
Preliminaries Solution framework Correctness Conclusion

An Algorithmic Framework for Synthesis of
Concurrent Programs

E. Allen Emerson and Roopsha Samanta

The University of Texas at Austin

Oct 12, 2011

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 1 / 23



Preliminaries Solution framework Correctness Conclusion

Let’s begin with an example

Reader P1 � Writer P2

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 2 / 23



Preliminaries Solution framework Correctness Conclusion

Let’s begin with an example

Reader P1 � Writer P2

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
Execute code region TRY2;
Execute code region CS2;

}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 2 / 23



Preliminaries Solution framework Correctness Conclusion

Let’s begin with an example

Reader P1 � Writer P2

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
Execute code region TRY2;
Execute code region CS2;

}}

Mutual exclusion:
AG(¬(CS1 ∧ CS2)).
Absence of starvation for reader P1, provided writer P2 remains idle:
AG(TRY1 ⇒ AF(CS1 ∨ ¬IDLE2)).
Absence of starvation for writer:
AG(TRY2 ⇒ AF CS2).
Priority of writer over reader for outstanding requests to enter the critical section:
AG((TRY1 ∧ TRY2) ⇒ A[TRY1 U CS2]).

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 2 / 23



Preliminaries Solution framework Correctness Conclusion

Let’s begin with an example

Reader P1 � Writer P2

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
Execute code region TRY2;
Execute code region CS2;

}}

φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 2 / 23



Preliminaries Solution framework Correctness Conclusion

Let’s begin with an example

Reader P1 � Writer P2

6|=

φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 2 / 23



Preliminaries Solution framework Correctness Conclusion

Problem definition

Given unsynchronized P1, P2 and φ such that P1 � P2 6|= φ,
automatically generate P1, P2 such that P1 � P2 |= φ.

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 3 / 23



Preliminaries Solution framework Correctness Conclusion

Our solution

main() {
P1() � P2();

}

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
Execute code region TRY2;
Execute code region CS2;

}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 4 / 23



Preliminaries Solution framework Correctness Conclusion

Our solution

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;

P1() � P2();
}

P1() {
while(true) {

Execute code region IDLE1;
lock(l) {

idle1, try1 := 0,1;
notify(cvcs2);

}
Execute code region TRY1;

lock(l) {
while (!idle2)

wait(cvcs1,l);
try1, cs1 := 0,1;

}
Execute code region CS1;

lock(l) {
cs1, idle1 := 0,1;
notify(cvcs2);

}}}

P2() {
while(true) {

Execute code region IDLE2;
lock(l) {

idle2, try2 := 0,1;
}
Execute code region TRY2;

lock(l) {
while (!(idle1 ∨ try1))

wait(cvcs2,l);
try2, cs2 := 0,1;

}
Execute code region CS2;

lock(l) {
cs2, idle2 := 0,1;
notify(cvcs1);

}}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 4 / 23



Preliminaries Solution framework Correctness Conclusion

Our solution

Reader P1 � Writer P2

|=

φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 5 / 23



Preliminaries Solution framework Correctness Conclusion

Outline

Preliminaries

Solution framework

Correctness

Conclusion

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 6 / 23



Preliminaries Solution framework Correctness Conclusion

Motivation

Problem: Shared memory concurrent programs
Ubiquitous
Hard to write
Harder to verify (safety, liveness)

Proposal: Automatically synthesize synchronization code
Only write unsynchronized skeletons
Correct-by-construction synchronization code
No further verification needed

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 7 / 23



Preliminaries Solution framework Correctness Conclusion

Motivation

Problem: Shared memory concurrent programs
Ubiquitous
Hard to write
Harder to verify (safety, liveness)

Proposal: Automatically synthesize synchronization code
Only write unsynchronized skeletons
Correct-by-construction synchronization code
No further verification needed

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 7 / 23



Preliminaries Solution framework Correctness Conclusion

Motivation

Problem: Shared memory concurrent programs
Ubiquitous
Hard to write
Harder to verify (safety, liveness)

Proposal: Automatically synthesize synchronization code
Only write unsynchronized skeletons
Correct-by-construction synchronization code
No further verification needed

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 7 / 23



Preliminaries Solution framework Correctness Conclusion

Motivation

Problem: Shared memory concurrent programs
Ubiquitous
Hard to write
Harder to verify (safety, liveness)

Proposal: Automatically synthesize synchronization code
Only write unsynchronized skeletons
Correct-by-construction synchronization code
No further verification needed

