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Reader P1 � Writer P2

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
Execute code region TRY2;
Execute code region CS2;

}}

Mutual exclusion:
AG(¬(CS1 ∧ CS2)).
Absence of starvation for reader P1, provided writer P2 remains idle:
AG(TRY1 ⇒ AF(CS1 ∨ ¬IDLE2)).
Absence of starvation for writer:
AG(TRY2 ⇒ AF CS2).
Priority of writer over reader for outstanding requests to enter the critical section:
AG((TRY1 ∧ TRY2) ⇒ A[TRY1 U CS2]).
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Problem definition

Given unsynchronized P1, P2 and φ such that P1 � P2 6|= φ,
automatically generate P1, P2 such that P1 � P2 |= φ.
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Our solution

main() {
P1() � P2();

}

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

P2() {
while(true) {
Execute code region IDLE2;
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Our solution

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;

P1() � P2();
}

P1() {
while(true) {

Execute code region IDLE1;
lock(l) {

idle1, try1 := 0,1;
notify(cvcs2);

}
Execute code region TRY1;

lock(l) {
while (!idle2)

wait(cvcs1,l);
try1, cs1 := 0,1;

}
Execute code region CS1;

lock(l) {
cs1, idle1 := 0,1;
notify(cvcs2);

}}}

P2() {
while(true) {

Execute code region IDLE2;
lock(l) {

idle2, try2 := 0,1;
}
Execute code region TRY2;

lock(l) {
while (!(idle1 ∨ try1))

wait(cvcs2,l);
try2, cs2 := 0,1;

}
Execute code region CS2;

lock(l) {
cs2, idle2 := 0,1;
notify(cvcs1);

}}}
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Motivation

Problem: Shared memory concurrent programs
Ubiquitous
Hard to write
Harder to verify (safety, liveness)

Proposal: Automatically synthesize synchronization code
Only write unsynchronized skeletons
Correct-by-construction synchronization code
No further verification needed
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Groundwork

Unsynchronized skeletons 7→ state-machines
Code regions 7→ states (atomic propositions)
Control-flow 7→ transition relation

P1() {
while(true) {
Execute code region IDLE1;
Execute code region TRY1;
Execute code region CS1;

}}

IDLE1 TRY1 CS1
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Preliminaries Solution framework Correctness Conclusion

Groundwork

Unsynchronized skeletons 7→ state-machines
Code regions 7→ states (atomic propositions)
Control-flow 7→ transition relation

Interleaved, asynchronous computation

CTL specification
Safety: AG(¬(CS1 ∧ CS2))
Liveness: AG(TRY2 ⇒ AF CS2)
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Recall problem definition

Given skeletons P1, P2 and φ such that P1 � P2 6|= φ,
automatically generate P1, P2 such that P1 � P2 |= φ.
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Solution framework

Step 1: Synthesize synchronization skeletons, Ps
1 , Ps

2
High-level synchronization actions

Guarded commands

Ps
1 � Ps

2 |= φ

Step 2: Mechanically translate Ps
1 , Ps

2 into P1, P2
Low-level synchronization code

Monitors (wait and notify), mutex locks

Correctness-preserving translation, i.e., P1 � P2 |= φ
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Step 1: High-level synchronization

[EmersonClarke82]

Reader P1:

IDLE1 TRY1 CS1

Writer P2:

IDLE2 TRY2 CS2

φ
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Step 1: High-level synchronization

M |= phi :

IDLE1 IDLE2

TRY1 IDLE2 IDLE1 TRY2

CS1 IDLE2
TRY1 TRY2

IDLE1 CS2

CS1 TRY2 TRY1 CS2

1 2

1 2 1 2

2 2 1

12

1 2
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Step 1: High-level synchronization

Reader Ps
1 :

IDLE1 TRY1 CS1
IDLE2?

Writer Ps
2 :

IDLE2 TRY2 CS2
IDLE1 ∨ TRY1?

Ps
1 � Ps

2 |= φ
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Step 2: Low-level synchronization

Obtain P1, P2 from Ps
1 , Ps

2

Monitors (wait and notify), mutex locks
P1 � P2 |= φ
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Step 2: Coarse-grained synchronization

Declare Boolean shared variables
Declare (single) lock and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;
Pc

1 () � Pc
2 ();

}
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Step 2: Coarse-grained synchronization

Compile each guarded command in Ps
1 , Ps

2 into a
coarse-grained synchronization region
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Step 2: Coarse-grained synchronization

TRY1 CS1
IDLE2?

