivariantif 7o f(x) = f(mex), Ve &, Vxe X

Credit: Bala Srinivasan 23
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Group Equwarlant and Invariant Neural Networks

Let X C l and Y C k be two Vector spaces
Let f: X = Y be a neural network function |

| G-equivariant | | G-invariant |

| function | _function | |Symmetries of a triangle (2D):
e Area of the triangle is invariant to translations

< . X) = J(x) | » Centroid of the triangle is equivariant to translations }
S Vre € e e e e e e Y e e ]
_ycentroid

y y p
A A ; ":\

» centroid

[
|
]
1
1

L}

| Translate

t Group representations of §
| appropriate dimensions |

Credit: Bala Srinivasan 24
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Symmetries in relational learning

» Permutation equivariance: A Graph Neural Network, GNN(A), is a neural network that learns
node embeddings from adjacency matrix A € R P+

GNN node embeddings are equivariantto w o A, where t € S, and S, is the permutation group

Z c Rnxd
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G-equivariances in Graph Neural Networks (GNNSs):

- Kondor, R., & Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of
compact groups. ICML 2018.

- Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019, July). Weisfeiler and
leman go neural: Higher-order graph neural networks. AAAI 2019.

- Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. ICLR 2019.

Food Web [)
\(?raph % /
O

Red Fox Baleen Whale Red Fox Baleen Whale

White Spruce  Snowshoe H

Figure from: On the Equivalence between Positional Node Embeddings and Structural Graph Representations
(Srinivasan & R., ICLR 2020)
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UNIVERSITY.

Downstream Task — Node Classification

7 — (Abstractly) A function that outputs node representations f: R"”*? x N — R™4 g > ()

o

A €

RanX(l+k+p)

simplified tensor
notation of the graph

G-invariant embedding f(A,u) = f(roc A, 7ou) € R? 7 €S,

node u’s embedding

Classifier

g, RY— {1,..

GD\CQD
/

Node Classification
(Downstream Task) 2

- Nlasses |

'Given a social network A,
‘predict the types of ads to |
lserve user u f



27 FORRVE

Downstream Task — Link (edge) Prediction

— (Abstractly) A functlon that outputs node representatlons f R”X”Xp >< N2 R”Xd, d>0

G-equivariant embedding 7 - f(A) = f(r> A)_, € R™ ,z€S,
d

Node 1’s embedding

R4 Node 2’s embedding

| Classifier
P 0, R4 5 {1

- Nelasses )

A € R™"™P gsimplified Y 1,2 Exan.lple: .
Predict a relation between

tensor notation of the |
| Taylor Swift and Terence Tao |

Link (edge) Classification
graph (Downstream Task)

There is something wrong with this approach...

28
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Part 1.2:
The Symmetries of Graph Tasks




Equivariant node representations generalize poorly In link prediction

® Fdge-based tasks have symmetries that are incompatible with the
symmetries required for node tasks

. If g : R X RY = {link, no link}, then any g that learns to predict
edge (Lynx, Coyote) must also predict edge (Orca, Coyote)

@/ '

White Spruce Snowshoe H

Red Squirrel . Pelagic Fish

und Squirrel ,

Red Fox

g(@ , O ) = {link, no link}

colors according to GNN embeddings =

Baleen Whale



Graph Task Symmetries

 Node classification
* Link prediction
* [riangle counting

* These all require different
neural network symmetries

On the Equivalence between Positional Node
Embeddings and Structural Graph Representations
(Srinivasan & R., ICLR 2020)

Node Task

Edge Task

Bruno Ribeiro, Purdue

Training Graph Test Graph
PelachM O Q\
N g\ Q Plant O/ 9
Zooplankton fi CV Orca
enguin
Baleen Whale
Training Test
= 5
Orca >

Zooplankton

Ay

/
ale roung Squj pd Fox
Red SquRrel
no are

White Spruce

Training

-yl
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All k-node Tasks Require k-node Equivariances

 Theorem (Task Equivariances) [summary]. The neural networks that can learn tasks
overk € {1,...,n} nodes should have distinct equivariances depending on k.