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 7 / 23



Preliminaries Solution framework Correctness Conclusion

Groundwork

Unsynchronized skeletons 7→ state-machines
Code regions 7→ states (atomic propositions)
Control-flow 7→ transition relation

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

IDLE1 TRY1 CS1

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 8 / 23



Preliminaries Solution framework Correctness Conclusion

Groundwork

Unsynchronized skeletons 7→ state-machines
Code regions 7→ states (atomic propositions)
Control-flow 7→ transition relation

Interleaved, asynchronous computation

CTL specification
Safety: AG(¬(CS1 ∧ CS2))
Liveness: AG(TRY2 ⇒ AF CS2)

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 8 / 23



Preliminaries Solution framework Correctness Conclusion

Recall problem definition

Given skeletons P1, P2 and φ such that P1 � P2 6|= φ,
automatically generate P1, P2 such that P1 � P2 |= φ.

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 9 / 23



Preliminaries Solution framework Correctness Conclusion

Solution framework

Step 1: Synthesize synchronization skeletons, Ps
1 , Ps

2
High-level synchronization actions

Guarded commands

Ps
1 � Ps

2 |= φ

Step 2: Mechanically translate Ps
1 , Ps

2 into P1, P2
Low-level synchronization code

Monitors (wait and notify), mutex locks

Correctness-preserving translation, i.e., P1 � P2 |= φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 10 / 23



Preliminaries Solution framework Correctness Conclusion

Solution framework

Step 1: Synthesize synchronization skeletons, Ps
1 , Ps

2
High-level synchronization actions

Guarded commands

Ps
1 � Ps

2 |= φ

Step 2: Mechanically translate Ps
1 , Ps

2 into P1, P2
Low-level synchronization code

Monitors (wait and notify), mutex locks

Correctness-preserving translation, i.e., P1 � P2 |= φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 10 / 23



Preliminaries Solution framework Correctness Conclusion

Step 1: High-level synchronization

[EmersonClarke82]

Reader P1:

IDLE1 TRY1 CS1

Writer P2:

IDLE2 TRY2 CS2

φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 11 / 23



Preliminaries Solution framework Correctness Conclusion

Step 1: High-level synchronization

M |= phi :

IDLE1 IDLE2

TRY1 IDLE2 IDLE1 TRY2

CS1 IDLE2
TRY1 TRY2

IDLE1 CS2

CS1 TRY2 TRY1 CS2

1 2

1 2 1 2

2 2 1

12

1 2

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 11 / 23



Preliminaries Solution framework Correctness Conclusion

Step 1: High-level synchronization

Reader Ps
1 :

IDLE1 TRY1 CS1
IDLE2?

Writer Ps
2 :

IDLE2 TRY2 CS2
IDLE1 ∨ TRY1?

Ps
1 � Ps

2 |= φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 11 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Low-level synchronization

Obtain P1, P2 from Ps
1 , Ps

2

Monitors (wait and notify), mutex locks
P1 � P2 |= φ

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 12 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Coarse-grained synchronization

Declare Boolean shared variables
Declare (single) lock and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;
Pc

1 () � Pc
2 ();

}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 13 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Coarse-grained synchronization

Declare Boolean shared variables
Declare (single) lock and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;
Pc

1 () � Pc
2 ();

}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 13 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Coarse-grained synchronization

Compile each guarded command in Ps
1 , Ps

2 into a
coarse-grained synchronization region

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 14 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Coarse-grained synchronization

TRY1 CS1
IDLE2?

Execute TRY1;
lock(l) {

while (!idle2)
wait(cvcs1,l);

try1, cs1 := 0,1;
}
Execute CS1;

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 14 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Coarse-grained synchronization

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;

Pc
1 () � Pc

2 ();
}

Pc
1 () {

while(true) {
Execute code region IDLE1;
lock(l) {

idle1, try1 := 0,1;
notify(cvcs2);

}
Execute code region TRY1;
lock(l) {

while (!idle2)
wait(cvcs1,l);

try1, cs1 := 0,1;
}
Execute code region CS1;
lock(l) {

cs1, idle1 := 0,1;
notify(cvcs2);

}}}

Pc
2 () {

while(true) {
Execute code region IDLE2;
lock(l) {

idle2, try2 := 0,1;
}
Execute code region TRY2;
lock(l) {

while (!(idle1 ∨ try1))
wait(cvcs2,l);

try2, cs2 := 0,1;
}
Execute code region CS2;
lock(l) {

cs2, idle2 := 0,1;
notify(cvcs1);

}}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 15 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Fine-grained synchronization