Execute TRY1;
lock(l) {

while (!idle2)
wait(cvcs1,l);

try1, cs1 := 0,1;
}
Execute CS1;
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Step 2: Coarse-grained synchronization

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock l, condition variables cvcs1, cvcs2;

Pc
1 () � Pc

2 ();
}

Pc
1 () {

while(true) {
Execute code region IDLE1;
lock(l) {

idle1, try1 := 0,1;
notify(cvcs2);

}
Execute code region TRY1;
lock(l) {

while (!idle2)
wait(cvcs1,l);

try1, cs1 := 0,1;
}
Execute code region CS1;
lock(l) {

cs1, idle1 := 0,1;
notify(cvcs2);

}}}

Pc
2 () {

while(true) {
Execute code region IDLE2;
lock(l) {

idle2, try2 := 0,1;
}
Execute code region TRY2;
lock(l) {

while (!(idle1 ∨ try1))
wait(cvcs2,l);

try2, cs2 := 0,1;
}
Execute code region CS2;
lock(l) {

cs2, idle2 := 0,1;
notify(cvcs1);

}}}
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Step 2: Fine-grained synchronization

Declare Boolean shared variables
Declare mutex locks, monitor locks and condition variables

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock lidle1, ltry1, lcs1, lidle2, ltry2, lcs2;
lock lcvcs1, condition variable cvcs1;
lock lcvcs2, condition variable cvcs2;
P f

1() � P f
2();

}
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Step 2: Fine-grained synchronization

Compile each guarded command in Ps
1 , Ps

2 into a
fine-grained synchronization region
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Step 2: Fine-grained synchronization

TRY1 CS1
IDLE2?

Execute TRY1;
lock(lcvcs1) {

while (!Guardcs1())
wait(cvcs1,lcvcs1);

}
Execute CS1;

boolean Guardcs1() {
lock((ltry1 , lcs1 , lidle2) {
if (idle2) {

try1, cs1 := 0,1;
return(true);

}
else return(false);

}}
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Step 2: Fine-grained synchronization

main() {
boolean idle1:=1, try1:=0, cs1:=0, idle2:=1, try2:=0, cs2:=0;
lock lidle1

, ltry1
, lcs1, lidle2

, ltry2
, lcs2;

lock lcvcs1, condition variable cvcs1; lock lcvcs2, condition variable cvcs2;

Pf
1() � Pf

2();}

Pc
1 () {

while(true) {
Execute code region IDLE1;
lock(lidle1

, ltry1
) {

idle1, try1 := 0,1;}
lock(()lcvcs2) {

notify(cvcs2);}
Execute code region TRY1;
lock(lcvcs1) {

while (!Guardcs1 ())

wait(cvcs1,lcvcs1);}
Execute code region CS1;
lock(lidle1

, lcs1) {

cs1, idle1 := 0,1;}
lock(()lcvcs2) {

notify(cvcs2);}}}

Pc
2 () {

while(true) {
Execute code region IDLE2;
lock(lidle2

, ltry2
) {

idle2, try2 := 0,1;}
Execute code region TRY2;
lock(lcvcs2) {

while (!Guardcs2 ())

wait(cvcs2,lcvcs2);}
Execute code region CS2;
lock(lidle2

, lcs2) {

cs2, idle2 := 0,1;}
lock(()lcvcs1) {

notify(cvcs1);}}}
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Review

What we have so far . . .
Fully algorithmic synthesis of synchronization

Algorithmic front-end for high-level synchronization
Algorithmic back-end for low-level synchronization

Coarse and fine-grained synchronization
What’s remaining?

Correctness
What properties can we handle?
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Correspondence Lemmas

[Coarse-grained Correspondence]:
Given an ACTL \ X formula φ, Ps

1 � Ps
2 |= φ ⇒ Pc

1 � Pc
2 |= φ.

[Fine-grained Correspondence]:
Given an ACTL \ X formula φ, Ps

1 � Ps
2 |= φ ⇒ P f

1 � P f
2 |= φ.
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Correctness

Sound and complete for consistent temporal specifications!
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Contributions

Fully algorithmic synthesis of synchronization
Algorithmic front-end for high-level synchronization
Algorithmic back-end for low-level synchronization

Coarse and fine-grained synchronization
Safety and liveness
Sound and complete (for ACTL \ X )
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Related Work

Inference of high-level synchronization, guarded
commands: [EC82, VYY09]
Mapping of high-level to low-level synchronization:
[DDHM01, Y-KB02]
Lock-inference, locking granularity: [EFJM07, CCG08]
Sketching: [S-LRBE05]
Open systems [PR89]
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