« Theorem (Task Equivariances). Let G = (V, E, X) be an attributed graph, with
V= 1{1,...,n} as nodes, E as edges, X as node and edge attributes. Let §;, C V be

a set of k nodes (w.l.o.g. §;, = {1,..., k}). Consider a random variable YSk

encompassing the nodes in §; that we wish to learn with a neural network f via
supervised learning: P(Yg | S, G) = f(S;, G). Then, f must be described by two

permutation groups: the normal subgroup S, that defines the equivariances of f
related to the nodes S, in the task and the normal subgroup S \S, which describes

the invariance of f to all remaining nodes in the graph.

R., “A Mathematical Framework for Graph Foundation Models”, in preparation 32



“All k-node Tasks Require k-node Equivariances”

« Example with k=3
S;CS,
G-equivariance on target nodey

S \S Red Squirel Pelagic Figh
n'-2>3
(GG-invariance
on remaining nodes Coyote Seal O
Lynx Orca

White Spruce Snowshoe H Zooplankton Krill

W

Greund Squi enguin

G

Red Fox Baleen Whale

Example of 3-node task

On the Equivalence between Positional Node Embeddings and Structural Graph Representations
(Srinivasan & R., ICLR 2020)
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Impossibility Result

Unknown authors, "Holographic Node Representations: Pre-Training Task-
Agnostic Node Embeddings” ICLR 2025 submission
https://openreview.net/forum?id=tGYFIikNONB

Pre-training
, - - ~ Proposition 2.3 (Informal). For any node embedding model f, there exists two tasks of different
%%%ﬂgg';; %;%%2{22‘;)2 (?rgggglgig';lg orders for which at least one is not solvable using f.
I:I L I:I |1 I:I J Then, there are no Graph Foundation Models
\ / that can pretrain informative node embedding vectors
r f? : z, € RY v € V over multiple graph tasks
Graph Founglation Model
____Shared Task Parameters Proposition B.1 (Impossibility of accurate any-order task learning from node embeddings). Con-
. ) sider simultaneously performing two tasks, T,.q. and T, using node embeddings f(A,X) €

R™*4. There exist Troge and Tinx such that, for any MLP,,4. and MLPj;,. achieving the training
minima, no f that produces either positional or structural representations can simultaneously sat-

isfy the following two conditions: (1) L, ,,(Dnode) = LT ; (2) L7, (Diink) = L% . That is, when

node

using standard (flat) node embeddings, the predictions cannot be simultaneously accurate (in test)
for both tasks.

34
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What happens if pertaining with the wrong k-node equivariance?

CORA dataset
(Error bars too small to show)
Pretrain: link prediction task (k=2 task) AUC
O 80
Task: transfer learning for node classification (k=1 task) I
= 60-
g
. . =
« SEAL: has equivariance for k=2 on a node (k=1) task 0
* NBFNet: has equivariance for k=2 on a node (k=1) task 20-
 GNN: has equivariance for k=1 on a node (k=1) task O
* HoloGNN: New equivariant-universal embedding
approach . o
— , \ Pfretrain on q
geEss ’ Graph Foundation Model trai
[ 1 ] o it o (for pretrained)
) L Test on Node
1 pownstream 1| OQptimized Figure: Unknown authors, "Holographic Node Representations:
Graph Foundation Model S Pre-Training Task-Agnostic Node Embeddings” ICLR 2025 submission

I " Shared Task Parameters
Optimized | R J 3 35
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Pretrain on a graph task, Transfer learn on another task

100 - CORA Citeseer Pubmed MovielLens

Q0
o
1

Test Metric

40 -

20 -

Worst Pretraining Task

Pretrain on
(for pretrained)

Test on Node Link Node Link Node Link MovieMovie UserMovieUser UserMovieMovie

36
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Potential Solution: Holographic Node Embeddings

Unknown authors, "Holographic Node Representations: Pre-Training Task-Agnostic Node
Embeddings” ICLR 2025 submission

* Holographic representations is the first step to solve task pertaining issue «&
mXd

» Variable-dimensional node embeddings 7, € |
on the collection of training graphs.