Declare Boolean shared variables
Declare mutex locks, monitor locks and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock lidle1, ltry1, lcs1, lidle2, ltry2, lcs2;
lock lcvcs1, condition variable cvcs1;
lock lcvcs2, condition variable cvcs2;
P f

1() � P f
2();

}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 16 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Fine-grained synchronization

Declare Boolean shared variables
Declare mutex locks, monitor locks and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock lidle1, ltry1, lcs1, lidle2, ltry2, lcs2;
lock lcvcs1, condition variable cvcs1;
lock lcvcs2, condition variable cvcs2;
P f

1() � P f
2();

}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 16 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Fine-grained synchronization

Compile each guarded command in Ps
1 , Ps

2 into a
fine-grained synchronization region

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 17 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Fine-grained synchronization

TRY1 CS1
IDLE2?

Execute TRY1;
lock(lcvcs1) {

while (!Guardcs1())
wait(cvcs1,lcvcs1);

}
Execute CS1;

boolean Guardcs1() {
lock((ltry1 , lcs1 , lidle2) {
if (idle2) {

try1, cs1 := 0,1;
return(true);

}
else return(false);

}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 17 / 23



Preliminaries Solution framework Correctness Conclusion

Step 2: Fine-grained synchronization

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock lidle1

, ltry1
, lcs1, lidle2

, ltry2
, lcs2;

lock lcvcs1, condition variable cvcs1; lock lcvcs2, condition variable cvcs2;

Pf
1() � Pf

2();}

Pc
1 () {

while(true) {
Execute code region IDLE1;
lock(lidle1

, ltry1
) {

idle1, try1 := 0,1;}
lock(()lcvcs2) {

notify(cvcs2);}
Execute code region TRY1;
lock(lcvcs1) {

while (!Guardcs1 ())

wait(cvcs1,lcvcs1);}
Execute code region CS1;
lock(lidle1

, lcs1) {

cs1, idle1 := 0,1;}
lock(()lcvcs2) {

notify(cvcs2);}}}

Pc
2 () {

while(true) {
Execute code region IDLE2;
lock(lidle2

, ltry2
) {

idle2, try2 := 0,1;}
Execute code region TRY2;
lock(lcvcs2) {

while (!Guardcs2 ())

wait(cvcs2,lcvcs2);}
Execute code region CS2;
lock(lidle2

, lcs2) {

cs2, idle2 := 0,1;}
lock(()lcvcs1) {

notify(cvcs1);}}}

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 18 / 23



Preliminaries Solution framework Correctness Conclusion

Review

What we have so far . . .
Fully algorithmic synthesis of synchronization

Algorithmic front-end for high-level synchronization
Algorithmic back-end for low-level synchronization

Coarse and fine-grained synchronization
What’s remaining?

Correctness
What properties can we handle?

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 19 / 23



Preliminaries Solution framework Correctness Conclusion

Review

What we have so far . . .
Fully algorithmic synthesis of synchronization

Algorithmic front-end for high-level synchronization
Algorithmic back-end for low-level synchronization

Coarse and fine-grained synchronization
What’s remaining?

Correctness
What properties can we handle?

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 19 / 23



Preliminaries Solution framework Correctness Conclusion

Correspondence Lemmas

[Coarse-grained Correspondence]:
Given an ACTL \ X formula φ, Ps

1 � Ps
2 |= φ ⇒ Pc

1 � Pc
2 |= φ.

[Fine-grained Correspondence]:
Given an ACTL \ X formula φ, Ps

1 � Ps
2 |= φ ⇒ P f

1 � P f
2 |= φ.

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 20 / 23



Preliminaries Solution framework Correctness Conclusion

Correctness

Sound and complete for consistent temporal specifications!

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 21 / 23



Preliminaries Solution framework Correctness Conclusion

Contributions

Fully algorithmic synthesis of synchronization
Algorithmic front-end for high-level synchronization
Algorithmic back-end for low-level synchronization

Coarse and fine-grained synchronization
Safety and liveness
Sound and complete (for ACTL \ X )

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 22 / 23



Preliminaries Solution framework Correctness Conclusion

Related Work

Inference of high-level synchronization, guarded
commands: [EC82, VYY09]
Mapping of high-level to low-level synchronization:
[DDHM01, Y-KB02]
Lock-inference, locking granularity: [EFJM07, CCG08]
Sketching: [S-LRBE05]
Open systems [PR89]

E. Allen Emerson and Roopsha Samanta An Algorithmic Framework for Synthesis of Concurrent Programs 23 / 23


	Preliminaries
	Solution framework
	Correctness
	Conclusion