, v € V, where m < n would depend

Definition 3.1 (Holographic Node Representations). Holographic node representations consist of

two learnable, parameterized maps:
Graph neural network equivalent of eigenvalue

(1) Expansion Map: /multiplicities, needed for reduction map
Ey : {0’ 1}n><n X Rnxdl N R"n,xTxde X (2[n])L X NT (2)

The expansion map, parameterized by 6, takes as input the adjacency matrix and the initial
structural representations, and it outputs: (a) A (7" X d.)-dimensional representation for each of
the n nodes (2D representation), denoted by V,( A, V1); (b) A sequence of L lists of node IDs,
where nodes within each list share the same role, and nodes in different lists have distinct roles;
(c) A sequence of integers, indicating how the 1" node representations should be grouped.

(2) Reduction Map:
Ry : RPXTxde 5 (2l 5 NT — R(7)%dr (3)
The reduction map, parameterized by 1), takes the output of the expansion map and produces
1D representations for any set of 7 nodes. 37
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o . Pre-training
Holographic Node Embeddings
Graph Task 1 Graph Task 2 Graph Task 3
(node task) (edge task) (triangle task)
* Expansion map tries to be permutation sensitive | i J { i J - |
(not G-equivariant) \ /
: . \/
 Reduction map restores the appropriate ! )l »
. . . Graph Foundation Model , ,2
K-node equivariances broken by expansion map  Shered Tk Parameters ~E

Details:

« Property (1): The composition of expansion and reduction (Rw o k) produces structural
representations (one for each set of k nodes), i.e., o RW(E@(A, Vi) = Rw(Ee(yz oA, o V,)) for
any w € S,

* Property (2): For any undirected graph G = (V, E, X) and isomorphic nodes u, v € V, with u # v
and having different neighborhoods, there exists a @ such that, the expansion maps are different.

38
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2. Feature Space Universality

39



Maybe an Impossible Dream

Pretrain a single foundation graph model over multiple graphs with distinct feature spaces

* Node/edge features can be a mix of

- R, real-valued features (totally ordered sets)

- /., discrete features (totally ordered sets)

 Categorical features (unordered sets)

Molecular Graph

|

Node: Atomic Properties (Z, charge)
Edge: Bond Types, Length

©
®

©
@

Knowledge Graph Social Network
Node: Entity Types, Text Node: User Demographic Features
Edge: Relations, Confidence Edge: Interaction Types, Time

@

|

Graph Foundation Model

Unified Processing of Heterogeneous Features

Bruno Ribeiro, Purdue

40
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PCA, ICA, and other Inverse Mixing Models

 One way to learn over distinct real-valued node feature spaces:

 Assume features of node i in domain mis: X;, = H _Z. , where

« /. ~ i sampled for node 1 from some distribution ¢ in a common feature space across
domains (not sampled independently with respect to other nodes in the graph)

« H_ is a source mixing matrix for domain m

e Goal:

 Find H,;ll for each domain as to project features in the same feature space

 Limitations for Graph Foundation Model use:
* |nverse map obtained via test-time adaptation (solving optimization on test data)
* |nverse map may need to depend on graph structure (for most methods they are not)
* No categorical features (unordered sets)
* |nverse function space must be known (often restricted to linear maps)

R., "A Mathematical Framework for Graph Foundation Models”, in preparation 41
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A Different Paradigm:
New Equivariances for Feature Space Embedding
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A Special Case of this New Paradigm:
Relation Types in Knowledge Graphs

Double Equivariance for Inductive Link Prediction for Both
New Nodes and New Relation Types

Jianfei Gao, Yangze Zhou, Jincheng Zhou, Bruno Ribeiro

https://arxiv.org/abs/2302.01313

43



Further Equivariances in Knowledge Graphs

Note that entity and relation ids are arbitrarily defined.

» Pattern transferability: E.g.: Common interests (relations) could imply friendship,
regardless of what the interests are.

Lake Woods Park Art class Dance class

\run S palnts dances

swims  hunts

44



Double-Equivariance

Solution: assume permutation symmetries of both entity ids and relation ids, a
notion dubbed Double-Exchangeability [Gao et al., 2023].

Double equivariant models can learn higher-order logical relations beyond what
can be learned from data alone.

--------------------
- - = -
- ny
-
Y N

-_-----------------.
- -~
- ny
- Ny
L 4
> ~
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Transferability over Multiple Domains?

 Can we transfer the relational patters we learn in
Sports to predict relations in Organizations?

Test data: Organizations

>

Change In
domain

46
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Our Benchmark: Wikipedia KG Domains

Domain KG index Abbreviation Description

T1 Art Art and Media Representation
T2 Award Award Nomination and Achievement
T3 Edu Education and Academia

Health, Medicine, and Genetics

T4 Health
O We cre a't ed a b enc h mar k fO r TS Infra Infrastructure and Transportation

T6 Loc Location and Administrative Entity
_ oY _ T7 Org Organization and Membership
p re tral nin g ) ZEr0-S h Ot T8 People People and Social Relationship
It T9 Science Science, Technology, and Language
t ran Sfe ra b | I |ty T10 Sport Sport, and Game Competition
T11 Tax Taxonomy and Biology
#Nodes # Relations #Triplets (Obv.) #Triplets (Qry.) Avg. Deg.
. . Art 10000 45 28023 3113 6.23
* Domains have non-overlapping  awad | 10000 10 25056 2783 5’57
it d At Edu 10000 15 14193 1575 3.15
Health | 10000 20 15337 1703 3.41
entities an relations Infra 10000 27 21646 2405 4.81
Loc 10000 35 80269 8918 17.84
Org 10000 18 30214 3357 6.71
People | 10000 25 58530 6503 13.01
Sci 10000 42 12516 13838 2.78
Sport 10000 20 46717 5190 10.38
Tax 10000 31 19416 2157 4.32

47
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New Knowledge Graph Isomorphism

Train: Sports Test: Organizations

/ o> \
‘56
L) e e b@

If cam pincipl gl
1.A £ A’, and
2. dz, €S, ,dn, €S, —
A'=mgomo A

we say A = A’ are isomorphic

48
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Double equivariance for knowledge graph predictors

GNN2 — Double G-equivariant GNN to node and relation
permutations

Double equivariant GNN
o / g
0,0 = argmin — log py(y; - 4 | GNNZ (7, (A, ..., A,));,), label i and )

0,0 Double equivariance

4/4Jaranteed by architecture

s.t. GNNg(r’, wo(meA,...,meA)) =mo GNNg(ﬂ' o1, (A, ..., A)),

Vn'eS,,Vrne S, ,VA,...,A,
? 1\V\

For all relation sequence permutations For all graphs

49
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Transferability through double equivariance (1)

* Pretrain up to 4x domains, zero-shot test on new domain (no overlapping
relations) to predict relation (i,?,))

Pre-trained zero-shot pre-trained on other domains vs transductive SOTA (relation task)

}'-‘ﬂ * L 0“'-'—’ ¢

3x domains +I{0 @ m{—l-{ 4
|-‘ & L4

0 20

1x domain U I L
&

2X domains -

# of training KG domains

4% domains

“0’{-\0 "

greater pre-training diversity

-60 —-40 -20 -60 —40 —-20 0 20
(zero-shot HITS@10 - transductive HITS@10) (zero-shot HITS@5 - transductive HITS@5) (
Transductive SOTA Pre-training on other Transductive SOTA Pre-training on other
better than pre-training domains better than better than pre-training domains better than
on other domains transductive SOTA on other domains transductive SOTA
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Transferability through double equivariance (2)

* Pretrain up to 4x domains, zero-shot test on new domain (no overlapping
relations) to predict relation (i,r,?

Pre-trained zero-shot pre-trained on other domains vs transductive SOTA (node task)

c
> — .
e =
[ O
>
T | - —l
= S 2X domains
= = - * |
1%] c .
.? I 3x domains | | |
@ e | | I
Q o
= % 4% domains —©° —-40 -20 0 20 ~60 ~40 -20 0 20
‘,a' (zero-shot HITS@10 - transductive HITS@10) (zero-shot HITS@5 - transductive HITS@5)
5
Transductive SOTA Pre-training on other Transductive SOTA Pre-training on other
better than pre-training domains better than better than pre-training domains better than

on other domains transductive SOTA on other domains transductive SOTA
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Examples of double-equivariant models in the literature

 (ISDEA+) (Gao et al., 2023) arXiv:2302.01313
 (ULTRA) (Galkin et al., ICML 2024)
 (ULTRA-Query) (Galkin et al., NeurlPS 2024)

 (INGRAM) (Lee et al, ICML 2023)* [*embeddings equivariant in distribution, see
(Gao et al., 2023)]

Bruno Ribeiro, Purdue
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Can we further generalize this
approach?

Bruno Ribeiro, Purdue



(Recap) Maybe an Impossible Dream

Pretrain a single foundation graph model over multiple graphs with distinct feature spaces

* Node/edge features can be a mix of

- R, real-valued features (totally ordered sets)

- /., discrete features (totally ordered sets)

 Categorical features (unordered sets)

Molecular Graph

Node: Atomic Properties (Z, charge)
Edge: Bond Types, Length

©
®

©
@

Knowledge Graph Social Network
Node: Entity Types, Text Node: User Demographic Features
Edge: Relations, Confidence Edge: Interaction Types, Time

@

4 ™)
Graph Foundation Model
Unified Processing of Heterogeneous Features
--------- s EEELELELE LEEEEEEEEEL ELEL LT
. J

Bruno Ribeiro, Purdue
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Further Generalization of Feature Domain Transferability

Zero-Shot Generalization of GNNs Over Distinct Attribute Domains,
Shen, Zhou, Bevilacqua, Robinson, Kanatsoulis, Leskovec, Ribeiro, 2024 under submission
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Distinct Feature Domains (Example)

e Domain e-commerce beds * Domain e-commerce H&M (clothes)

» Features: * Features:
* Type: "Twin’, "Twin XL, "Full’, ’Queen’, ’King’, "California King’ . Product type name: categorical

 Material: ‘Wood’, 'Metal’, 'Upholstered’, 'Bamboo’, 'Particle | |
Board’, ’"Composite’ » (Graphical appearance name: categorical

» Bed frame included: True/False » Color: categorical

 Headboard included: True/False _ ,
* Perceived color: categorical

e Footboard included: True/False

| | * Perceived color master name: categorical
* Box spring required: True/False

» Weight capacity Ibs: int * Department name: categorical

* Bed size length (inches): int * Index group name: categorical
* Bed size width (inches): int » Section name: categorical

* Bed size height (inches): int |
 Garment type: categorical

Bruno Ribeiro, Purdue
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Distinct Feature Domains (Example)

e Domain e-commerce smartphones

e Features:

* Domain e-commerce refrigerators

Display type:’OLED’, ’LCD’

Display size (in): float

Display resolution (pixels): <int,int>
Processor type: categorical

Ram (GB): int

Storage (GB): int

“Rear camera primary resolution (MP): int

Front camera resolution (MP): int

e Domain e-commerce shoes

Operating system:’Android’, ’iOS’, '"HarmonyOS’, 'KaiOS’, 'Tizen’,

'Ubuntu Touch’, 'PureOS’, ’Sailfish OS’, 'Plasma Mobile’
Battery capacity (mAh): int
Has gps: True/False

Has nfc: True/False

Bruno Ribeiro, Purdue
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New Equivariances for Encoding Features in GNNs

raw

0.6 -
0.5 -
" &
)
O @©
TG oa-
® S
O o ®
> L &2 031
g 2*
O S 3 :
. _8 0.2 - = =
SE
O  o1-
"
0.0

desktop
Test &

\'%

raw

v

refrigerators

J Test Graph Do
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random
mwm NBFNet-raw
Bm NBFNet-gaussian
B NBFNet-structural
B NBFNet-lim
B NBFNet-normalized
B NBFNet-STAGE
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raw

smartphone

Train

shoes

H&M




New Equivariances for Encoding Features in GNNs

0.6 A Model
random
. NBFNet-raw
QO 0.5 Bm NBFNet-gaussian
D on B NBFNet-structural
O © mEm NBFNet-lim
'_5 i . BEm NBFNet-normalized
D O 0.4- mEm NBFNet-STAGE
| - 3 —
O o ®
> . 203
—= O <
'—
8 - = S = 3 S 3
© © (] © © ©
S O 0.2 - - - - - -
|
O m
O 2
O 0.1
0.0 v vV V v vV V
desktop refrigerators smartphone shoes H&M

Tl’alﬂ\ & J / /
Neural Network
(Zero-shot)
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A New type of Graph Equivariance to Encode Node Features

 What if instead of learning over the original node features,
we learned over the space that defines their dependencies with

* (i) the features of the node’s neighbors
* (il) the features and the task

* This would be possible if we had a neural network that could learn to perform
Independence tests over

e (a) multiple random variables
* (b) accounts for graph topology

 We would like to translate these requirements into invariances
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Finding the right invariances

* Bell (1964) and later Berk & Bickel (1968) proved that a certain type of
independence tests (rank tests) have invariances such that they are equivalent
to most-powerful almost invariant tests.

* |f most expressive, these tests are called maximal invariants
» [hese tests are defined by their invariances.

* This means that a neural network can learn independence tests if it abides by
the invariances of rank tests.
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A New type of Graph Equivariance to Encode Node Features

Component-wise order-preserving groupoids for graphs (COGG) equivariances

* |ntuitively, the full set of invariances required for domain transferability over
a graph G = (V, E, X), where X are the node features:

1. Invariance or equivariance to transformations of feature values that
1.1. Preserve the order statistics of the feature values of totally ordered sets
1.2. Invariant to the order statistics of the feature values of unordered sets

2. Invariance or equivariance to permutations of feature variables
2.1. 1.e., the order of the features should be irrelevant

3. Invariance or equivariance to permutations of entities (nodes) in the graph, affecting both

nodes V' (and consequently £') and the feature variables in X .
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Using these equivariances GNNs can generalize across feature domains

5 datasets: E-commerce beds, desktops, refrigerators, smartphones, shoes

» Task: Trainon k € {1,...,4} dataset domains, zero-shot into held-out dataset.

Model

NBFNet-raw B NBFNet-structural B NBFNet-normalized

Trainin on more dOmainS [ NBFNet-gaussian B NBFNet-lim B NBFNet-STAGE

g 0.6-
(e.g., beds, desktops, ﬁ
shoes, fridges) 0.4
improves prediction on ot
held-out domain 0.2
(e.g., smartphones) .

1 2 3 4

k training domains
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Recap 1. Task transferability: Graph foundation models should be capable pretraining on
a diverse set of tasks then fine-tune on diverse downstream tasks
1. Task transferability: -
Pre-training Fine-tuning
- Graph tasks of kK nodes need
k'permUtatiOn Symmetries r Graph Task 1 1 ( Graph Task 2 1 | Graph Task 3 | f N

| | (node task) (edge task) (triangle task) Graph Foundation Model

- New graph representations (holographic) I:I I:I I:I # Frozen Parameters

provide first step towards task ‘ g o ’ )
transferabillity \ / ) |
A . A (_ RYSN _ RN ) R

2. Feature space universality: Graph foundation models should be able to handle graphs
with heterogeneous node and edge feature spaces (both categorical, discrete and

1. Feature space universality: continuous), allowing for seamless integration of diverse data types and sources
¢ N Od e/ ed g e feat ure h eterOg en elty Molecular Graph Knowledge Graph Social Network
between d Omai nS iS a Ch al Ien g i ng Node: Atomic Properties (Z, charge) [ Node: Ent.ity Types, Text J [ Node: U.ser Dempgraphic Fegtures
Edge: Bond Types, Length Edge: Relations, Confidence Edge: Interaction Types, Time

problem | O_O

* New neural network symmetries can
unleash more universal feature space Q O O
embeddings by encoding statistical | /
dependencies rather than values

Graph Foundation Model

Unified Processing of Heterogeneous Features

10
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Parting Thoughts

| Deep

 Imposing new GNN symmetries allows them to have better
task and feature space transferability

» Graph Foundation Models may not happen through engineering solutions
& known methods (e.g., PCA-style) alone
» GNNs that can learn over diverse graph domains seem to require

new neural network symmetries

w @brunofmr
=3 ribeiro@cs.purdue.edu
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Thank you!

* And thanks to all these amazing collaborators

Beatrice Bevilacqua Jincheng Zhou Yucheng Zhang  Leonardo Cotta Yangz hou Jianfei Gao S Chandra Mouli

(Purdue) (Purdue) (Purdue) (UoT/Vector Institute) (Spotify) (Amazon) (Meta)
Jure Leskovec ~ Joshua Robinson  Yangyi Shen Michael Galkin
(Stanford) (Isomorphic Labs) (Stanford) (Google)
w @prunofmr

=3 ribeirob @purdue.edu
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(Backup)
Symmetries in Human Relational Reasoning
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Symmetries in Human Learning
pgqdbpgdbpqgdbpqdb

MATCHING LINES]

Di

lllllllll : Draw a line to the correct

IGHLIGHT FUN 1

Directions: Highlight all of the B's.

Any simple CNN can distinguishing 6 and 9
even before training starts
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vmmetries and learning

Assuming symmetries is a key
cognitive difference between the
young children and other primates

Young children assume symmetries
(and learn asymmetries when wrong)

Bruno Ribeiro, Purdue
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Human neurons assume some symmetries

llllll
...............
..........
....
-
.
.
-
L
-
-
.
L
*
.
. L J

‘A
| earned E , D
stimuli relations . - = 4
Directly trained —

Assumed symmetry
. - =
(Mutual entailment)

Assumed transitivity -
(Combinatorial mutual entailment)

| S1idman and Tailby, 1982]

[Sidman et al., 1982, “A search for symmetry in the

conditional discriminations of rhesus monkeys, baboons, and children”] -



Asymmetry Learning for Counterfactually-invariant
Classification in OOD Tasks
(Mouli, R., ICLR 2022 Oral)

Asymmetry Learning

ASYMMETRY LEARNING FOR COUNTERFACTUAL-

HypOth eS i S : H u m a n b ra i n INVARIANT CLASSIFICATION IN OOD TASKS
assumes symmetries and learn
asymmetries when needed

NEURAL NETWORKS FOR LEARNING COUNTERFAC-
TUAL G-INVARIANCES FROM SINGLE ENVIRONMENTS

Neural networks should also
assume SymmetrleS and Iearn ddddddddddddd edu ribeiro@cs.purdue edu
asymmetries when needed




